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Motivation

I In Descriptive Complexity we study the connections between
the expressibility of logics and computational complexity.

I Naturally studying the expressive power of logics is part of this
study!

Definition 1
Let L be a logic and C a class of σ-structures. A boolean query Q
on C is L-definable on C if there is a sentence ψ such that for
every A ∈ C

Q(A) = 1 ⇐⇒ A |= ψ
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Examples

Ex1.
On the class of all graphs the boolean query "the graph G has an
isolated node is definable by the FO sentence:

(∃x)(∀y)(¬E (x , y) ∧ ¬E (y , x))

Ex2.
On the class of binary strings the boolean query "the string has at
least two 0’s" is definable by the FO sentence:

(∃x)(∃y)(¬(x = y) ∧ ¬P(x) ∧ ¬P(y))



Remarks

I The expressive power of a logic L depends on the class C of
structures on which it is studied.

I The same sentence must define the query an all structures of
the class.

I Proving that a query is definable in a logic can be very
straightforward. Write down the sentence that defines it!

I Proving that a query is not definable seems more challenging
since we have to show that no sentence of L defines it.
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Investigating the expressive power of First Order Logic

I In this chapter we will focus on First Order Logic.

I Do we have tools at our disposal to prove that a query is not
definable in FO?

I Yes we have some very powerful tools from Model Theory,
such as the compactness theorem!
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Compactness

Theorem 2
A set of FO sentences T (Theory) has a model iff every finite
subset of T has a model.



Compactness

We will use the compactness theorem to prove that Connectivity is
not definable in FO over the class of arbitrary graphs(finite or
infinite).

Proof
Let ψ be a FO sentence such that for every G = (V ,E ), G |= ψ iff
G is connected.

Let s, e be constants and for every n ≥ 1 let φn be
the sentence

¬∃x1 . . . ∃xn(E (s, x1) ∧ E (x1, x2) ∧ · · · ∧ E (xn, e))
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Compactness

Proof
Now let T be the theory

T = {φn : n ≥ 1} ∪ {ψ} ∪ {¬(s = e) ∧ E (s, e)}

Every finite subset of T obviously has a model. So by the
compactness theorem T has a model, which is a contradiction.
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Compactness

However in descriptive complexity we are more interested in finite
models, and compactness fails over finite models!

Proof
Let σ be a vocabulary with no relation symbols and define

λn ≡ ∃x1 . . . ∃xn
∧
i 6=j

(xi 6= xj)

and let T be the theory

T = {λn : n ≥ 0}

Every finite subset of T has a model, but T does not have a finite
model!
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Rules of the Game

I The game is played by two players called S(or spoiler) and
D(or duplicator).

I The game is played on two structures A and B over the same
vocabulary σ.

I The game is played for a predetermined positive integer k
number of rounds.
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Rules of the Game

I In each round i, S picks an element of one of the two
structure. Then D picks an element of the other structure.

I Each round produces a pair (ai , bi ) where ai ∈ A, bi ∈ B
I D wins the run if the mapping

ai 7→ bi , 1 ≤ i ≤ k and cAj 7→ cBj , 1 ≤ j ≤ s

is a partial isomorphism form A to B.
I Otherwise S wins the run.
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Rules of the Game

I If D has a winning strategy to win the k-move
Ehrenfeucht-Fraïssé Game on A and B, we write A ≡k B.



Examples

Let A B be sets with |A|, |B| ≥ k elements. D has a winning
strategy for this game.



Examples

A B

I D has a winning strategy for the 2-move game.
I S has a winning strategy for the 3-move game.
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Examples

I Why does S have a winning strategy for the 3-move game?

I We can find a sentence that is true for B and false for A

∃x∃y∃z((x 6= y)∧(x 6= z)∧(y 6= z)∧¬E (x , y)∧¬E (x , z)∧¬E (y , z))

I Or a sentence that is true for A and false for B

∀x∀y∃z((x 6= y ∧ (E (x , y) ∨ E (y , z)))

I What do these sentences have in common?
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Quantifier Rank

Definition 3
The Quantifier Rank of a formula qr(φ) is its depth of quantifier
nesting.
We use the notation FO [k] for al FO formulae of quantifier rank
up to k.

Examples
I The sentences from the previous example both had qr = 3.
I (∃xE (x , x)) ∨ (∃y∀z¬E (y , z)) has qr = 2.



Quantifier Rank

Definition 4
Let k ∈ N and A,B σ-structures. We say that A ∼k B agree on
FO[k] iff A,B satisfy the same sentences of FO[k].



The Ehrenfeucht-Fraïssé Theorem

Theorem 5
The following are equivalent:
1. A and B agree on FO[k]
2. A ≡k B

How can we use this theorem to prove that a Query is not definable
in FO?
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Method

Corollary
A query Q is not definable in FO if for every k ∈ N, there exists
two finite σ-structures Ak ,Bk such that:
I Ak ≡k Bk

I Q(A) 6= Q(B)



Examples

The EVEN CARDINALITY query is not FO definable on the class
of all finite graphs.

Proof.
For every k ∈ N let Ak be the totally disconnected graph with 2k
nodes, and Bk be the totally disconnected graph with 2k + 1 nodes.
For every k, D wins the game trivially, but one graph has even
nodes and the other one odd.
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Examples
The EULERIAN query is not FO definable on the class of all finite
graphs.

Reminder: A graph is EULERIAN if there is a cycle that traverses
each edge only once. Equivalently(for a connected graph) each
node has an even degree.

Proof.
The duplicator wins on A2k , A2k+1.
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Examples

I L6 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6
I L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7
I L8 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8

S wins the 3-move game on L6 and L7
D wins the 3-move game on L7 and L8
If the linear order are sufficiently larger than k, then the duplicator
wins the k-round game.
In fact it can be proved that if m, n ≥ 2k − 1 then Lm ≡k Ln
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The CONNECTIVITY query is not FO definable on the class of
finite graphs.

Proof.
We can use an FO reduction from EVEN CARDINALITY on linear
orders!
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Finitness

Corollary
If σ is finite, then up to logical equivalence, FO[k] over σ contains
only finitely many formulae with m free variables.

Proof(idea): Induction on k. An F[k+1] formula φ(x1, . . . , xm) can
be seen as a boolean combination of ∃xm+1ψ(x1, . . . , xm+1) where
ψ ∈ FO[k].
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Types

Definition 6
The rank-k-m type of x = (x1, . . . , xm) over A is defined as

tpk(A, x) = {φ ∈ FO[k]|A |= φ(x)}

Remark
Since FO [k] is finite, the rank-k type is determined by a unique
formula for each structure. In fact the defining formula is also of
qr = k .
Furthermore every FO [k] formula can be written as ai , where ai is
a disjunction of rank-k type determining formulae.



Completeness

Corollary
The equivalence relation ≡k is of finite index.

Proof: From the Ehrenfeucht-Fraïssé theorem and the above
remark.

Corollary
A query Q is not expressible in FO iff for every k, one can find two
structures Ak ≡k Bk such that Q(A) 6= Q(B). Proof(hint): Show
that its definable by a disjunction of some of the ai ’s.
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Proof of the Ehrenfeucht-Fraïssé Theorem

Before we finally prove the Ehrenfeucht-Fraïssé Theorem we will
define back-and-forth equivalence.
I A ∼0 B iff A ≡0 B
I A ∼k+1 B iff the following conditions hold:

forth: for every a ∈ A, there exists b ∈ B such that
(A, a) ∼k (B, b)
back: for every b ∈ B, there exists a ∈ A such that
(A, a) ∼k (B, b)



Proof of the Ehrenfeucht-Fraïssé Theorem

Theorem 7
The following are equivalent:
1. A and B agree on FO [k]
2. A ≡k B
3. A ∼k B



Proof Sketch

2 ⇐⇒ 3 By Induction on k.
1 ⇐⇒ 3 Use the fact that F[k+1] formula φ(x1, . . . , xm) can be
seen as a boolean combination of ∃xm+1ψ(x1, . . . , xm+1) where
ψ ∈ FO[k].
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Extensions

I Locality and Winning Games
I Extensions of Ehrenfeucht-Fraïssé games for other Logics
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