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Gaifman graph

Gaifman graph
Given a σ−structure A, its Gaifman graph G(A) is defined as:

V (G(A)) = A (the universe of A)
(x ,y) ∈ E (G(A)) iff

x = y
∃ relation R ∈ σ, tuple t ∈ RA such that x ,y appear in t

Examples

1 If A is an undirected graph then

its Gaifman graph G(A) is
simply A with self loops

2 If A is a directed graph then

its Gaifman graph G(A) is the
undirected version of A with self loops

Note: A is always an undirected graph.
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Distance in the Gaifman graph

Let x ,y ∈ V (G(A)). We define the distance of x and y in the
Gaifman graph as

dA(x ,y) =
{
the length of the shortest path from x to y ,∃ path
+∞ ,@ path

The function defined is non-negative, symmetric and subadditive,
satisfying all the properties of a metric function.

Let −→a = (a1, . . . ,an) and
−→
b = (b1, . . . ,bm) be tuples of elements of

V (G(A)) and c ∈ V (G(A)). We define

dA(−→a ,c) = min
1≤i≤n

dA(ai ,c) and dA(−→a ,
−→
b ) = min

1≤i≤n
min

1≤j≤m
dA(ai ,bj)
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Balls and Neighborhoods

r−Ball
Let σ contain only relation symbols and let A be a σ−structure
and −→a = (a1, . . . ,an) ∈ An. We define the r−ball around −→a as

BA
r (−→a ) = {b ∈ A | dA(−→a ,b)≤ r}

r−Neighborhood
The r−neighborhood of −→a = (a1, . . . ,an) ∈ An is the σn−structure
NA

r (−→a ), where:
the universe is BA

r (−→a )
each k−ary relation R is interpreted as RA restricted to
BA

r (−→a ); that is RA∩
(
BA

r (−→a )
)k

n additional constants are interpreted as a1, . . . ,an
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The �d relation

Let A,B be σ−structures, where σ only contains relation symbols.
Let −→a ∈ An and

−→
b ∈ Bn. We write (A,−→a ) �d (B,

−→
b )

if there exists a bijection f : A→ B such that for every c ∈ A

NA
d (−→a c)∼= NB

d (
−→
b f (c))

In the case of n = 0, we write A�d B
if there exists a bijection f : A→ B such that for every c ∈ A

NA
d (c)∼= NB

d (f (c))

The �d relation says, in a sense, that locally two structures look
the same, with respect to a certain bijection f ; that is, f sends
each element c into f (c) that has the same neighborhood.
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Hanf-locality

An m−ary query Q on σ−structures is Hanf-local if there exists a
number d ≥ 0 such that for every A,B ∈ STRUCT[σ], −→a ∈ Am,
−→
b ∈ Bm

(A,−→a ) �d (B,
−→
b ) implies (−→a ∈ Q(A)↔

−→
b ∈ Q(B))

The smallest d for which the above condition holds is called the
Hanf-locality rank of Q and is denoted by hlr(Q).

Using Hanf-locality for proving that a query Q is not definable in a
logic L then amounts to showing:

that every L-definable query is Hanf-local
that Q is not Hanf-local
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Example in Hanf-locality

Let’s assume
that the graph connectivity
query Q is Hanf-local and
hlr(Q) = d . Let m > 2d +1
and choose graphs G1

m and G2
m.

We have |V (G1
m)|= |V (G2

m)|.
Let f : V (G1

m)→ V (G2
m)

be a bijection. Since each
cycle is of length > 2d +1,
the d−neighborhood of any
node a is a chain of length 2d

with a in the middle. Hence, G1
m �d G2

m which implies that G1
m

and G2
m must agree on Q. But G1

m is disconnected and G2
m is

connected. Thus, graph connectivity is not Hanf-local.
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Gaifman-locality

An m−ary query Q, m > 0, on σ−structures, is Gaifman-local if
there exists a number d ≥ 0 such that for every A ∈ STRUCT[σ]
and −→a1 ,−→a2 ∈ Am

NA
d (−→a1)∼= NA

d (−→a2) implies (−→a1 ∈ Q(A)↔−→a2 ∈ Q(A))

The smallest d for which the above condition holds is called the
locality rank of Q and is denoted by lr(Q).

Using Gaifman-locality for proving that a non-Boolean query Q is
not definable in a logic L then amounts to showing:

that every L-definable query is Gaifman-local
that Q is not Gaifman-local
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Example in Gaifman-locality

Let’s assume that the transitive closure query Q is Gaifman-local,
and let lr(Q).
If a and b are at a distance > 2r +1 from each other and the start
and the endpoints, then the r−neighborhoods of (a,b) and (b,a)
are isomorphic, since each is a disjoint union of two chains of
length 2r .
Hence, this implies that (a,b) belongs to the output of Q iff (b,a)
belongs to the output of Q, which contradicts the assumption that
Q defines transitive closure.
Thus, transitive closure is not Gaifman-local.

10 / 24
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Hanf-locality vs Gaifman-locality

Most commonly Hanf-locality is used for Boolean queries.
Then the definition says that for some d ≥ 0, for every
A,B ∈ STRUCT[σ], the condition A�d B implies that A and B
agree on Q.

While Hanf-locality works well for Boolean queries,
Gaifman-locality is often more helpful for non-Boolean queries.

The difference between Hanf-locality and Gaifman-locality is that
the former relates two different structures, while the latter is
talking about definability in one structure.
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Hanf-locality of FO

Theorem 1
Every FO-definable query Q is Hanf-local.

If Q is defined by an FO[k] formula then hlr(Q)≤
3k −1

2 .

We will us the following Lemma, without proof.

Lemma 1

If (A,−→a ) �3d+1 (B,
−→
b ), then there exists a bijection f : A→ B

such that
(A,−→a c) �d (B,

−→
b f (c)), for all c ∈ A

12 / 24
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Hanf-locality of FO

Proof
Base case: k = 0
Let Q be a query defined by φ ∈ FO[0] then
(A,−→a ) �0 (B,

−→
b ) means that (−→a ,

−→
b ) defines a partial

isomorphism between A and B, and thus −→a and
−→
b satisfy

the same atomic formulas. Hence

hlr(Q) = 0≤
30−1
2

Inductive hypothesis:

Let Q be a query defined by φ ∈ FO[k] then hlr(Q)≤
3k −1

2

13 / 24
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Hanf-locality of FO

Inductive hypothesis:
Let Q be a query defined by Φ ∈ FO[k +1], then Φ is the
Boolean combination of formulae of the form ∃zφ(−→x ,z),
where qr(φ)≤ k. Then it suffices to show that for every query
Q′ defined by a formula of the form ∃zφ(−→x ,z) then hlr(Q′) is
bounded by the same number.
Let (A,−→a ) �3hlr(φ)+1 (B,

−→
b ) then by “Lemma 1” ∃ bijection

f : A→ B such that (A,−→a c) �hlr(φ) (B,
−→
b f (c)), for all c ∈ A.

A |= ∃zφ(−→a ,z) ⇐⇒ A |= φ(−→a ,c)

⇐⇒B |= φ(
−→
b , f (c)) ⇐⇒ B |= ∃zφ(

−→
b ,z)

Hence hlr(Q)≤ 3 ·hlr(Q′) +1 = 3 ·
3k −1

2 +1 =
3k+1−1

2
14 / 24
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Example

Let’s assume that query Q tests for being a balanced binary tree
and is defined by a formula in FO[k].

Then, “Theorem 1” yields r = hlr(Q)≤
3k −1

2 .
Take d much larger that r and define trees T1 and T2 as shown.

Both T1 and T2 have 2d+3−1 nodes and 2d+2 leaves and realize
the same type of r−neighborhoods and hence T1 �r T2. But this
contradicts the Hanf-locality of the balanced binary tree test, since
T1 is balanced, and T2 is not.

15 / 24
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Gaifman-locality of FO

Theorem 2
If Q is a Hanf-local non-Boolean query, then Q is Gaifman-local
and

lr(Q)≤ 3 ·hlr(Q) +1

We will use the following Lemma, without proof.

Lemma 2

If A�d B and NA
3d+1(−→a )∼= NB

3d+1(
−→
b ) then (A,−→a ) �d (B,

−→
b )
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Gaifman-locality of FO

Proof
Let Q be a non-Boolean query on STRUCT[σ] with hlr(Q) = d .
Let A be a σ−structure and let NA

3d+1(−→a1)∼= NA
3d+1(−→a2).

Since A�d A (identical function) and NA
3d+1(−→a1)∼= NA

3d+1(−→a2) by
“Lemma 2” we have that (A,−→a1) �d (A,−→a2).
Since hlr(Q) = d

(A,−→a1) �d (A,−→a2) implies that (−→a1 ∈ Q(A) ⇐⇒ −→a2 ∈ Q(A))

Hence

NA
3d+1(−→a1)∼= NA

3d+1(−→a2) implies (−→a1 ∈ Q(A) ⇐⇒ −→a2 ∈ Q(A))

Thus
lr(Q)≤ 3 ·hlr(Q) +1

17 / 24
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Gaifman-locality of FO

By combining “Theorem 1” and “Theorem 2” we get

Corollary 1
Every FO-definable non-Boolean query Q is Gaifman-local.

If Q is defined by an FO[k] formula then lr(Q)≤
3k+1−1

2 .

18 / 24
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Example

Given a graph, two nodes a and b are in the same generation if
there is a node c (common ancestor) such that the shortest paths
from c to a and from c to b have the same length.
Let’s assume that query Q tests if two nodes are in the same
generation is FO−definable lr(Q) = d .

We have that NA
d (ad ,bd )∼= NA

d (ad ,bd+1). But this contradicts the
Gaifman-locality of the same generation test, since ad ,bd are in
the same generation, and ad ,bd+1 are not.

19 / 24
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Lower Bound

Suppose that σ is the vocabulary of undirected graphs: that is,
σ = {E} where E is binary. Define the following formulae:

d0(x ,y) = E (x ,y)
d1(x ,y) = ∃z(d0(x ,z)∧d0(y ,z))
dk+1(x ,y) = ∃z(dk(x ,z)∧dk(y ,z))

For an undirected graph, dk(x ,y) holds iff there is a path of length
2k between x and y ; that is, if the distance between a and b is at
most 2k . Hence, lr(dk)≥ 2k−1. However, qr(dk) = k, which shows
that locality rank can be exponential in the quantifier rank.

20 / 24
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Bijective Ehrenfeucht-Fraïssé game

Let A and B be two structures in a relational vocabulary.
The k−round bijective Ehrenfeucht-Fraïssé game game is played
by the same two players, the spoiler and the duplicator.

If |A| 6= |B|, then the duplicator loses before the game even
starts.
In the i−th round, the duplicator first selects a bijection
fi : A→ B. Then the spoiler plays either ai ∈ A or bi ∈ B. The
duplicator responds by either fi (ai) or f −1i (bi ).

The duplicator has a winning strategy after k rounds, if after k
moves we have a partial isomorphism between A and B.
If the duplicator can win the k−round bijective game we write
A≡bij

k B and clearly A≡bij
k B implies A≡k B

21 / 24
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In the i−th round, the duplicator first selects a bijection
fi : A→ B. Then the spoiler plays either ai ∈ A or bi ∈ B. The
duplicator responds by either fi (ai) or f −1i (bi ).

The duplicator has a winning strategy after k rounds, if after k
moves we have a partial isomorphism between A and B.
If the duplicator can win the k−round bijective game we write
A≡bij

k B and clearly A≡bij
k B implies A≡k B
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Gaifman Theorem
Let σ be relational. Then every FO formula φ(−→x ) over σ is
equivalent to a Boolean combination of the following:

local formula ψ(r)(−→x )
sentences of the form

∃x1, . . . ,xn

( s∧
i=1

a(r)(xi )∧
∧

1≤i<k≤s
d>2r (xi ,xj)

)

Furthermore,
the transformation from φ to such a Boolean combination is
effective
if φ itself is a sentence, then only sentences of the above form
appear in the Boolean combination
if qr(φ) = k, and n is the length of −→a , then the bounds on r
and s are r ≤ 7k ,s ≤ k + n
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Threshold Equivalence

Definition
Given two structures A,B in a relational vocabulary, we write
A�thr

d ,m B if for every isomorphism type τ of a d−neighborhood of
a point either

both A and B have the same number of points that d−realize
τ , or
both A and B have at least m points that d−realize τ

Theorem
For each k, l > 0 there exist d ,m > 0 such that for
A,B ∈ STRUCTl [σ],

A�thr
d ,m B implies A≡k B

23 / 24



Definitions and Notations
Locality of FO

Winning Games and Locality of FO Revisited

Threshold Equivalence

Definition
Given two structures A,B in a relational vocabulary, we write
A�thr

d ,m B if for every isomorphism type τ of a d−neighborhood of
a point either

both A and B have the same number of points that d−realize
τ , or
both A and B have at least m points that d−realize τ

Theorem
For each k, l > 0 there exist d ,m > 0 such that for
A,B ∈ STRUCTl [σ],

A�thr
d ,m B implies A≡k B

23 / 24



Definitions and Notations
Locality of FO

Winning Games and Locality of FO Revisited

That’s All Folks!

Thank you for your time!
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