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Introduction

Motivational quote

“Man is fond of counting his troubles, but he does not
count his joys.”

— Fyodor Dostoevsky, Notes from the Underground
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Warm up

Some definitions and basic results

@ #P: The class of function problems of the form “compute
f(x)", where f is the number of accepting paths of an NP
machine.

@ The class has complete problems and the one used as a point
of reference for our reductions is the Permanent.

@ Totally contrary to our intuition, Valiant, the one who defined
the class, showed that there are decision problems in P, such
that their counting version is #P — complete. (#matchings,
Dimer's problem).

@ Toda showed that all the polynomial hierarchy PH C P#F.
For the lowest 3 levels the result was already known thanks to
Zachos.
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Warm up

Any upper bound??

We know that NP C #P. But do we have any knowledge of how
high in the class hierarchy #P is? It is trivial to show that

#P C PSPACE. (Run machine with every input string, reuse
space and keep a counter).
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Warm up

Computing #P — complete functions

# P-complete functions are quite high in the hierarchy. Can we
compute anything in reasonable (polynomial time?). Once again
like when tackling NP-completeness:

@ We can approximate counting.
@ We can tradeoff time with randomness.

@ We can compute the function exactly in special cases.
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Warm up

How good our algorithms can be?

Recall that NP C #P and thus we can not expect to find an
algorithm, with a better approximation factor for the # P-complete
problem than the one for its NP-complete problem counterpart.
For example, minimum vertex cover is known not to be
approximated in 2 — ¢ for reasonable assumptions. Thus, we can
not expect to approximate the number of minimum vertex covers
with 2 — € factor.
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complexity issues

Counting Dichotomies

3 frameworks:
@ Counting CSP problems
@ Graph homomorphisms
@ Holant Problems

All the above are models, which are used to obtain tractable
criteria for the classification of the problems.
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complexity issues

Dichotomy

A theorem, classifying problems in #P either in P or in
# P-complete would be ideal. However that is not possible due to
Ladner’'s theorem.

Ladner's theorem: There is an infinite hierarchy of classes,
strictly containing P and strictly contained in NP.

So, can we separate the difficult problems from the easier ones?

Creignou-Hermann Theorem: For any finite set S of Boolean
predicates, #CSP(S) is either solvable in Polynomial time or
#P — complete.

Boolean predicates can be boolean OR, At-Most-One,
Not-All-Equal, XOR,etc. Notice that this does not contradict
Ladner’'s theorem.
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complexity issues

Dichotomy 2

Feder-Vardi Conjecture: Any finite set S of predicates over any
finite domain set D,the decision CSP problem CSP(S) is either
in P or NP-complete. Analogously, for #CSP.

The Feder-Vardi Conjecture is open, except for domain size 2 and
3.
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complexity issues

The “3” case. Bulatov theorem using the graph homomorphisms

Suppose A a RN symmetric connection matrix with
non-negative entries.

e If A is bipartite, then EVAL(A) is computed in polynomial
time, if the rank of A is at most 2; otherwise EVAL(A) is
# P-complete.

e If A is not bipartite, then EVAL(A) is comptuted in
polynomial time, if the rank of A is at most 1; otherwise
EVAL(A) is #P-complete.

Connection matrix is the adjacency matrix, corresponding to a

graph. The EVAL predicate counts the number of structures, we
want to count.
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complexity issues

Dichotomy 3

Cai greatly generalised all previous known results. He proved that
for every symmetric complex valued matrix, EVAL(A) is either in P
or #P-hard.

Even better, the criterion that separates the two cases is decidable.
Cai's paper (121 pages).


http://arxiv.org/abs/0903.4728
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complexity issues

Another criterion in the # CSP framework

Depending on function F one of the following 3 holds:
o #CSP(F)isin P
@ #CSP(F) is #P-hard but belongs to P for planar graphs.
@ #CSP(F) is #P-hard even for planar graphs.
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Strange results

F belongs in the second case, if and only if there is a holographic
algorithm based on matchgates. Holographic algorithm is an
algorithm using a holographic reduction. This type of reductions,
between two computational problems, preserves the sum of
solutions, without necessarily preserving correspondence between
solutions.

That is right. The problems might not have matching solutions.
On top of that the sum of solutions can be weighted.
Matchgates are a special class of two-qubit quantum logic gates.
They have the interesting property, that circuits built only by
matchgates, acting on neighbouring qubits, are efficiently
simulatable classically. If however we remove the constrain of
neighbouring qubits, they allow universal quantum computing.
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Inside #P

If someone tried to separate some problems in #P from others
(without following the results mentioned above), a good starting
point might be to observe the decision counterpart of the problem.
Thus we can have #PE, as the class with easy decision problems
and hard counting ones. Can this idea give us any more insight?
Pagourtzis defined Totp as the class of functions that count the
number of all compuation paths of a poly-time nondeterministic
Turing machine. In the same paper, #Perfect Matchings,
#DNF-Sat, and NonNegative Permanent, all problems in #PE are
shown to be in TotP too.
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#P — complete

We are talking for #P — complete problems.You have probably
noticed something strange. #matchings is a complete problem for
#P, that is showed to be also in TotP, which is a subclass. Why
do the classes not collapse? Our reductions are Cook reductions,
not Karp and #P is not downwards closed under this reduction.
Consequently to prove some collapse we should either find a
different type of reduction, or find a problem that is Karp reducible
with problems both in #P and in TotP. Both ways are open.
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Complexity results

@ The sampling version of a NP — complete problem is at most
as difficult as the #P problem corresponding to it. Sampling
means i.e picking a vertex cover U.A.R from all the vertex
covers that exist.

@ One #P oracle call is enough to solve any problem in the
polynomial hierarchy efficiently. [Toda]

@ PP class gives the most important bit of the #P computation
and oddP gives its least significant bit.

@ Any problem in #P there exists a randomized algorithm using
oracle for SAT, that can be used to create an FPRAS
[Stockmeyer]

@ Any #P — complete problem has either an FPRAS or it is
inapproximable [Jerrum Valiant Vazirani]
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algorithmic issues

The first result

The first efficient algorithm for a counting problem is an FPRAS for
the #DNF problem. Notice that again the decision version is easy.
Algorithm:

wi

Choose a random clause f;, with probability equal to 7 -

Choose a random assignment o satisfying 6;.

Calculate S = ﬁ, where N(o) is the number of clauses
satised by o.
Repeat steps 1-3 t := % times and output the mean.

€

w; = pPi(1 — p)" with p; n; the number of positive and negative
literals of §; and Z =) w;.
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algorithmic issues

THE result

Although there were not many, all FPRASes up until recently were
for #PE problems. At the mid 80s the first FPTAS also appeared
for a #P — complete problem (DNF) [Ajtai and Wigderson] and
the second one in mid 90s [Luby and Velickovic]. After another
decade Weitz in his doctorate thesis greatly developed an existing
method, to create FPTASes for some problems, called ‘'correlation
decay” in statistical physics. We will talk about it a bit later. The
big result however came up on 2011 by
[Gopalan,Klivans,Meka,Stefankovic,Vempala,Vigodal.

There exists an FPTAS for the #Knapsack problem. For the first
time, there exists an FPTAS for counting solutions of an

NP — complete problem. Counter-intuitively, the trivial bound of
the knapsack inapproximability is reached for the counting version.
The algorithm works also for the general case were there are many
identical items.
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algorithmic issues

The algorithm in a few words

The algorithm greatly resembles the FPTAS of the knapsack
problem. The max of the dynamic programming is replaced by the
addition of the subproblems. Now each value of the array holds a
certain value of the capacity of the knapsack (minimum capacity
to create j solutions with the i items = A[i][j]). More precisely, the
2 indices of the matrix are:a)The prefix of items. b) Number of
solutions. Been inspired again by the decision version algorithm,
we scale down the capacity and the weight by some factor. OPT
value for the new instance is a very good approximation for the
initial instance. Using a similar algorithm, we can have an FPRAS
using rejection sampling, for sampling solutions for the initial
problem [Dyer].

Rejection sampling is based on the observation, that to sample a
random variable one can sample uniformly from the region under
the graph of its density function.
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The algorithm in a few words 2. Derandomizing

Instead of having every separate possible capacity up until C, we
can have only logC many capacities which will create a geometric
series back in the original instance (think of it). With the specific
scaledown suggested in the paper, we succeed in being arbitrarily
close to the OPT value of the counting function depending
polynomially in n and % It is almost unbelievable, that nobody
thought of that earlier, although the analysis is a bit more delicate
that the original algorithm for the NP-complete problem.



Counting in FP

What counting algorithms we have in FP?

Probably you are asking yourselves if there is any natural problem,
whose solutions are counted optimally in polynomial time. The
answer is yes. In the following sections there are some such
problems.
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Counting the spanning trees in a graph

Basic idea

The laplacian matrix of a graph is a matrix with equal dimension
and indices with the adjacency matrix of the graph. Every value
contains: f(n) =

deg(u;) if u; on primary diagonal
-1 if u; u; adjacent
0 otherwise
The determinant of the laplacian matrix is equal to the number of

spanning trees. This is also known as the Kirchoff's theorem, in
graph theory. Computing the determinant is in P.



Counting the spanning trees in a graph

A Laplacian matrix

Labeled graph

®
ee.%o

Laplacian matrix

-1 0 0 -1 0)
3 -1 0 -1 0
-1 2 -1 0 0
0 -1 3 -1 -1
-1 0 -1 3 0
0 0 -1 0 1/



Counting in FP
®00

Special cases

Counting in specific graphs

“A mathematic lecture without a proof is like a movie
without a love scene.”
— Hendrik Lenstra

In general, we can have a polynomial counting algorithm for special
instances of a hard problem. Recall the Dichotomy thoerem.
Usually planar graphs are good candidates. Here, we will present
an easy algorithm for counting edge covers in path graphs and ring
graphs. Proof on board.
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Special cases

Special cases 2 and a small extra result

We can also count fast the edge covers in trees. We will not show
it here. However, it is shown, that counting is difficult, even for
3-regular graphs. In the specific case of the counting in path
graphs, we have made an extra observation not yet known. More
specifically, it is shown that we can compute efficiently the number
of edge covers. But is there a way to count the exact number of
covers of every size that form this computation? It is and it
corresponds to the values summing to the fibonacci number in the
laplace triangle (diagonals), with bigger size covers being the
leftmost member value of the diagonal.
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Special cases

Pascal Triangle
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Definitions

Time and Space mixing in Spin systems

@ Spin systems are models in statistical physics. We can think
of them as graphs.

@ A configuration is an assignment of a specific spin (finitely
many spins) to its vertices.

@ The sites (vertices) interact depending on the system.
Different configurations have different likelyhoods.

@ The interactions can form a distribution over configurations of

every finite subset of sites. It is called the Gibbs distribution
and it is the equilibrium of the subset.
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Definitions

Izing Model and Gibbs measure

In this specific model, we have only 2 possible spins, and a 3
parameter, which is the inverse of the temperature. So the Gibbs
measure is given by the following formula for a configuration o:

(n6(0)) o exp(B 3,y cE 0x0y)
Observations
@ Higher probabilities for aligned spins.
o High temperature — almost independent spins.

@ Low temperature — a global order.
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Definitions

Glauber Dynamics

The glauber dynamics is a Markov chain on the set of spin
configuration of a finite graph.

Glauber dynamics

@ At each step,pick a vertex u.a.r and replace it with a random
spin conditional on all the neighbour spins.

The stationary distribution of the Glauber dynamics is j1 as above.
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Definitions

Why the Glauber metric is important?

@ It is a tool for analysing Markov chain Monte Carlo
algorithms, other than random walks.

@ It exhibits the evolution of the system towards the equilibrium.

The aim is determining the mixing time (number of steps till the
Glauber dynamics is close to stationary).
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Definitions

Importance in computational complexity

Big result

@ On finite n-vertex cubes in the 2-dimensional lattice, there
exists a O such that for smaller 8 mixing is performed in
O(log n), but for greater ones in exp (Q2(y/n)).

This result shows a connection between phase transition and
computational complexity. It reminds of the kK — SAT problem
when there is a transition in difficulty for k=3.
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Definitions

Time and Space mixing

Time mixing
@ Number of steps, till the Glauber dynamics is close to
stationary.

Space mixing
@ The degree of correlation between spins of vertices according
to distance nad the rate it changes.

We call fast time mixing, if the required time of the chain to reach
its steady state is a small polynomial and fast spacial mixing, if
correlation decays exponentially according to the distance.
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Algorithmic implications

Algorithmic implications

The above notions can be used to construct a “local” algorithm as
the problem seems to be of “local” nature, if the correlation decays
exponentially fast. In other words, the local algorithm is the
Glauber dynamics and the problem is sampling from the Gibbs
measure. The Glauber dynamics can solve the problem, if the
correlations decay fast enough and spins can be regarded as
independent. Many known problems exhibit such “localities” as
edge cover,independent set.



Holant problems

Holographic algorithms

The holant problem are another way to model constraint problems.
They are considered more general than the #CSP setting and take
their name from the Holant sum introduced by Valiant. As with
other reduction, a holographic reduction does not, yield a
polynomial time algorithm. In order to get a polynomial time
algorithm, the problem being reduced to must also have a
polynomial time algorithm. Valiant’s original application of
holographic algorithms used a holographic reduction to a problem
where every constraint is realizable by matchgates, which he had
just proved is tractable by a further reduction to counting the
number of perfect matchings in a planar graph. The latter problem
is tractable by the FKT (Fisher, Kasteleyn, and Temperley)
algorithm. Valiant found such problems. The
#7PI-Rtw-Mon-3CNF and #7PI-3/2Bip-VC. After some time Cai
generalised the result and showed that if the number parameter is
a mersenne number the reduction can be performed.



Beyond #P in counting complexity

The question arises quite naturally. Is there any counting class,
containg natural problems, which is above #P7? The answer is yes.
There is a result, in a very interesting paper, showing that the very
well known problem of N-queens has a counting version that is
above #P. The class is not given a name to our knowledge. The
paper itself aims in counting the number of complete mappings in
an abelian group. The two problems are shown to be equivalent.



Open questions

Food for thought |

© Find some structural attributes of this strange class above
#P.

@ Any other candidate problems for using the correlation decay
method to get some FPTAS. It should exhibit some locality.

© The N-queens problem belongs in TFNP. Does the result
above tells us anything about counting versions of TENP
problems?

Q This “dynamic” scaledown programming can be used in any
other problem?

© There are very few problems in NP having an FPTAS so we
can expect even less in #P. How about PTAS?

@ Can we extend the inapproximability result of #edge cover?
@ P#P = p#BQP What does this imply for quantum counting?



Open questions

Food for thought Il

© Hamming distance of compressed texts is #P — complete can
we find an FPTAS?

© Longest common subsequence in compressed texts?

@ Modelling problems as multi spin systems in order to use the
Weitz method.

@ Counting NPI problems? Most problems seem to not have
counting versions. Why that happens? What about the rest?
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