Descriptive Complexity: Ehrenfeucht-Fraïssé Games

Konstantakatos Vangelis

National Technical University of Athens

Outline

Motivation

Ehrenfeucht-Fraïssé Games

Completness

Proof of the Ehrenfeucht-Fraïssé Theorem

Exercises

Further Directions

Motivation

- In Descriptive Complexity we study the connections between the expressibility of logics and computational complexity.

Motivation

- In Descriptive Complexity we study the connections between the expressibility of logics and computational complexity.
- Naturally studying the expressive power of logics is part of this study!

Definition 1

Let L be a logic and C a class of σ-structures. A boolean query Q on C is \mathbf{L}-definable on C if there is a sentence ψ such that for every $\mathbf{A} \in C$

$$
Q(\mathbf{A})=1 \Longleftrightarrow A \models \psi
$$

Examples

Ex1.

On the class of all graphs the boolean query "the graph G has an isolated node is definable by the FO sentence:

$$
(\exists x)(\forall y)(\neg E(x, y) \wedge \neg E(y, x))
$$

Ex2.

On the class of binary strings the boolean query "the string has at least two 0 's" is definable by the FO sentence:

$$
(\exists x)(\exists y)(\neg(x=y) \wedge \neg P(x) \wedge \neg P(y))
$$

Remarks

- The expressive power of a logic L depends on the class C of structures on which it is studied.

Remarks

- The expressive power of a logic L depends on the class C of structures on which it is studied.
- The same sentence must define the query an all structures of the class.

Remarks

- The expressive power of a logic L depends on the class C of structures on which it is studied.
- The same sentence must define the query an all structures of the class.
- Proving that a query is definable in a logic can be very straightforward. Write down the sentence that defines it!

Remarks

- The expressive power of a logic L depends on the class C of structures on which it is studied.
- The same sentence must define the query an all structures of the class.
- Proving that a query is definable in a logic can be very straightforward. Write down the sentence that defines it!
- Proving that a query is not definable seems more challenging since we have to show that no sentence of L defines it.

Remarks

- We see some analogies with complexity theory.

Remarks

- We see some analogies with complexity theory.
- Constructing and algorithm provided an upper bound on the complexity of a problem.
- Finding lower bounds is generally much harder.

Investigating the expressive power of First Order Logic

- In this chapter we will focus on First Order Logic.

Investigating the expressive power of First Order Logic

- In this chapter we will focus on First Order Logic.
- Do we have tools at our disposal to prove that a query is not definable in $F O$?

Investigating the expressive power of First Order Logic

- In this chapter we will focus on First Order Logic.
- Do we have tools at our disposal to prove that a query is not definable in FO?
- Yes we have some very powerful tools from Model Theory, such as the compactness theorem!

Compactness

Theorem 2
A set of FO sentences T(Theory) has a model iff every finite subset of T has a model.

Compactness

We will use the compactness theorem to prove that Connectivity is not definable in FO over the class of arbitrary graphs(finite or infinite).
Proof
Let ψ be a $F O$ sentence such that for every $G=(V, E), G \models \psi$ iff G is connected.

Compactness

We will use the compactness theorem to prove that Connectivity is not definable in FO over the class of arbitrary graphs(finite or infinite).

Proof

Let ψ be a $F O$ sentence such that for every $G=(V, E), G \models \psi$ iff G is connected. Let s, e be constants and for every $n \geq 1$ let ϕ_{n} be the sentence

$$
\neg \exists x_{1} \ldots \exists x_{n}\left(E\left(s, x_{1}\right) \wedge E\left(x_{1}, x_{2}\right) \wedge \cdots \wedge E\left(x_{n}, e\right)\right)
$$

Compactness

Proof
Now let T be the theory

$$
T=\left\{\phi_{n}: n \geq 1\right\} \cup\{\psi\} \cup\{\neg(s=e) \wedge E(s, e)\}
$$

Compactness

Proof

Now let T be the theory

$$
T=\left\{\phi_{n}: n \geq 1\right\} \cup\{\psi\} \cup\{\neg(s=e) \wedge E(s, e)\}
$$

Every finite subset of T obviously has a model. So by the compactness theorem T has a model, which is a contradiction.

Compactness

However in descriptive complexity we are more interested in finite models, and compactness fails over finite models!
Proof
Let σ be a vocabulary with no relation symbols and define

$$
\lambda_{n} \equiv \exists x_{1} \ldots \exists x_{n} \bigwedge_{i \neq j}\left(x_{i} \neq x_{j}\right)
$$

and let T be the theory

$$
T=\left\{\lambda_{n}: n \geq 0\right\}
$$

Compactness

However in descriptive complexity we are more interested in finite models, and compactness fails over finite models!
Proof
Let σ be a vocabulary with no relation symbols and define

$$
\lambda_{n} \equiv \exists x_{1} \ldots \exists x_{n} \bigwedge_{i \neq j}\left(x_{i} \neq x_{j}\right)
$$

and let T be the theory

$$
T=\left\{\lambda_{n}: n \geq 0\right\}
$$

Every finite subset of T has a model, but T does not have a finite model!

Ehrenfeucht-Fraïssé Games

- We need a tool better tailored for finite models.

Ehrenfeucht-Fraïssé Games

- We need a tool better tailored for finite models.
- Answer: Ehrenfeucht-Fraïssé Games!

Rules of the Game

- The game is played by two players called S(or spoiler) and D (or duplicator).

Rules of the Game

- The game is played by two players called S (or spoiler) and D (or duplicator).
- The game is played on two structures \mathbf{A} and \mathbf{B} over the same vocabulary σ.

Rules of the Game

- The game is played by two players called S (or spoiler) and D(or duplicator).
- The game is played on two structures \mathbf{A} and \mathbf{B} over the same vocabulary σ.
- The game is played for a predetermined positive integer k number of rounds.

Rules of the Game

- In each round i, S picks an element of one of the two structure. Then D picks an element of the other structure.

Rules of the Game

- In each round i, S picks an element of one of the two structure. Then D picks an element of the other structure.
- Each round produces a pair $\left(a_{i}, b_{i}\right)$ where $a_{i} \in \mathbf{A}, b_{i} \in \mathbf{B}$

Rules of the Game

- In each round i, S picks an element of one of the two structure. Then D picks an element of the other structure.
- Each round produces a pair $\left(a_{i}, b_{i}\right)$ where $a_{i} \in \mathbf{A}, b_{i} \in \mathbf{B}$
- D wins the run if the mapping

$$
a_{i} \mapsto b_{i}, 1 \leq i \leq k \quad \text { and } \quad c_{j}^{A} \mapsto c_{j}^{B}, 1 \leq j \leq s
$$

is a partial isomorphism form A to B.

- Otherwise S wins the run.

Rules of the Game

- If D has a winning strategy to win the k -move Ehrenfeucht-Fraïssé Game on \mathbf{A} and \mathbf{B}, we write $\mathbf{A} \equiv_{k} \mathbf{B}$.

Examples

Let A B be sets with $|A|,|B| \geq k$ elements. D has a winning strategy for this game.

Examples

Examples

- D has a winning strategy for the 2-move game.

Examples

A
B

- D has a winning strategy for the 2-move game.
- S has a winning strategy for the 3 -move game.

Examples

- Why does S have a winning strategy for the 3-move game?

Examples

- Why does S have a winning strategy for the 3-move game?
- We can find a sentence that is true for \mathbf{B} and false for \mathbf{A}

$$
\exists x \exists y \exists z((x \neq y) \wedge(x \neq z) \wedge(y \neq z) \wedge \neg E(x, y) \wedge \neg E(x, z) \wedge \neg E(y, z))
$$

Examples

- Why does S have a winning strategy for the 3-move game?
- We can find a sentence that is true for \mathbf{B} and false for \mathbf{A}

$$
\exists x \exists y \exists z((x \neq y) \wedge(x \neq z) \wedge(y \neq z) \wedge \neg E(x, y) \wedge \neg E(x, z) \wedge \neg E(y, z))
$$

- Or a sentence that is true for \mathbf{A} and false for \mathbf{B}

$$
\forall x \forall y \exists z((x \neq y \wedge(E(x, y) \vee E(y, z)))
$$

Examples

- Why does S have a winning strategy for the 3-move game?
- We can find a sentence that is true for \mathbf{B} and false for \mathbf{A}

$$
\exists x \exists y \exists z((x \neq y) \wedge(x \neq z) \wedge(y \neq z) \wedge \neg E(x, y) \wedge \neg E(x, z) \wedge \neg E(y, z))
$$

- Or a sentence that is true for \mathbf{A} and false for \mathbf{B}

$$
\forall x \forall y \exists z((x \neq y \wedge(E(x, y) \vee E(y, z)))
$$

- What do these sentences have in common?

Quantifier Rank

Definition 3

The Quantifier Rank of a formula $\operatorname{qr}(\phi)$ is its depth of quantifier nesting.
We use the notation FO [k] for al FO formulae of quantifier rank up to k.

Examples

- The sentences from the previous example both had $q r=3$.
- $(\exists x E(x, x)) \vee(\exists y \forall z \neg E(y, z))$ has $q r=2$.

Quantifier Rank

Definition 4
Let $k \in \mathbb{N}$ and $\mathbf{A}, \mathbf{B} \sigma$-structures. We say that $\mathbf{A} \sim_{k} \mathbf{B}$ agree on $F O[k]$ iff \mathbf{A}, B satisfy the same sentences of $F O[k]$.

The Ehrenfeucht-Fraïssé Theorem

Theorem 5
The following are equivalent:

1. \boldsymbol{A} and \boldsymbol{B} agree on $\mathrm{FO}[k]$
2. $\boldsymbol{A} \equiv{ }_{k} \boldsymbol{B}$

The Ehrenfeucht-Fraïssé Theorem

Theorem 5
The following are equivalent:

1. \boldsymbol{A} and \boldsymbol{B} agree on $F O[k]$
2. $\boldsymbol{A} \equiv{ }_{k} B$

How can we use this theorem to prove that a Query is not definable in $F O$?

Method

Corollary
A query Q is not definable in $F O$ if for every $k \in \mathbb{N}$, there exists two finite σ-structures $\mathbf{A}_{k}, \mathbf{B}_{k}$ such that:

- $\mathrm{A}_{k} \equiv{ }_{k} \mathrm{~B}_{k}$
- $Q(\mathbf{A}) \neq Q(\mathbf{B})$

Examples

The EVEN CARDINALITY query is not FO definable on the class of all finite graphs.

Examples

The EVEN CARDINALITY query is not FO definable on the class of all finite graphs.

Proof.
For every $k \in \mathbb{N}$ let \mathbf{A}_{k} be the totally disconnected graph with $2 k$ nodes, and \mathbf{B}_{k} be the totally disconnected graph with $2 k+1$ nodes.
For every k, D wins the game trivially, but one graph has even nodes and the other one odd.

Examples

The EULERIAN query is not FO definable on the class of all finite graphs.

Examples

The EULERIAN query is not FO definable on the class of all finite graphs. Reminder: A graph is EULERIAN if there is a cycle that traverses each edge only once. Equivalently(for a connected graph) each node has an even degree.

Examples

The EULERIAN query is not FO definable on the class of all finite graphs.
Reminder: A graph is EULERIAN if there is a cycle that traverses each edge only once. Equivalently(for a connected graph) each node has an even degree.
Proof.
The duplicator wins on $\mathbf{A}_{2 k}, \mathbf{A}_{2 k+1}$.

Examples

- $L_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6$
- $L_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7$
- $L_{8}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7 \leq 8$

Examples

- $L_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6$
- $L_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7$
- $L_{8}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7 \leq 8$
S wins the 3 -move game on L_{6} and L_{7}
D wins the 3-move game on L_{7} and L_{8}

Examples

- $L_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6$
- $L_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7$
- $L_{8}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7 \leq 8$
S wins the 3 -move game on L_{6} and L_{7}
D wins the 3-move game on L_{7} and L_{8}
If the linear order are sufficiently larger than k, then the duplicator wins the k-round game.

Examples

- $L_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6$
- $L_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7$
- $L_{8}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7 \leq 8$
S wins the 3 -move game on L_{6} and L_{7}
D wins the 3-move game on L_{7} and L_{8}
If the linear order are sufficiently larger than k, then the duplicator wins the k-round game.
In fact it can be proved that if $m, n \geq 2^{k}-1$ then $L_{m} \equiv{ }_{k} L_{n}$

Examples

The EVEN CARDINALITY query is not FO definable on the class of all linear orders.

Examples

The EVEN CARDINALITY query is not FO definable on the class of all linear orders.

Proof.
k-round game on $L_{2 m}$ and $L_{2 m+1}$ where $m \geq 2^{k}-1$

Examples

The CONNECTIVITY query is not FO definable on the class of finite graphs.

Examples

The CONNECTIVITY query is not FO definable on the class of finite graphs.
Proof.
We can use an FO reduction from EVEN CARDINALITY on linear orders!

Finitness

Corollary

If σ is finite, then up to logical equivalence, $F O[k]$ over σ contains only finitely many formulae with m free variables.

Finitness

Corollary

If σ is finite, then up to logical equivalence, $F O[k]$ over σ contains only finitely many formulae with m free variables.
Proof(idea): Induction on k . $\mathrm{An} \mathrm{F}[\mathrm{k}+1]$ formula $\phi\left(x_{1}, \ldots, x_{m}\right)$ can be seen as a boolean combination of $\exists x_{m+1} \psi\left(x_{1}, \ldots, x_{m+1}\right)$ where $\psi \in F O[k]$.

Types

Definition 6
The rank-k-m type of $x=\left(x_{1}, \ldots, x_{m}\right)$ over \mathbf{A} is defined as

$$
t p_{k}(\mathbf{A}, x)=\{\phi \in F O[k] \mid \mathbf{A} \models \phi(x)\}
$$

Remark

Since $F O$ [k$]$ is finite, the rank- k type is determined by a unique formula for each structure. In fact the defining formula is also of $q r=k$.
Furthermore every $F O$ [k] formula can be written as a_{i}, where a_{i} is a disjunction of rank-k type determining formulae.

Completeness

Corollary
The equivalence relation \equiv_{k} is of finite index.

Completeness

Corollary
The equivalence relation \equiv_{k} is of finite index.
Proof: From the Ehrenfeucht-Fraissé theorem and the above remark.

Completeness

Corollary
The equivalence relation \equiv_{k} is of finite index.
Proof: From the Ehrenfeucht-Fraïssé theorem and the above remark.

Corollary
A query Q is not expressible in $F O$ iff for every k, one can find two structures $\mathrm{A}_{k} \equiv{ }_{k} \mathrm{~B}_{k}$ such that $Q(\mathbf{A}) \neq Q(\mathrm{~B})$.

Completeness

Corollary
The equivalence relation \equiv_{k} is of finite index.
Proof: From the Ehrenfeucht-Fraïssé theorem and the above remark.

Corollary
A query Q is not expressible in $F O$ iff for every k, one can find two structures $\mathbf{A}_{k} \equiv{ }_{k} \mathbf{B}_{k}$ such that $Q(\mathbf{A}) \neq Q(\mathbf{B})$. Proof(hint): Show that its definable by a disjunction of some of the a_{i} 's.

Proof of the Ehrenfeucht-Fraïssé Theorem

Before we finally prove the Ehrenfeucht-Fraïssé Theorem we will define back-and-forth equivalence.

- $\mathbf{A} \sim_{0} \mathbf{B}$ iff $\mathrm{A} \equiv{ }_{0} \mathrm{~B}$
- $\mathrm{A} \sim_{k+1} \mathrm{~B}$ iff the following conditions hold: forth: for every $a \in \mathbf{A}$, there exists $b \in \mathbf{B}$ such that $(\mathrm{A}, a) \sim_{k}(\mathrm{~B}, b)$
back: for every $b \in \mathbf{B}$, there exists $a \in \mathbf{A}$ such that $(\mathrm{A}, a) \sim_{k}(\mathrm{~B}, b)$

Proof of the Ehrenfeucht-Fraïssé Theorem

Theorem 7
The following are equivalent:

1. \boldsymbol{A} and \boldsymbol{B} agree on $F O$ [k]
2. $\boldsymbol{A} \equiv{ }_{k} B$
3. $\boldsymbol{A} \sim_{k} B$

Proof Sketch

$2 \Longleftrightarrow 3$ By Induction on k .
$1 \Longleftrightarrow 3$ Use the fact that $\mathrm{F}[\mathrm{k}+1]$ formula $\phi\left(x_{1}, \ldots, x_{m}\right)$ can be seen as a boolean combination of $\exists x_{m+1} \psi\left(x_{1}, \ldots, x_{m+1}\right)$ where $\psi \in F O[k]$.

ACYCLICITY

2-COLORABILITY

Extensions

- Locality and Winning Games
- Extensions of Ehrenfeucht-Fraïssé games for other Logics

References

- Libkin, Leonid. Elements of finite model theory.
- Kolaitis, Phokion. On the expressive power of Logics on Finite Models.
- Immerman, Neil. Descriptive complexity.
- Van Benthem, Johan. Logic in Games.

