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Motivation

The real world is inherently parallel

Descriptive complexity is inherently parallel in nature.

Quanti�cation is a parallel operation.

Some problems are very easy to parallelize.

We have increased the ability to produce small, fast,
inexpensive proccessors.

A proccessors speed is bounded.

Memory requirements
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Motivation

A Motivation example

Find all prime numbers in the interval [1, n]

Algorithm Sieve of Eratosthenes

Start with the list of numbers 1, 2, ..., n represented as a �mark�
bit-vector initialized to 1000...00.
In each step, the next unmarked number m (associated with a 0 in
element m of the mark bit-vector) is a prime.
Find this element m and mark all multiples of m beginning with m2.
When m2 > n, the computation stops and all unmarked elements
are prime numbers.

Thomas Pipilikas A.L.MA.
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A Motivation example

Sieve of Eratosthenes for n = 30
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Motivation

A Motivation example

A Single-proccessor for the algorithm

Current Prime contains the latest prime number found
(initialized to 2).

Index is initialized to the square of Current Prime. Then
incriments by Current Prime in order to mark all of its
multiples.
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Motivation

A Motivation example

A Parallel p-proccessors machine for the algorithm

Shared Memory contains Curent Prime and the list of
numbers.
Each Proccessor refers to the shared memory:

Updates Current Prime
Uses its private index to step through the list and mark the
multiples of the prime that updated.
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Motivation

A Motivation example

Implementation of the algorithm for p ∈ [3] proccessors and n = 1000

Note that by using more than three proccessors would not reduce
the computation time. (Why?)
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Random Access Machine

A random access machine (RAM) is one-accumulator computer
that consists:

A read-only input tape

An in�nite wright-only output tape

A program, which contains a sequence of instrutions

A memory, which contains a sequence of registers

Thomas Pipilikas A.L.MA.

Parallelism and Circuit Complexity



Parallelism Circuit Complexity

Random Access Machine

A random access machine (RAM) is one-accumulator computer
that consists:

A read-only input tape

An in�nite wright-only output tape

A program, which contains a sequence of instrutions

A memory, which contains a sequence of registers

Thomas Pipilikas A.L.MA.

Parallelism and Circuit Complexity



Parallelism Circuit Complexity

Random Access Machine

A random access machine (RAM) is one-accumulator computer
that consists:

A read-only input tape

An in�nite wright-only output tape

A program, which contains a sequence of instrutions

A memory, which contains a sequence of registers

Thomas Pipilikas A.L.MA.

Parallelism and Circuit Complexity



Parallelism Circuit Complexity

Random Access Machine

A random access machine (RAM) is one-accumulator computer
that consists:

A read-only input tape

An in�nite wright-only output tape

A program, which contains a sequence of instrutions

A memory, which contains a sequence of registers

Thomas Pipilikas A.L.MA.

Parallelism and Circuit Complexity



Parallelism Circuit Complexity

Random Access Machine

A random access machine (RAM) is one-accumulator computer
that consists:

A read-only input tape

An in�nite wright-only output tape

A program, which contains a sequence of instrutions

A memory, which contains a sequence of registers

Thomas Pipilikas A.L.MA.

Parallelism and Circuit Complexity



Parallelism Circuit Complexity

Random Access Machine

Read-only input tape:

Is a sequence of squares, each of which holds an integer
(possibly negative).

Whenever a symbol is read from the input tape, the tape head
moves one square to the right.

Wright-only output tape:

Is a sequence of squares, each of which is initially blank.

When a write instruction is executed, an integer is printed in
the square of the output tape that is currently under the
output tape head and the tape head is moved one square to
the right.

Once an output symbol has been written. it cannot be
changed.
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Random Access Machine

Memory:

Consists of a sequence of registers, R0,R1, ...,Ri , ... (we place
no upper bound on the number of registers that can be used).

We have random access to each register (indirect addresing).

Each register is capable of holding an integer of arbitrary size.

Register R0 is called accumulator and all computation takes
place in it.

Program:

Is a sequence of labeled instructions.

Does not modify itself.
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Random Access Machine

Instructions:

arithmetic, input-output, indirect
addressing, branching instructions e.t.c.

Each instruction consists of two parts:

The operation code

The address: operand / label

Example of basic instructions
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Random Access Machine

We can de�ne the meaning of a program P at each step with the
help of two quantities:

The memory map c : N→ Z, where c(i) is the contents of the
register Ri .
Initially, ∀i ∈ N c(i) = 0.

The location counter, which determines the next instruction to
execute.
Initially, the location counter is set to the �rst instruction in
P .
After execution of the kth instruction in P , the location

counter is automatically set to k + 1 (i.e. the next
instruction), unless the kth instruction is JUMP, HALT,
JGTZ. or JZERO.

Thomas Pipilikas A.L.MA.
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Random Access Machine

Operand:

1 = i : The integer i itself.

2 i : The contents of register Ri , where i ∈ N
3 ∗i : The contents of register Rj , where j is the content of

register Ri (i ∈ N) (indirect addressing). If j < 0 the machine
halts.

To specify the meaning of an instruction we de�ne v(a), the the

value of operand a, as follows:

v (= i) = i

v (i) = c (i)

v (∗i) = c (c (i))

Thomas Pipilikas A.L.MA.
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Random Access Machine

The meaning of basic instructions
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Random Access Machine

What does a RAM do?

A RAM computes functions:

A RAM can compute exactly the partial recursive functions.

A RAM accepts languages:

A RAM accepts exactly the recursively enumerable languages.

Thus a RAM is a reasonable model of a computer.
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Random Access Machine

Example A RAM program computing the function f : Z→ Z

f (n) =

{
nn

0

, n ∈ N>0
, otherwise

An algorithm for f
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Random Access Machine

Solution
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CRAM[t(n)] =IND[t(n)] = FO[t(n)]

1 Parallelism
Motivation
Random Access Machine
CRAM[t(n)] =IND[t(n)] = FO[t(n)]

2 Circuit Complexity
Basic De�nitions
Addition in N
Basic Theorems
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Α parallel random-access machine (PRAM) is a shared-memory
abstract machine.

Is the parallel-computing analogy to the RAM.
It consists of a sequence of RAM's (Pi )[r ], without input and
output tape (each RAM uses the Global Memory).
It is synchronous (the processors (i.e. RAM's) work in lock step).

Thomas Pipilikas A.L.MA.
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Categorization accordinng to read/write con�icts.

1 Exclusive read exclusive write (EREW ): every memory cell can
be read or written to by only one processor at a time

2 Concurrent read exclusive write (CREW ): multiple processors
can read a memory cell but only one can write at a time

3 Concurrent read concurrent write (CRCW ): multiple
processors can read and write.

Categorization of CRCW PRAM's

1 Common: all processors write the same value; otherwise is
illegal

2 Arbitrary : only one arbitrary attempt is successful, others retire

3 Priority : processor rank indicates who gets to write

Thomas Pipilikas A.L.MA.
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De�nition of CRAM

CRAM is a special type of Priority CRCW-PRAM.
Each RAM has a �nite set of registers, including the following:

Processor : containing the number between 1 and p(n) of the
RAM

Address: containing an address of global memory

Contents: containing a word to be written or read from global
memory

ProgramCounter : containing the line number of the
instruction to be executed next.

RAMs are identical except the Processor number.

Thomas Pipilikas A.L.MA.
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De�nition of CRAM

The instructions of a CRAM consist of the following:

READ: Read the word of Global Memory speci�ed by Address

into Contents.

WRITE: Write the Contents register into the Global Memory
location speci�ed by Address.

OP Ra Rb: Perform OP on Ra and Rb and leave the result in
Rb. Here OP may be Add, Subtract, or, Shift.

MOVE Ra Rb: Move Ra to Rb

BLT R L: Branch to line (adress) L of the Program, if the
contents of R is less than zero.


 Shift(x , y) causes the word x to be shifted y bits to the right.

 The above instructions each increment the ProgramCounter, with
the exception of BLT.

Thomas Pipilikas A.L.MA.
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The Shift operation for the CRAM allows each bit of Global
Memory to be available to every processor in constant time.

We assume initially that the contents of the �rst |bin(A)|
words of Global Memory contain one bit each of the input
string bin(A).

We assume that a section of Global Memory is speci�ed as the
output.

Thomas Pipilikas A.L.MA.
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CRAM's complexity

De�nitions

CRAM[t(n)]: The set of boolean queries computable in parallel
time t(n) on a CRAM that has at most polynomially many
processors.

CRAM−PROC[t(n), p(n)]: The set of boolean queries computable
by a CRAM using at most p(n) processors and time O(t(n)).

Thus,
CRAM[t(n)] = CRAM−PROC[t(n), nO(1)]

Thomas Pipilikas A.L.MA.
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De�nitions

Let ϕ(R,−→x ) be an R-positive formula, where R is a relation
symbol of arity k , and let A be a structure of size n. De�ne the
depth of ϕ in A, in symbols |ϕA|, to be the minimum r such that

A |=
(
ϕr (∅)↔ ϕr+1 (∅)

)
De�ne the depth of ϕ as a function of n equal to the maximum
depth of ϕ in A for any structure A of size n:

|ϕ| (n) + max
‖A‖=n

{∣∣ϕA∣∣}
IND[f (n)] be the sublanguage of FO(LFP) in which only �xed
points of �rst-order formulas ϕ for which |ϕ| is O[f (n)] are
included.

Thomas Pipilikas A.L.MA.
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Iterating FO formulas

Moschovakis' Canonical Form for Positive Formulas

Lemma

Let ϕ be an R-positive �rst-order formula and −→x = (x1, ..., xk).
Then ϕ can be written in the following form,

ϕ(R,−→x ) ≡ (Q1z1.M1) ... (Qszs .Ms) (∃x1...xk .Ms+1)R(x1, ..., xk)

where the Mi 's are quanti�er-free formulas in which R does not

occur.

Thomas Pipilikas A.L.MA.
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Let QB + [(Q1z1.M1) ... (Qszs .Ms) (∃x1...xk .Ms+1)]. Then ∀A
structure and ∀r ∈ N

A |=
((
ϕA
)r

(∅)↔ ([QB]r false )
)

Thus if t = |ϕ|(n) and A is any structure of size n then

A |=
(
(LFPϕ)↔

(
[QB]t false

))

Thomas Pipilikas A.L.MA.
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De�nition

A set S ⊆ STRUC[τ ] is a member of FO[t(n)] i� there exist
quanti�er free formulas Mi , i ∈ [s], from L(τ), a tuple −→c of
constants and a quanti�er block,

QB = [(Q1z1.M1) ... (Qszs .Ms)]

such that ∀A ∈ STRUC[τ ],

A ∈ S ⇔ A |=
(

[QB]t(‖A‖)M0

) (−→c /−→x )

Thomas Pipilikas A.L.MA.
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Example

Let's recall the alternative inductive de�nition of the re�exive
transitive closure, E ∗, of E , that we saw in the previous lecture:

ϕ∗ (R, x , y) ≡ x = y ∨ E (x , y) ∨ ∃z (R (x , z) ∧ R (z , y))

with depth
|ϕ∗| (n) = dlog ne+ 1

We want to �nd out how to wright this inductive de�nition in the
Moschovakis' Canonical Form for Positive Formulas.

Thomas Pipilikas A.L.MA.
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Solution

First, code the base case using a dummy universal quanti�cation:

ϕ∗ (R, x , y) ≡ (∀z .M1) (∃z) (R (x , z) ∧ R (z , y))

M1 ≡ x = y ∨ E (x , y)

Next, use universal quanti�cation to replace the two occurrences of
R with a single one:

ϕ∗ (R, x , y) ≡ (∀z .M1) (∃z) (∀uv .M2) (R (u, v))

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y)

Thomas Pipilikas A.L.MA.
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Solution

Finally, requantify x and y:

ϕ∗ (R, x , y) ≡ (∀z .M1) (∃z) (∀uv .M2) (∃xy .M3)R (x , y)

M3 ≡ (x = u ∧ v = y)

2
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De�ne the quanti�er block:

QB∗ ≡ (∀z .M1) (∃z) (∀uv .M2) (∃xy .M3)

Thus ∀r ∈ N:
ϕ∗

r

(∅) ≡ [QB∗]r (false)

The boolean query REACH is expressible as:

REACH ≡
(
LFPRxyϕ

∗) (s, t)

Thus by previous example we have that

REACH ∈ FO[log n]

Thomas Pipilikas A.L.MA.
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We are ready to prove the main Theorem of this Section.

Theorem

Let S be a boolean query. For all polynomially bounded, parallel

time constructible t(n), the following are equivalent:

1 S is computable by a CRAM in parallel time t(n) using

polynomially many processors and registers of polynomially

bounded word size.

2 S is de�nable as a uniform �rst-order induction whose depth,

for structures of size n, is at most t(n).

3 There exists a �rst-order quanti�er-block [QB], a
quanti�er-free formula M0 and a tuple −→c of constants such

that the query S for structures of size at most n is expressed

as [QB]t(n)M0(−→c /−→x ).
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In symbols, the previous theorem can be stated as:

CRAM[t(n)] = IND[t(n)] = FO[t(n)]
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Lemma

For all t(n) and all classes of �nite structures,

IND [t (n)] ⊆ FO [t (n)]

Proof.

Hint: Previous lemma and straight forward from de�nitions.
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CRAM[t(n)] =IND[t(n)] = FO[t(n)]

Lemma

For any polynomially bounded t(n) we have,

CRAM [t (n)] ⊆ IND [t (n)]

Proof.

Sketching of solution: We want to simulate the computation of a
CRAM M, on input A : ‖A‖ = n, by de�ning the contents of all
the relevant registers for any processor of M by induction on the
time step, through a relation VALUE(p, t, x , r , b), meaning that
bit x in register r of processor p just after step t is equal to b.
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CRAM[t(n)] =IND[t(n)] = FO[t(n)]

Proof.

We need constant number of variables x1, ..., xk each ranging
over the n element universe of A, to name any bit in any
register belonging to any processor at any step of the
computation.

For t = 0 the memory is correctly loaded with bin(A).

The inductive de�nition of the relation VALUE(p, t, x , r , b) is
a disjunction depending on the value of p's ProgramCounter
at time t − 1.

Addition, Subtraction, BLT are �rst-order expressible.

Shift is �rst-order expressible due to relation BIT.

Thus we describe an inductive de�nition of relation VALUE,
coding M's entire computation.

Thomas Pipilikas A.L.MA.
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CRAM[t(n)] =IND[t(n)] = FO[t(n)]

Lemma

For polynomially bounded and parallel time constructible t(n),

FO [t (n)] ⊆ CRAM [t (n)]

Proof.

Let the FO[t(n)] problem be determined by the following quanti�er
free formulas, quanti�er block, and tuple of constants,

M0, ...,Mk ; QB = (Q1x1.M1) ... (Qkxk .Mk) ; −→c

Our CRAM must test whether an input structure A, so that
‖A‖ = n satis�es the sentence,

ϕn ≡ [QB]t(n)M0

(−→c /−→x )
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CRAM[t(n)] =IND[t(n)] = FO[t(n)]

Proof.

The CRAM will:

use nk processors (RAMs)

Each processor will have a number a1...ak , where
ai ∈ {0, ..., n − 1} + n

Using the Shift operation it can retrieve each of the ai 's in
constant time.

use nk−1 bits of Global Memory

evaluate ϕn from right to left, simultaneously for all values of
the variables x1, ..., xk .

Thomas Pipilikas A.L.MA.
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CRAM[t(n)] =IND[t(n)] = FO[t(n)]

Proof.

We will denote for q ∈ t(n), i ∈ [k] and r = k · (q + 1) + 1− i

ϕr ≡ (Qixi .Mi ) ... (Qkxk .Mk) [QB]q M0

That is

ϕ1 ≡ (Qkxk .Mk)M0, ϕ2 ≡ (Qk−1xk−1.Mk−1) (Qkxk .Mk)M0, ...

ϕk ≡ [QB]M0, ϕk+1 ≡ (Qkxk .Mk) [QB]M0, ...

ϕt(n)k ≡ [QB]t(n)M0

We will denote with x1...x̂i ...xk the k − 1-tuple resulting from
x1...xk by removing xi .

Thomas Pipilikas A.L.MA.
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CRAM[t(n)] =IND[t(n)] = FO[t(n)]

Proof.

We will now give a program for the CRAM which is broken into
rounds each consisting of three processor steps such that: Just
after round r , the contents of memory location a1...âi ...ak is 1 or 0
according as whether A |= ϕr (a1, ..., ak) or not (Each processor
a1 . . . ak , at step r + 1 sets b := 1 i� A |= ϕr .).

Base case:

At step 1, processor a1 . . . ak must set:

b = 1 ⇐⇒ A |= M0(a1, ..., ak)

Thomas Pipilikas A.L.MA.
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CRAM[t(n)] =IND[t(n)] = FO[t(n)]

Proof.

Inductive step:

At round r , processor number a1...ak executes the following three
instructions according to whether Qi is ∃ or Qi is ∀:

Qi is ∃
1 b := loc(a1... ˆai+1...ak);

2 loc(a1...âi ...ak) := 0;

3 If Mi (a1, ..., ak) and b then loc(a1...âi ...ak) := 1;

Qi is ∀
1 b := loc(a1... ˆai+1...ak);

2 loc(a1...âi ...ak) := 1;

3 If Mi (a1, ..., ak) and ¬b then loc(a1...âi ...ak) := 0;
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From the three previous lemmas we prove the requested Theorem.
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Basic De�nitions

1 Parallelism
Motivation
Random Access Machine
CRAM[t(n)] =IND[t(n)] = FO[t(n)]

2 Circuit Complexity
Basic De�nitions
Addition in N
Basic Theorems
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Basic De�nitions

De�nition

A boolean circuit is a directed acyclic graph (DAG)

C = (V ,E ,G∧,G∨,G¬, I , r)

where τc +
〈
E 2,G 1

∧,G
1
∨,G

1
¬, I

1, r
〉
(vocabulery of circuits).

An internal node w is:

an and-gate i� G∧ holds

an or-gate i� G∨ holds

an not-gate i� G¬ holds

called a leaf i� it has no incoming edges and leaf w is on i�
I (w) holds

De�ne Circuit Value Problem (CVP) to consist of those circuits
the root gate of which evaluate to one.
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Basic De�nitions

Let A ∈ STRUC[τ ] and ‖A‖ = n. A circuit Cn, with
n̂τ (n) + ‖binτ (A)‖ leaves, can take A as input by placing the
binary string binτ (A) into its leaves.

We write C (w) to denote the output of circuit C on input w , i.e.,
the value of the root node r when w is placed at the leaves and C
is then evaluated.

We say that circuit C accepts structure A i� C (binτ (A)) = 1.
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Basic De�nitions

Let S ⊆ STRUC[τs ] be a boolean query on binary strings. Let
C = {Ci}N≥1

an in�nite sequence of circuits, where Cn is a circuit
with n input bits.
We say that C computes S i� for all n ∈ N≥1 and for all
w ∈ {0, 1}n,

w ∈ S ⇐⇒ Cn (w) = 1

A threshold gate with threshold value i has output one i� at least
i of its inputs have value one.

We generalize the vocabulary of circuits to the vocabulary of

threshold circuits, τthc + τc ∪ {G 2
t }, where Gt(g , k) means that g

is a threshold gate with threshold value k .
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Basic De�nitions

De�nition

Let C be a sequence of circuits as above. Let τ ∈ {τc , τthc}. Let
I : STRUC[τs ]→ STRUC[τ ] be a query such that for all
n ∈ N, I (0n) = Cn. Then:

If I ∈ FO, then C is a �rst-order uniform sequence of circuits.

If I ∈ L, then C is a logspace uniform.

If I ∈ P, then C is a polynomial-time uniform.

e.t.c.

Thomas Pipilikas A.L.MA.
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Basic De�nitions

In the next frame we will de�ne 3 families of circuit complexity
classes.They vary depending on whether:

all gates have bounded fan-in (NC)

the "and" and "or" gates may have unbounded fan-in (AC)

there are threshold gates (ThC)

NC AC ThC

Thomas Pipilikas A.L.MA.
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Basic De�nitions

De�nition
Let t(n) be a polynomially bounded function and S ⊆ STRUC[τ ]
be a boolean query. Then S is in the (�rst-order uniform) circuit

complexity class NC[t(n)], AC[t(n)], ThC[t(n)], respectively i�
there exists a �rst-order query I : STRUC[τs ]→ STRUC[τthc ]
de�ning a uniform class of circuits C = {Cn | Cn + I (0n)} with the
following properties:

1 For all A ∈ STRUC[τ ], A ∈ S ⇐⇒ C‖A‖ accepts A.
2 The depth of Cn is O(t(n)).

3 The gates of Cn consist of binary "and" and "or" gates (NC),
unbounded fan-in "and" and "or" gates (AC), and unbounded
fan-in threshold gates (ThC), respectively.

For i ∈ N we denote NCi + NC[(log n)i ] and simillarly the ACi

and ThCi . Also, NC +
⋃
N
NCi .
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Addition in N

Proposition

Addition of natural numbers, represented in binary, is �rst-order

expressible.

We have already proven this Proposition using the well-known
�carry-look-ahead� algorithm, through the formula ϕadd , where:

• ϕcarry (x) ≡ (∃y .y < x) [A(y) ∧ B(y) ∧ (∀z .y < z < x) [A(z) ∨ B(z)]]

• a⊕ b ≡ (a ∨ b) ∧ (¬a ∨ ¬b)

• ϕadd ≡ A(x)⊕ B(x)⊕ ϕcarry (x)

We assumed that the columns are denoted n − 1, ..., 0 and the
numbers similarly a = an−1...a0.

Thomas Pipilikas A.L.MA.
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We want to express the formula ϕadd through a boolean circuit.
Let:

ai + A(i) bi + B(i) and si + ϕadd(i)

gi ≡ A(i) ∧ B(i) and pi ≡ A(i) ∨ B(i)

We have:

ci + ϕcarry (i) ≡
i−1
∨
j=0

(
gj∧

i−1
∧

k=j+1
pk

)

Thomas Pipilikas A.L.MA.
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It is easy to see that the boolean circuit bellow computes the
addition for n = 4

Thomas Pipilikas A.L.MA.
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Addition in N

It is easy to see that depth of the equivalent circuit, resulted after
the raplaement of the ⊕-gates with some �and�, �or� and �not�
gates, is constant (why?).
Thus Addition of two natural numbers is computable in AC0.

Every input in the new circuit can have at most n inputs. Therefore
we can simulate each �and� (�or�) gates with fan-in greater than 2,
with at most log n �and� (�or�) binary gates.
Thus Addition of two natural numbers is computable in NC1.

Thomas Pipilikas A.L.MA.
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Let us calculate addition of two natural nunmbers using ambiguous
arithmetic notation. That is a representation of natural numbers in
binary, except that digits 0, 1, 2, 3 may be used. For example:

3213 = 3·23+2·22+1·21+3·20 = 37 = 3221 = 3·23+2·22+2·21+1·20

We observe that we can calculate the carry from column i , by
looking only at columns i − 1 and i − 2.

carries: 3 2 2 3

3 2 1 3
+ 3 2 1 3

3 2 2 1 0

Thomas Pipilikas A.L.MA.
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Similarly:

carries: 3 2 2 2

3 2 1 3
+ 3 2 2 1

3 2 2 1 0

Thus adding two n bit numbers in ambiguous notation can be done
via an NC0 circuit.

Thomas Pipilikas A.L.MA.
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Basic Theorems

Theorem

For all i ∈ N,
NCi ⊆ ACi ⊆ ThCi ⊆ NCi+1

In order to prove the theorem above we will use the next
proposition:

Proposition

The boolean majority query MAJ is in NC1, where

MAJ + {A ∈ STRUC[τs ] | A contains more than ‖A‖ /2 "1"s}

Hint: Build an NC1 circuit for majority by adding the n input bits

via a full binary tree of height log n, by using the ambiguous

notation.

Thomas Pipilikas A.L.MA.
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Basic Theorems

We give a sketching of the proof:

Proof.

The �rst two containments are obvious (why?).

For the third we can simulate any ThC-gate using a circuit of depth
log n recognising MAJ. Let threshold gate with threshold value k .

If k ≤ ‖w‖ /2 we are just checking if w1‖w‖−2k ∈ MAJ.
If k > ‖w‖ /2, we are just checking if w02k−‖w‖ ∈ MAJ.

Corollary

NC = AC+
⋃
N
ACi = ThC +

⋃
N
ThCi

Thomas Pipilikas A.L.MA.
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Basic Theorems

Theorem

For all polynomially bounded and �rst-order constructible t(n), the
following classes are equal:

CRAM[t(n)] = IND[t(n)] = FO[t(n)] = AC[t(n)]

Proof.

The equality of the �rst three classes has been proved.

� FO[t(n)] ⊆ AC[t(n)]

Let S ⊆ STRUC[τ ] a FO[t(n)] boolean query given by the
quanti�er block, QB = (Q1x1.M1) ... (Qkxk .Mk), initial
formula,M0, and tuple of constants, c .

Thomas Pipilikas A.L.MA.
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Basic Theorems

Proof.

We must write a �rst-order query, I , to generate circuit Cn = I (0n),
so that for all A ∈ STRUC[τ ],

A |= [QB]t(‖A‖)M0

(−→c /−→x ) ⇐⇒ C‖A‖ accepts A

Initially the circuit evaluates the quanti�er-free formulas Mi , where
i ∈ n + 1. The nodes 〈Mi , b1, ..., bk〉 will be the gates that have
evaluated these formulas, i.e.,

〈Mi , b1, ..., bk〉 (bin (A)) = 1 ⇐⇒ A |= Mi (b1, ..., bk)

Thomas Pipilikas A.L.MA.
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Basic Theorems

Proof.

Let ϕrde�ned as in the proof of FO[t(n)] ⊆ CRAM[t(n)]. We

construct inductively the gate
〈
2r , b1...b̂i ...bk

〉
so that〈

2r , b1...b̂i ...bk

〉
(bin (A)) = 1 ⇐⇒ A |= ϕr (b1, ..., bk)

This is achieved by letting gate
〈
2r , b1...b̂i ...bk

〉
:

Be �and�-gate (�or�), if Qi = ∀ (∃)

Has inputs
〈
2r − 1, b1, ..., bi , b̂i+1, ..., bk

〉
, where bi ∈ |A|〈

2r − 1, b1, ..., bi , b̂i+1, ..., bk
〉
is a binary "and"-gate whoses

inputs are 〈Mi , b1, ..., bk〉 and
〈
2r − 2, b1, ..., bi , b̂i+1, ..., bk

〉

Thomas Pipilikas A.L.MA.
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Proof.

This circuit can be constructed via a �rst-order query I .

The
〈
2r , b1...b̂i ...bk

〉
gate

Thomas Pipilikas A.L.MA.

Parallelism and Circuit Complexity



Parallelism Circuit Complexity

Basic Theorems

Proof.

� AC[t(n)] ⊆ IND[t(n)]

Let I : STRUC[τs ]→ STRUC[τc ], a �rst-order query and
C = {Ci}N≥1

= {I (0i )}N≥1
, a uniform sequence of AC[t(n)]

circuits.

We must wright an inductive formula:

Φ ≡ (LFPϕ (c̄))

so that for all A ∈ STRUC[τ ],

A |= Φ ⇐⇒ C‖A‖ accepts A

Thomas Pipilikas A.L.MA.
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Basic Theorems

Proof.

From A we can get the circuit C‖A‖ + 〈E ,G∧,G∨,G¬, bin(A), r〉
via the �rst-order query I .

The following is a �rst-order inductive de�nition of the relation
V (x , b) meaning that gate x has boolean value b,

V (x , b) ≡ DEFINED(x) ∧ [(L(x) ∧ (I (x)↔ b))∨

(G∧(x) ∧ (C (x)↔ b))∨

(G∨ ∧ (D(x)↔ b))∨

(G¬(x) ∧ (N(x)↔ b))]

Thomas Pipilikas A.L.MA.
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Proof.

Where we have the abbreviations:

L(x) ≡ (∀y)¬E (y , x) x is a leaf
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Basic Theorems

Proof.

The inductive de�nition of V closes in exactly the depth of Cn ,
which is O(t(n)) iterations.

Once it closes, Φ ≡ V (r , 1) expresses the acceptance condition in
IND[t(n)], as desired.

Proposition

NC = AC = ThC =
∞⋃
k=1

FO
[
(log n)k

]
=
∞⋃
k=1

CRAM
[
(log n)k

]
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