Locality and Winning Games

Dimitrios Gkenosis

"Descriptive Complexity" National Technical University of Athens M.Sc. in "Algorithms, Logic and Discrete Mathematics"

14/04/2020

2 Locality of FO

3 Winning Games and Locality of FO Revisited

Gaifman graph

Given a σ -structure \mathfrak{A} , its Gaifman graph $G(\mathfrak{A})$ is defined as:

- $V(G(\mathfrak{A})) = A$ (the universe of \mathfrak{A})
- $(x,y) \in E(G(\mathfrak{A}))$ iff

• \exists relation $R \in \sigma$, tuple $t \in R^{\mathfrak{A}}$ such that x, y appear in t

Gaifman graph

Given a σ -structure \mathfrak{A} , its *Gaifman graph* $G(\mathfrak{A})$ is defined as:

- $V(G(\mathfrak{A})) = A$ (the universe of \mathfrak{A})
- $(x,y) \in E(G(\mathfrak{A}))$ iff
 - x = y
 ∃ relation R ∈ σ, tuple t ∈ R^A such that x, y appear in t

Examples

Gaifman graph

Given a σ -structure \mathfrak{A} , its *Gaifman graph* $G(\mathfrak{A})$ is defined as:

- $V(G(\mathfrak{A})) = A$ (the universe of \mathfrak{A})
- $(x,y) \in E(G(\mathfrak{A}))$ iff
 - x = y
 ∃ relation R ∈ σ, tuple t ∈ R^A such that x, y appear in t

Examples

 $\textcircled{0} \ \ \text{If} \ \mathfrak{A} \ \text{is an undirected graph then}$

Gaifman graph

Given a σ -structure \mathfrak{A} , its *Gaifman graph* $G(\mathfrak{A})$ is defined as:

- $V(G(\mathfrak{A})) = A$ (the universe of \mathfrak{A})
- $(x,y) \in E(G(\mathfrak{A}))$ iff

Examples

 If A is an undirected graph then its Gaifman graph G(A) is simply A with self loops

Gaifman graph

Given a σ -structure \mathfrak{A} , its *Gaifman graph* $G(\mathfrak{A})$ is defined as:

- $V(G(\mathfrak{A})) = A$ (the universe of \mathfrak{A})
- $(x,y) \in E(G(\mathfrak{A}))$ iff

Examples

- If A is an undirected graph then its Gaifman graph G(A) is simply A with self loops
- 2 If \mathfrak{A} is a directed graph then

Gaifman graph

Given a σ -structure \mathfrak{A} , its *Gaifman graph* $G(\mathfrak{A})$ is defined as:

- $V(G(\mathfrak{A})) = A$ (the universe of \mathfrak{A})
- $(x,y) \in E(G(\mathfrak{A}))$ iff

Examples

- If A is an undirected graph then its Gaifman graph G(A) is simply A with self loops
- If A is a directed graph then its Gaifman graph G(A) is the undirected version of A with self loops

Gaifman graph

Given a σ -structure \mathfrak{A} , its *Gaifman graph* $G(\mathfrak{A})$ is defined as:

- $V(G(\mathfrak{A})) = A$ (the universe of \mathfrak{A})
- $(x,y) \in E(G(\mathfrak{A}))$ iff

Examples

- If A is an undirected graph then its Gaifman graph G(A) is simply A with self loops
- **②** If \mathfrak{A} is a directed graph then its Gaifman graph $G(\mathfrak{A})$ is the undirected version of \mathfrak{A} with self loops

Note: \mathfrak{A} is always an undirected graph.

Distance in the Gaifman graph

Let $x, y \in V(G(\mathfrak{A}))$. We define the *distance* of x and y in the Gaifman graph as

 $d_{\mathfrak{A}}(x,y) = \begin{cases} \text{the length of the shortest path from } x \text{ to } y & , \exists \text{ path} \\ +\infty & , \nexists \text{ path} \end{cases}$

The function defined is *non-negative*, *symmetric* and *subadditive*, satisfying all the properties of a *metric function*.

Distance in the Gaifman graph

Let $x, y \in V(G(\mathfrak{A}))$. We define the *distance* of x and y in the Gaifman graph as

 $d_{\mathfrak{A}}(x,y) = \begin{cases} \text{the length of the shortest path from } x \text{ to } y & , \exists \text{ path} \\ +\infty & , \nexists \text{ path} \end{cases}$

The function defined is *non-negative*, *symmetric* and *subadditive*, satisfying all the properties of a *metric function*.

Let
$$\overrightarrow{a} = (a_1, ..., a_n)$$
 and $\overrightarrow{b} = (b_1, ..., b_m)$ be tuples of elements of $V(G(\mathfrak{A}))$ and $c \in V(G(\mathfrak{A}))$. We define
 $d_{\mathfrak{A}}(\overrightarrow{a}, c) = \min_{1 \le i \le n} d_{\mathfrak{A}}(a_i, c)$ and $d_{\mathfrak{A}}(\overrightarrow{a}, \overrightarrow{b}) = \min_{1 \le i \le n} \min_{1 \le j \le m} d_{\mathfrak{A}}(a_i, b_j)$

Balls and Neighborhoods

r-Ball

Let σ contain only relation symbols and let \mathfrak{A} be a σ -structure and $\overrightarrow{a} = (a_1, \dots, a_n) \in A^n$. We define the *r*-ball around \overrightarrow{a} as

$$\mathsf{B}^{\mathfrak{A}}_{r}(\overrightarrow{a}) = \{ b \in \mathsf{A} \mid d_{\mathfrak{A}}(\overrightarrow{a}, b) \leq r \}$$

Balls and Neighborhoods

r-Ball

Let σ contain only relation symbols and let \mathfrak{A} be a σ -structure and $\overrightarrow{a} = (a_1, \dots, a_n) \in A^n$. We define the *r*-ball around \overrightarrow{a} as

$$\mathsf{B}^{\mathfrak{A}}_{r}(\overrightarrow{a}) = \{ b \in \mathsf{A} \mid d_{\mathfrak{A}}(\overrightarrow{a}, b) \leq r \}$$

r-Neighborhood

The *r*-neighborhood of $\overrightarrow{a} = (a_1, \dots, a_n) \in A^n$ is the σ_n -structure $N_r^{\mathfrak{A}}(\overrightarrow{a})$, where:

- the universe is $B_r^{\mathfrak{A}}(\overrightarrow{a})$
- each k-ary relation R is interpreted as $R^{\mathfrak{A}}$ restricted to $B_r^{\mathfrak{A}}(\overrightarrow{a})$; that is $R^{\mathfrak{A}} \cap (B_r^{\mathfrak{A}}(\overrightarrow{a}))^k$

• *n* additional constants are interpreted as *a*₁,..., *a_n*

The \leftrightarrows_d relation

Let $\mathfrak{A}, \mathfrak{B}$ be σ -structures, where σ only contains relation symbols. Let $\overrightarrow{a} \in A^n$ and $\overrightarrow{b} \in B^n$. We write $(\mathfrak{A}, \overrightarrow{a}) \leftrightarrows_d (\mathfrak{B}, \overrightarrow{b})$ if there exists a bijection $f : A \to B$ such that for every $c \in A$

$$N_d^{\mathfrak{A}}(\overrightarrow{a}c) \cong N_d^{\mathfrak{B}}(\overrightarrow{b}f(c))$$

In the case of n = 0, we write $\mathfrak{A} \hookrightarrow_d \mathfrak{B}$ if there exists a bijection $f : A \to B$ such that for every $c \in A$

 $N_d^{\mathfrak{A}}(c) \cong N_d^{\mathfrak{B}}(f(c))$

The \leftrightarrows_d relation

Let $\mathfrak{A}, \mathfrak{B}$ be σ -structures, where σ only contains relation symbols. Let $\overrightarrow{a} \in A^n$ and $\overrightarrow{b} \in B^n$. We write $(\mathfrak{A}, \overrightarrow{a}) \leftrightarrows_d (\mathfrak{B}, \overrightarrow{b})$ if there exists a bijection $f : A \to B$ such that for every $c \in A$

$$N_d^{\mathfrak{A}}(\overrightarrow{a}c) \cong N_d^{\mathfrak{B}}(\overrightarrow{b}f(c))$$

In the case of n = 0, we write $\mathfrak{A} \leftrightarrows_d \mathfrak{B}$ if there exists a bijection $f : A \rightarrow B$ such that for every $c \in A$

$$N_d^{\mathfrak{A}}(c) \cong N_d^{\mathfrak{B}}(f(c))$$

The \leftrightarrows_d relation says, in a sense, that locally two structures look the same, with respect to a certain bijection f; that is, f sends each element c into f(c) that has the same neighborhood.

Hanf-locality

An *m*-ary query Q on σ -structures is *Hanf-local* if there exists a number $d \ge 0$ such that for every $\mathfrak{A}, \mathfrak{B} \in \mathsf{STRUCT}[\sigma], \ \overrightarrow{a} \in A^m$, $\overrightarrow{b} \in B^m$

$$(\mathfrak{A},\overrightarrow{a}) \leftrightarrows_d (\mathfrak{B},\overrightarrow{b}) \text{ implies } (\overrightarrow{a} \in Q(\mathfrak{A}) \leftrightarrow \overrightarrow{b} \in Q(\mathfrak{B}))$$

Hanf-locality

An *m*-ary query Q on σ -structures is *Hanf-local* if there exists a number $d \ge 0$ such that for every $\mathfrak{A}, \mathfrak{B} \in \mathsf{STRUCT}[\sigma], \ \overrightarrow{a} \in A^m$, $\overrightarrow{b} \in B^m$

$$(\mathfrak{A},\overrightarrow{a}) \leftrightarrows_d (\mathfrak{B},\overrightarrow{b}) \text{ implies } (\overrightarrow{a} \in Q(\mathfrak{A}) \leftrightarrow \overrightarrow{b} \in Q(\mathfrak{B}))$$

The smallest d for which the above condition holds is called the *Hanf-locality rank* of Q and is denoted by hlr(Q).

Hanf-locality

An *m*-ary query Q on σ -structures is *Hanf-local* if there exists a number $d \ge 0$ such that for every $\mathfrak{A}, \mathfrak{B} \in \mathsf{STRUCT}[\sigma], \ \overrightarrow{a} \in A^m$, $\overrightarrow{b} \in B^m$

$$(\mathfrak{A},\overrightarrow{a}) \leftrightarrows_d (\mathfrak{B},\overrightarrow{b}) \text{ implies } (\overrightarrow{a} \in Q(\mathfrak{A}) \leftrightarrow \overrightarrow{b} \in Q(\mathfrak{B}))$$

The smallest d for which the above condition holds is called the *Hanf-locality rank* of Q and is denoted by hlr(Q).

Using Hanf-locality for proving that a query Q is not definable in a logic L then amounts to showing:

- that every *L*-definable query is Hanf-local
- that Q is not Hanf-local

Example in Hanf-locality

Let's assume that the graph connectivity query Q is Hanf-local and hlr(Q) = d. Let m > 2d + 1and choose graphs G_m^1 and G_m^2 . We have $|V(G_m^1)| = |V(G_m^2)|$. Let $f: V(G_m^1) \to V(G_m^2)$ be a bijection. Since each cycle is of length > 2d + 1, the d-neighborhood of any node a is a chain of length 2dwith *a* in the middle. Hence, $G_m^1 \leftrightarrows_d G_m^2$ which implies that G_m^1 and G_m^2 must agree on Q. But G_m^1 is disconnected and G_m^2 is connected. Thus, graph connectivity is not Hanf-local.

Gaifman-locality

An *m*-ary query *Q*, *m* > 0, on σ -structures, is *Gaifman-local* if there exists a number $d \ge 0$ such that for every $\mathfrak{A} \in \mathsf{STRUCT}[\sigma]$ and $\overrightarrow{a_1}, \overrightarrow{a_2} \in A^m$

 $N^{\mathfrak{A}}_d(\overrightarrow{a_1})\cong N^{\mathfrak{A}}_d(\overrightarrow{a_2}) ext{ implies } (\overrightarrow{a_1}\in Q(\mathfrak{A})\leftrightarrow \overrightarrow{a_2}\in Q(\mathfrak{A}))$

Gaifman-locality

An *m*-ary query *Q*, *m* > 0, on σ -structures, is *Gaifman-local* if there exists a number $d \ge 0$ such that for every $\mathfrak{A} \in STRUCT[\sigma]$ and $\overrightarrow{a_1}, \overrightarrow{a_2} \in A^m$

 $N^{\mathfrak{A}}_d(\overrightarrow{a_1})\cong N^{\mathfrak{A}}_d(\overrightarrow{a_2}) ext{ implies } (\overrightarrow{a_1}\in Q(\mathfrak{A})\leftrightarrow \overrightarrow{a_2}\in Q(\mathfrak{A}))$

The smallest d for which the above condition holds is called the *locality rank* of Q and is denoted by lr(Q).

Gaifman-locality

An *m*-ary query Q, m > 0, on σ -structures, is *Gaifman-local* if there exists a number $d \ge 0$ such that for every $\mathfrak{A} \in STRUCT[\sigma]$ and $\overrightarrow{a_1}, \overrightarrow{a_2} \in A^m$

 $N^{\mathfrak{A}}_d(\overrightarrow{a_1})\cong N^{\mathfrak{A}}_d(\overrightarrow{a_2}) ext{ implies } (\overrightarrow{a_1}\in Q(\mathfrak{A})\leftrightarrow \overrightarrow{a_2}\in Q(\mathfrak{A}))$

The smallest d for which the above condition holds is called the *locality rank* of Q and is denoted by lr(Q).

Using Gaifman-locality for proving that a non-Boolean query Q is not definable in a logic L then amounts to showing:

- that every L-definable query is Gaifman-local
- that Q is not Gaifman-local

Example in Gaifman-locality

Let's assume that the transitive closure query Q is Gaifman-local, and let lr(Q).

If a and b are at a distance > 2r+1 from each other and the start and the endpoints, then the *r*-neighborhoods of (a, b) and (b, a)are isomorphic, since each is a disjoint union of two chains of length 2r.

Hence, this implies that (a, b) belongs to the output of Q iff (b, a) belongs to the output of Q, which contradicts the assumption that Q defines transitive closure.

Thus, transitive closure is not Gaifman-local.

Hanf-locality vs Gaifman-locality

Most commonly Hanf-locality is used for Boolean queries. Then the definition says that for some $d \ge 0$, for every $\mathfrak{A}, \mathfrak{B} \in \mathsf{STRUCT}[\sigma]$, the condition $\mathfrak{A} \leftrightarrows_d \mathfrak{B}$ implies that \mathfrak{A} and \mathfrak{B} agree on Q.

Hanf-locality vs Gaifman-locality

Most commonly Hanf-locality is used for Boolean queries. Then the definition says that for some $d \ge 0$, for every $\mathfrak{A}, \mathfrak{B} \in \mathsf{STRUCT}[\sigma]$, the condition $\mathfrak{A} \leftrightarrows_d \mathfrak{B}$ implies that \mathfrak{A} and \mathfrak{B} agree on Q.

While Hanf-locality works well for Boolean queries, Gaifman-locality is often more helpful for non-Boolean queries.

Hanf-locality vs Gaifman-locality

Most commonly Hanf-locality is used for Boolean queries. Then the definition says that for some $d \ge 0$, for every $\mathfrak{A}, \mathfrak{B} \in \mathsf{STRUCT}[\sigma]$, the condition $\mathfrak{A} \leftrightarrows_d \mathfrak{B}$ implies that \mathfrak{A} and \mathfrak{B} agree on Q.

While Hanf-locality works well for Boolean queries, Gaifman-locality is often more helpful for non-Boolean queries.

The difference between Hanf-locality and Gaifman-locality is that the former relates two different structures, while the latter is talking about definability in one structure.

Hanf-locality of FO

Theorem 1Every FO-definable query Q is Hanf-local.If Q is defined by an FO[k] formula then $hlr(Q) \leq \frac{3^k - 1}{2}$.

Hanf-locality of FO

Theorem 1

Every FO-definable query Q is Hanf-local.

If Q is defined by an FO[k] formula then $hlr(Q) \leq \frac{3^k - 1}{2}$.

We will us the following Lemma, without proof.

Lemma 1

If $(\mathfrak{A}, \overrightarrow{a}) \leftrightarrows_{3d+1} (\mathfrak{B}, \overrightarrow{b})$, then there exists a bijection $f : A \to B$ such that $(\mathfrak{A}, \overrightarrow{a}c) \leftrightarrows_d (\mathfrak{B}, \overrightarrow{b}f(c))$, for all $c \in A$

Hanf-locality of FO

<u>Proof</u>

• <u>Base case</u>: k = 0Let Q be a query defined by $\phi \in FO[0]$ then $(\mathfrak{A}, \overrightarrow{a}) \hookrightarrow_0 (\mathfrak{B}, \overrightarrow{b})$ means that $(\overrightarrow{a}, \overrightarrow{b})$ defines a partial isomorphism between \mathfrak{A} and \mathfrak{B} , and thus \overrightarrow{a} and \overrightarrow{b} satisfy the same atomic formulas. Hence

$$\mathsf{hlr}(Q) = 0 \le \frac{3^0 - 1}{2}$$

Inductive hypothesis:

Let Q be a query defined by $\phi \in \mathsf{FO}[k]$ then $\mathsf{hlr}(Q) \leq \frac{3^k - 1}{2}$

Hanf-locality of FO

• Inductive hypothesis:

Let Q be a query defined by $\Phi \in FO[k+1]$, then Φ is the Boolean combination of formulae of the form $\exists z \phi(\vec{x}, z)$, where $qr(\phi) \leq k$. Then it suffices to show that for every query Q' defined by a formula of the form $\exists z \phi(\vec{x}, z)$ then hlr(Q') is bounded by the same number. Let $(\mathfrak{A}, \vec{a}) \leftrightarrows_{3hlr(\phi)+1} (\mathfrak{B}, \vec{b})$ then by "Lemma 1" \exists bijection $f : A \rightarrow B$ such that $(\mathfrak{A}, \vec{a} c) \leftrightarrows_{hlr(\phi)} (\mathfrak{B}, \vec{b} f(c))$, for all $c \in A$.

$$\mathfrak{A} \models \exists z \phi(\overrightarrow{a}, z) \iff \mathfrak{A} \models \phi(\overrightarrow{a}, c)$$
$$\iff \mathfrak{B} \models \phi(\overrightarrow{b}, f(c)) \iff \mathfrak{B} \models \exists z \phi(\overrightarrow{b}, z)$$

Hence $hlr(Q) \le 3 \cdot hlr(Q') + 1 = 3 \cdot \frac{3^k - 1}{2} + 1 = \frac{3^{k+1} - 1}{2}$

Example

Let's assume that query Q tests for being a balanced binary tree and is defined by a formula in FO[k].

Then, "Theorem 1" yields $r = hlr(Q) \le \frac{3^k - 1}{2}$. Take *d* much larger that *r* and define trees T_1 and T_2 as shown.

Both T_1 and T_2 have $2^{d+3} - 1$ nodes and 2^{d+2} leaves and realize the same type of *r*-neighborhoods and hence $T_1 \leftrightarrows_r T_2$. But this contradicts the Hanf-locality of the balanced binary tree test, since T_1 is balanced, and T_2 is not.

Gaifman-locality of FO

Theorem 2

If ${\cal Q}$ is a Hanf-local non-Boolean query, then ${\cal Q}$ is Gaifman-local and

 $lr(Q) \leq 3 \cdot hlr(Q) + 1$

Gaifman-locality of FO

Theorem 2

If ${\cal Q}$ is a Hanf-local non-Boolean query, then ${\cal Q}$ is Gaifman-local and

 $lr(Q) \leq 3 \cdot hlr(Q) + 1$

We will use the following Lemma, without proof.

Lemma 2

$$\text{If } \mathfrak{A} \leftrightarrows_{d} \mathfrak{B} \text{ and } N^{\mathfrak{A}}_{3d+1}(\overrightarrow{a}) \cong N^{\mathfrak{B}}_{3d+1}(\overrightarrow{b}) \text{ then } (\mathfrak{A}, \overrightarrow{a}) \leftrightarrows_{d} (\mathfrak{B}, \overrightarrow{b})$$

Gaifman-locality of FO

<u>Proof</u>

Let Q be a non-Boolean query on STRUCT $[\sigma]$ with hlr(Q) = d. Let \mathfrak{A} be a σ -structure and let $N_{3d+1}^{\mathfrak{A}}(\overrightarrow{a_1}) \cong N_{3d+1}^{\mathfrak{A}}(\overrightarrow{a_2})$. Since $\mathfrak{A} \leftrightarrows_d \mathfrak{A}$ (identical function) and $N_{3d+1}^{\mathfrak{A}}(\overrightarrow{a_1}) \cong N_{3d+1}^{\mathfrak{A}}(\overrightarrow{a_2})$ by "Lemma 2" we have that $(\mathfrak{A}, \overrightarrow{a_1}) \leftrightarrows_d (\mathfrak{A}, \overrightarrow{a_2})$. Since hlr(Q) = d

$$(\mathfrak{A},\overrightarrow{a_1})\leftrightarrows_d(\mathfrak{A},\overrightarrow{a_2})$$
 implies that $(\overrightarrow{a_1}\in Q(\mathfrak{A})\iff\overrightarrow{a_2}\in Q(\mathfrak{A}))$

Hence

$$N^{\mathfrak{A}}_{3d+1}(\overrightarrow{a_1})\cong N^{\mathfrak{A}}_{3d+1}(\overrightarrow{a_2}) ext{ implies } (\overrightarrow{a_1}\in Q(\mathfrak{A})\iff \overrightarrow{a_2}\in Q(\mathfrak{A}))$$

Thus

$$\mathsf{lr}(Q) \leq 3 \cdot \mathsf{hlr}(Q) + 1$$

Gaifman-locality of FO

By combining "Theorem 1" and "Theorem 2" we get

Corollary 1 Every FO-definable non-Boolean query Q is Gaifman-local. If Q is defined by an FO[k] formula then $Ir(Q) \leq \frac{3^{k+1}-1}{2}$.

Example

Given a graph, two nodes *a* and *b* are in the same generation if there is a node *c* (common ancestor) such that the shortest paths from c to a and from c to b have the same length. Let's assume that query *Q* tests if two nodes are in the same generation is FO-definable lr(Q) = d.

We have that $N_d^{\mathfrak{A}}(a_d, b_d) \cong N_d^{\mathfrak{A}}(a_d, b_{d+1})$. But this contradicts the Gaifman-locality of the same generation test, since a_d, b_d are in the same generation, and a_d, b_{d+1} are not.

Lower Bound

Suppose that σ is the vocabulary of undirected graphs: that is, $\sigma = \{E\}$ where E is binary. Define the following formulae:

•
$$d_0(x,y) = E(x,y)$$

•
$$d_1(x,y) = \exists z (d_0(x,z) \land d_0(y,z))$$

•
$$d_{k+1}(x,y) = \exists z (d_k(x,z) \land d_k(y,z))$$

For an undirected graph, $d_k(x, y)$ holds iff there is a path of length 2^k between x and y; that is, if the distance between a and b is at most 2^k . Hence, $lr(d_k) \ge 2^{k-1}$. However, $qr(d_k) = k$, which shows that locality rank can be exponential in the quantifier rank.

Bijective Ehrenfeucht-Fraïssé game

Let \mathfrak{A} and \mathfrak{B} be two structures in a relational vocabulary. The *k*-round bijective Ehrenfeucht-Fraïssé game game is played by the same two players, the spoiler and the duplicator.

Bijective Ehrenfeucht-Fraïssé game

Let \mathfrak{A} and \mathfrak{B} be two structures in a relational vocabulary. The *k*-round bijective Ehrenfeucht-Fraïssé game game is played by the same two players, the spoiler and the duplicator.

- If $|A| \neq |B|$, then the duplicator loses before the game even starts.
- In the *i*-th round, the duplicator first selects a bijection *f_i*: *A* → *B*. Then the spoiler plays either *a_i* ∈ *A* or *b_i* ∈ *B*. The duplicator responds by either *f_i(ai)* or *f_i⁻¹(b_i)*.

Bijective Ehrenfeucht-Fraïssé game

Let \mathfrak{A} and \mathfrak{B} be two structures in a relational vocabulary. The *k*-round bijective Ehrenfeucht-Fraïssé game game is played by the same two players, the spoiler and the duplicator.

- If $|A| \neq |B|$, then the duplicator loses before the game even starts.
- In the *i*-th round, the duplicator first selects a bijection *f_i*: *A* → *B*. Then the spoiler plays either *a_i* ∈ *A* or *b_i* ∈ *B*. The duplicator responds by either *f_i(ai)* or *f_i⁻¹(b_i)*.

The duplicator has a winning strategy after k rounds, if after k moves we have a partial isomorphism between \mathfrak{A} and \mathfrak{B} . If the duplicator can win the k-round bijective game we write $\mathfrak{A} \equiv_k^{\text{bij}} \mathfrak{B}$ and clearly $\mathfrak{A} \equiv_k^{\text{bij}} \mathfrak{B}$ implies $\mathfrak{A} \equiv_k \mathfrak{B}$

Gaifman Theorem

Let σ be relational. Then every FO formula $\phi(\vec{x})$ over σ is equivalent to a Boolean combination of the following:

- local formula $\psi^{(r)}(\overrightarrow{x})$
- sentences of the form

$$\exists x_1,\ldots,x_n\left(\bigwedge_{i=1}^s a^{(r)}(x_i) \wedge \bigwedge_{1 \leq i < k \leq s} d^{>2r}(x_i,x_j)\right)$$

Furthermore,

- \bullet the transformation from ϕ to such a Boolean combination is effective
- if ϕ itself is a sentence, then only sentences of the above form appear in the Boolean combination
- if $qr(\phi) = k$, and *n* is the length of \overrightarrow{a} , then the bounds on *r* and *s* are $r \leq 7^k, s \leq k + n$

Threshold Equivalence

Definition

Given two structures $\mathfrak{A}, \mathfrak{B}$ in a relational vocabulary, we write $\mathfrak{A} \leftrightarrows_{d,m}^{thr} \mathfrak{B}$ if for every isomorphism type τ of a d-neighborhood of a point either

- both ${\mathfrak A}$ and ${\mathfrak B}$ have the same number of points that $d-{\rm realize}$ $\tau,$ or
- both $\mathfrak A$ and $\mathfrak B$ have at least m points that $d-\mathrm{realize}\ au$

Threshold Equivalence

Definition

Given two structures $\mathfrak{A}, \mathfrak{B}$ in a relational vocabulary, we write $\mathfrak{A} \leftrightarrows_{d,m}^{thr} \mathfrak{B}$ if for every isomorphism type τ of a d-neighborhood of a point either

- both ${\mathfrak A}$ and ${\mathfrak B}$ have the same number of points that $d-{\rm realize}$ $\tau,$ or
- both $\mathfrak A$ and $\mathfrak B$ have at least m points that $d-\mathrm{realize}\ au$

Theorem

For each k, l > 0 there exist d, m > 0 such that for $\mathfrak{A}, \mathfrak{B} \in \mathsf{STRUCT}_l[\sigma]$,

 $\mathfrak{A} \leftrightarrows_{d,m}^{thr} \mathfrak{B}$ implies $\mathfrak{A} \equiv_k \mathfrak{B}$

That's All Folks!

Thank you for your time!

That's All Folks!

Thank you for your time!

