Descriptive Complexity: Parallelism and Circuit Complexity

Thomas Pipilikas

INTER-INSTITUTIONAL GRADUATE PROGRAM "ALGORITHMS, LOGIC AND DISCRETE MATHEMATICS"

Overview

1 Parallelism

- Motivation
- Random Access Machine
- $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$

2 Circuit Complexity
■ Basic Definitions

- Addition in \mathbb{N}
- Basic Theorems

1 Parallelism

- Motivation
- Random Access Machine - $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$

2 Circuit Complexity

- Basic Definitions
- Addition in \mathbb{N}
- Basic Theorems
- The real world is inherently parallel
- Descriptive complexity is inherently parallel in nature.
- Quantification is a parallel operation.
- The real world is inherently parallel

■ Descriptive complexity is inherently parallel in nature.

- Quantification is a parallel operation.
- Some problems are very easy to parallelize.
- We have increased the ability to produce small, fast, inexpensive proccessors.
- A proccessors speed is bounded.
- Memory requirements

A Motivation example

Find all prime numbers in the interval $[1, n]$

Algorithm Sieve of Eratosthenes

A Motivation example

Find all prime numbers in the interval $[1, n]$
Algorithm Sieve of Eratosthenes
Start with the list of numbers $1,2, \ldots, n$ represented as a "mark" bit-vector initialized to $1000 \ldots 00$.

A Motivation example

Find all prime numbers in the interval $[1, n]$
Algorithm Sieve of Eratosthenes
Start with the list of numbers $1,2, \ldots, n$ represented as a "mark" bit-vector initialized to $1000 \ldots 00$.
In each step, the next unmarked number m (associated with a 0 in element m of the mark bit-vector) is a prime.

A Motivation example

Find all prime numbers in the interval $[1, n]$
Algorithm Sieve of Eratosthenes
 bit-vector initialized to 1000... 00 .
In each step, the next unmarked number m (associated with a 0 in element m of the mark bit-vector) is a prime.
Find this element m and mark all multiples of m beginning with m^{2}.

A Motivation example

Find all prime numbers in the interval $[1, n]$
Algorithm Sieve of Eratosthenes
Start with the list of numbers $1,2, \ldots, n$ represented as a "mark" bit-vector initialized to 1000... 00 .
In each step, the next unmarked number m (associated with a 0 in element m of the mark bit-vector) is a prime.
Find this element m and mark all multiples of m beginning with m^{2}.
When $m^{2}>n$, the computation stops and all unmarked elements are prime numbers.

A Motivation example

Sieve of Eratosthenes for $n=30$

Motivation

A Motivation example

A Single-proccessor for the algorithm

A Motivation example

A Single-proccessor for the algorithm

A Motivation example

A Single-proccessor for the algorithm

- Current Prime contains the latest prime number found (initialized to 2).

A Motivation example

A Single-proccessor for the algorithm

- Current Prime contains the latest prime number found (initialized to 2).
- Index is initialized to the square of Current Prime. Then incriments by Current Prime in order to mark all of its multiples.

A Motivation example

A Parallel p-proccessors machine for the algorithm

A Motivation example

A Parallel p-proccessors machine for the algorithm

A Motivation example

A Parallel p-proccessors machine for the algorithm

- Shared Memory contains Curent Prime and the list of numbers.

A Motivation example

A Parallel p-proccessors machine for the algorithm

- Shared Memory contains Curent Prime and the list of numbers.
■ Each Proccessor refers to the shared memory:

A Motivation example

A Parallel p-proccessors machine for the algorithm

- Shared Memory contains Curent Prime and the list of numbers.
■ Each Proccessor refers to the shared memory:
■ Updates Current Prime

A Motivation example

A Parallel p-proccessors machine for the algorithm

- Shared Memory contains Curent Prime and the list of numbers.
- Each Proccessor refers to the shared memory:

■ Updates Current Prime

- Uses its private index to step through the list and mark the multiples of the prime that updated.

A Motivation example

Implementation of the algorithm for $p \in[3]$ proccessors and $n=1000$

A Motivation example

Implementation of the algorithm for $p \in[3]$ proccessors and $n=1000$
Note that by using more than three proccessors would not reduce the computation time. (Why?)

1 Parallelism

- Random Access Machine
- $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$

2 Circuit Complexity

- Basic Definitions
- Addition in \mathbb{N}
- Basic Theorems

A random access machine (RAM) is one-accumulator computer

 that consists:

A random access machine (RAM) is one-accumulator computer that consists:

- A read-only input tape

A random access machine (RAM) is one-accumulator computer that consists:

- A read-only input tape
- An infinite wright-only output tape

Write-only
output tape

A random access machine (RAM) is one-accumulator computer that consists:

- A read-only input tape
- An infinite wright-only output tape
- A program, which contains a sequence of instrutions

Write-only
output tape

A random access machine (RAM) is one-accumulator computer that consists:

- A read-only input tape
- An infinite wright-only output tape
- A program, which contains a sequence of instrutions
- A memory, which contains a sequence of registers

Write-only
output tape

Read-only input tape:

Read-only input tape:

■ Is a sequence of squares, each of which holds an integer (possibly negative).

Read-only input tape:

■ Is a sequence of squares, each of which holds an integer (possibly negative).

- Whenever a symbol is read from the input tape, the tape head moves one square to the right.

Read-only input tape:

- Is a sequence of squares, each of which holds an integer (possibly negative).
- Whenever a symbol is read from the input tape, the tape head moves one square to the right.
Wright-only output tape:

Read-only input tape:

- Is a sequence of squares, each of which holds an integer (possibly negative).
- Whenever a symbol is read from the input tape, the tape head moves one square to the right.
Wright-only output tape:
■ Is a sequence of squares, each of which is initially blank.

Read-only input tape:

- Is a sequence of squares, each of which holds an integer (possibly negative).
- Whenever a symbol is read from the input tape, the tape head moves one square to the right.
Wright-only output tape:
- Is a sequence of squares, each of which is initially blank.
- When a write instruction is executed, an integer is printed in the square of the output tape that is currently under the output tape head and the tape head is moved one square to the right.

Read-only input tape:

- Is a sequence of squares, each of which holds an integer (possibly negative).
- Whenever a symbol is read from the input tape, the tape head moves one square to the right.
Wright-only output tape:
■ Is a sequence of squares, each of which is initially blank.
- When a write instruction is executed, an integer is printed in the square of the output tape that is currently under the output tape head and the tape head is moved one square to the right.
- Once an output symbol has been written. it cannot be changed.

Memory:

Memory:

■ Consists of a sequence of registers, $R_{0}, R_{1}, \ldots, R_{i}, \ldots$ (we place no upper bound on the number of registers that can be used).

Memory:

■ Consists of a sequence of registers, $R_{0}, R_{1}, \ldots, R_{i}, \ldots$ (we place no upper bound on the number of registers that can be used).
■ We have random access to each register (indirect addresing).

Memory:

■ Consists of a sequence of registers, $R_{0}, R_{1}, \ldots, R_{i}, \ldots$ (we place no upper bound on the number of registers that can be used).

- We have random access to each register (indirect addresing).
- Each register is capable of holding an integer of arbitrary size.

Memory:

■ Consists of a sequence of registers, $R_{0}, R_{1}, \ldots, R_{i}, \ldots$ (we place no upper bound on the number of registers that can be used).

- We have random access to each register (indirect addresing).
- Each register is capable of holding an integer of arbitrary size.
- Register R_{0} is called accumulator and all computation takes place in it.

Memory:

■ Consists of a sequence of registers, $R_{0}, R_{1}, \ldots, R_{i}, \ldots$ (we place no upper bound on the number of registers that can be used).

- We have random access to each register (indirect addresing).
- Each register is capable of holding an integer of arbitrary size.
- Register R_{0} is called accumulator and all computation takes place in it.

Program:

Memory:

■ Consists of a sequence of registers, $R_{0}, R_{1}, \ldots, R_{i}, \ldots$ (we place no upper bound on the number of registers that can be used).

- We have random access to each register (indirect addresing).
- Each register is capable of holding an integer of arbitrary size.
- Register R_{0} is called accumulator and all computation takes place in it.

Program:

- Is a sequence of labeled instructions.

Memory:

■ Consists of a sequence of registers, $R_{0}, R_{1}, \ldots, R_{i}, \ldots$ (we place no upper bound on the number of registers that can be used).

- We have random access to each register (indirect addresing).
- Each register is capable of holding an integer of arbitrary size.
- Register R_{0} is called accumulator and all computation takes place in it.

Program:

- Is a sequence of labeled instructions.

■ Does not modify itself.

Instructions:

Instructions:

- arithmetic, input-output, indirect addressing, branching instructions e.t.c.

Instructions:

- arithmetic, input-output, indirect addressing, branching instructions e.t.c.
■ Each instruction consists of two parts:

Instructions:

- arithmetic, input-output, indirect addressing, branching instructions e.t.c.
■ Each instruction consists of two parts:
- The operation code

Instructions:

- arithmetic, input-output, indirect addressing, branching instructions e.t.c.
- Each instruction consists of two parts:
- The operation code
- The address:

Instructions:

- arithmetic, input-output, indirect addressing, branching instructions e.t.c.
- Each instruction consists of two parts:
- The operation code
- The address: operand / label

Instructions:

- arithmetic, input-output, indirect addressing, branching instructions e.t.c.
- Each instruction consists of two parts:
- The operation code
- The address: operand / label

Operation code

1. LOAD
2. STORE
3. ADD
4. SUB
5. MULT
6. DIV
7. READ
8. WRITE
9. JUMP
10. JGTZ
11. JZERO
12. HALT

Address
operand
operand
operand
operand
operand
operand
operand operand label label label

Example of basic instructions

We can define the meaning of a program P at each step with the help of two quantities:

We can define the meaning of a program P at each step with the help of two quantities:

■ The memory map $c: \mathbb{N} \rightarrow \mathbb{Z}$, where $c(i)$ is the contents of the register R_{i}.

We can define the meaning of a program P at each step with the help of two quantities:

■ The memory map $c: \mathbb{N} \rightarrow \mathbb{Z}$, where $c(i)$ is the contents of the register R_{i}.

Initially, $\forall i \in \mathbb{N} \quad c(i)=0$.

We can define the meaning of a program P at each step with the help of two quantities:

- The memory map $c: \mathbb{N} \rightarrow \mathbb{Z}$, where $c(i)$ is the contents of the register R_{i}.

Initially, $\forall i \in \mathbb{N} \quad c(i)=0$.

- The location counter, which determines the next instruction to execute.

We can define the meaning of a program P at each step with the help of two quantities:

- The memory map $c: \mathbb{N} \rightarrow \mathbb{Z}$, where $c(i)$ is the contents of the register R_{i}.

Initially, $\forall i \in \mathbb{N} \quad c(i)=0$.

- The location counter, which determines the next instruction to execute.

Initially, the location counter is set to the first instruction in P.

We can define the meaning of a program P at each step with the help of two quantities:

■ The memory map $c: \mathbb{N} \rightarrow \mathbb{Z}$, where $c(i)$ is the contents of the register R_{i}.

Initially, $\forall i \in \mathbb{N} \quad c(i)=0$.

- The location counter, which determines the next instruction to execute.

Initially, the location counter is set to the first instruction in P.
After execution of the k th instruction in P, the location counter is automatically set to $k+1$ (i.e. the next instruction), unless the k th instruction is JUMP, HALT, JGTZ. or JZERO.

Random Access Machine

Operand:

Operand:

$\boldsymbol{1}=i$: The integer i itself.

Operand:

$1=i$: The integer i itself.
$2 i$: The contents of register R_{i}, where $i \in \mathbb{N}$

Operand:

$1=i$: The integer i itself.
$2 i$: The contents of register R_{i}, where $i \in \mathbb{N}$
$3 * i$: The contents of register R_{j}, where j is the content of register $R_{i}(i \in \mathbb{N})$ (indirect addressing). If $j<0$ the machine halts.

Operand:

$1=i$: The integer i itself.
$2 i$: The contents of register R_{i}, where $i \in \mathbb{N}$
$3 * i$: The contents of register R_{j}, where j is the content of register $R_{i}(i \in \mathbb{N})$ (indirect addressing). If $j<0$ the machine halts.
To specify the meaning of an instruction we define $v(a)$, the the value of operand a, as follows:

Operand:

$1=i$: The integer i itself.
$2 i$: The contents of register R_{i}, where $i \in \mathbb{N}$
$3 * i$: The contents of register R_{j}, where j is the content of register $R_{i}(i \in \mathbb{N})$ (indirect addressing). If $j<0$ the machine halts.
To specify the meaning of an instruction we define $v(a)$, the the value of operand a, as follows:

$$
v(=i)=i
$$

Operand:

$1=i$: The integer i itself.
$2 i$: The contents of register R_{i}, where $i \in \mathbb{N}$
$3 * i$: The contents of register R_{j}, where j is the content of register $R_{i}(i \in \mathbb{N})$ (indirect addressing). If $j<0$ the machine halts.
To specify the meaning of an instruction we define $v(a)$, the the value of operand a, as follows:

$$
\begin{gathered}
v(=i)=i \\
v(i)=c(i)
\end{gathered}
$$

Operand:

$1=i$: The integer i itself.
$2 i$: The contents of register R_{i}, where $i \in \mathbb{N}$
$3 * i$: The contents of register R_{j}, where j is the content of register $R_{i}(i \in \mathbb{N})$ (indirect addressing). If $j<0$ the machine halts.
To specify the meaning of an instruction we define $v(a)$, the the value of operand a, as follows:

$$
\begin{gathered}
v(=i)=i \\
v(i)=c(i) \\
v(* i)=c(c(i))
\end{gathered}
$$

Instruction	
1. LOAD a	$c(0) \leftarrow v(a)$
2. STORE i	$c(i) \leftarrow c(0)$
STORE $* i$	$c(c(i)) \leftarrow c(0)$
3. ADD a	$c(0) \leftarrow c(0)+v(a)$
4. SUB a	$c(0) \leftarrow c(0)-v(a)$
5. MU.LT a	$c(0) \leftarrow c(0) \times v(a)$
6. DIV a	$c(0) \leftarrow\lfloor c(0) / v(a) \dagger$
7. READ i	$c(i) \leftarrow$ current input symbol.
READ $* i$	$c(c(i)) \leftarrow$ current input symbol. The input tape head moves one square right in either case.
8. WRITE a	$v(a)$ is printed on the square of the output tape currently under the output tape head. Then the tape head is moved
9. JUMP b	one square right.
The location counter is set to the instruction labeled b.	
10. JGTZ b	The location counter is set to the instruction labeled b if $c(0)>0$; otherwise, the location counter is set to the
next instruction.	

The meaning of basic instructions

What does a RAM do?

- A RAM computes functions:
- A RAM can compute exactly the partial recursive functions.

What does a RAM do?

- A RAM computes functions:
- A RAM can compute exactly the partial recursive functions.
- A RAM accepts languages:

■ A RAM accepts exactly the recursively enumerable languages.

What does a RAM do?

- A RAM computes functions:
- A RAM can compute exactly the partial recursive functions.
- A RAM accepts languages:

■ A RAM accepts exactly the recursively enumerable languages.
Thus a RAM is a reasonable model of a computer.

Example A RAM program computing the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$

$$
f(n)= \begin{cases}n^{n} & , n \in \mathbb{N}_{>0} \\ 0 & , \text { otherwise }\end{cases}
$$

Example A RAM program computing the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$

An algorithm for f

Solution

| | RAM program | |
| :--- | :--- | :--- | | Pidgin ALGOL statements |
| :--- |

1 Parallelism

- Motivation
 - Random Access Machine
 ■ $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$

2 Circuit Complexity

- Basic Definitions
- Addition in \mathbb{N}
- Basic Theorems

A parallel random-access machine (PRAM) is a shared-memory abstract machine.

A parallel random-access machine (PRAM) is a shared-memory abstract machine.

- Is the parallel-computing analogy to the RAM.

A parallel random-access machine (PRAM) is a shared-memory abstract machine.

- Is the parallel-computing analogy to the RAM.

■ It consists of a sequence of RAM's $\left(P_{i}\right)_{[r]}$, without input and output tape (each RAM uses the Global Memory).

A parallel random-access machine (PRAM) is a shared-memory abstract machine.

- Is the parallel-computing analogy to the RAM.

■ It consists of a sequence of RAM's $\left(P_{i}\right)_{[r]}$, without input and output tape (each RAM uses the Global Memory).
■ It is synchronous (the processors (i.e. RAM's) work in lock step).

Categorization accordinng to read/write conflicts.
1 Exclusive read exclusive write (EREW): every memory cell can be read or written to by only one processor at a time
2 Concurrent read exclusive write (CREW): multiple processors can read a memory cell but only one can write at a time
3 Concurrent read concurrent write (CRCW): multiple processors can read and write.

Categorization accordinng to read/write conflicts.
1 Exclusive read exclusive write (EREW): every memory cell can be read or written to by only one processor at a time
2 Concurrent read exclusive write (CREW): multiple processors can read a memory cell but only one can write at a time
3 Concurrent read concurrent write ($C R C W$): multiple processors can read and write.
Categorization of CRCW PRAM's
1 Common: all processors write the same value; otherwise is illegal
2 Arbitrary: only one arbitrary attempt is successful, others retire
3 Priority: processor rank indicates who gets to write

CRAM is a special type of Priority CRCW-PRAM.
Each RAM has a finite set of registers, including the following:

- Processor: containing the number between 1 and $p(n)$ of the RAM
- Address: containing an address of global memory
- Contents: containing a word to be written or read from global memory
- ProgramCounter: containing the line number of the instruction to be executed next.
RAMs are identical except the Processor number.

The instructions of a CRAM consist of the following:
\square READ: Read the word of Global Memory specified by Address into Contents.

The instructions of a CRAM consist of the following:

- READ: Read the word of Global Memory specified by Address into Contents.
- WRITE: Write the Contents register into the Global Memory location specified by Address.

Definition of CRAM

The instructions of a CRAM consist of the following:

- READ: Read the word of Global Memory specified by Address into Contents.
- WRITE: Write the Contents register into the Global Memory location specified by Address.
■ OP $R_{a} R_{b}$: Perform OP on R_{a} and R_{b} and leave the result in R_{b}. Here OP may be Add, Subtract, or, Shift.
${ }^{d} \operatorname{Shift}(x, y)$ causes the word x to be shifted y bits to the right.

Definition of CRAM

The instructions of a CRAM consist of the following:

- READ: Read the word of Global Memory specified by Address into Contents.
■ WRITE: Write the Contents register into the Global Memory location specified by Address.
■ OP $R_{a} R_{b}$: Perform OP on R_{a} and R_{b} and leave the result in R_{b}. Here OP may be Add, Subtract, or, Shift.
- MOVE $R_{a} R_{b}$: Move R_{a} to R_{b}

The instructions of a CRAM consist of the following:

- READ: Read the word of Global Memory specified by Address into Contents.
- WRITE: Write the Contents register into the Global Memory location specified by Address.
- OP $R_{a} R_{b}$: Perform OP on R_{a} and R_{b} and leave the result in R_{b}. Here OP may be Add, Subtract, or, Shift.
- MOVE $R_{a} R_{b}$: Move R_{a} to R_{b}
- BLT $R L$: Branch to line (adress) L of the Program, if the contents of R is less than zero.

The instructions of a CRAM consist of the following:

- READ: Read the word of Global Memory specified by Address into Contents.
- WRITE: Write the Contents register into the Global Memory location specified by Address.
■ OP $R_{a} R_{b}$: Perform OP on R_{a} and R_{b} and leave the result in R_{b}. Here OP may be Add, Subtract, or, Shift.
■ MOVE $R_{a} R_{b}$: Move R_{a} to R_{b}
- BLT R L: Branch to line (adress) L of the Program, if the contents of R is less than zero.
d The above instructions each increment the ProgramCounter, with the exception of BLT.
- The Shift operation for the CRAM allows each bit of Global Memory to be available to every processor in constant time.
- The Shift operation for the CRAM allows each bit of Global Memory to be available to every processor in constant time.
- We assume initially that the contents of the first $|\operatorname{bin}(\mathcal{A})|$ words of Global Memory contain one bit each of the input string $\operatorname{bin}(\mathcal{A})$.
- The Shift operation for the CRAM allows each bit of Global Memory to be available to every processor in constant time.
- We assume initially that the contents of the first $|\operatorname{bin}(\mathcal{A})|$ words of Global Memory contain one bit each of the input string $\operatorname{bin}(\mathcal{A})$.
- We assume that a section of Global Memory is specified as the output.

CRAM's complexity

Definitions

CRAM[$t(n)]$: The set of boolean queries computable in parallel time $t(n)$ on a CRAM that has at most polynomially many processors.

CRAM's complexity

Definitions

CRAM[$t(n)]$: The set of boolean queries computable in parallel time $t(n)$ on a CRAM that has at most polynomially many processors.
CRAM-PROC $[t(n), p(n)]$: The set of boolean queries computable by a CRAM using at most $p(n)$ processors and time $\mathcal{O}(t(n))$.

CRAM's complexity

Definitions

CRAM[$t(n)]$: The set of boolean queries computable in parallel time $t(n)$ on a CRAM that has at most polynomially many processors.
CRAM-PROC $[t(n), p(n)]$: The set of boolean queries computable by a CRAM using at most $p(n)$ processors and time $\mathcal{O}(t(n))$.

Thus,

$$
\operatorname{CRAM}[t(n)]=\operatorname{CRAM}-\operatorname{PROC}\left[t(n), n^{\mathcal{O}(1)}\right]
$$

Definitions

Let $\varphi(R, \vec{x})$ be an R-positive formula, where R is a relation symbol of arity k, and let \mathcal{A} be a structure of size n. Define the depth of φ in \mathcal{A}, in symbols $\left|\varphi^{\mathcal{A}}\right|$, to be the minimum r such that

$$
\mathcal{A} \models\left(\varphi^{r}(\emptyset) \leftrightarrow \varphi^{r+1}(\emptyset)\right)
$$

Define the depth of φ as a function of n equal to the maximum depth of φ in \mathcal{A} for any structure \mathcal{A} of size n :

$$
|\varphi|(n) \doteqdot \max _{\|\mathcal{A}\|=n}\left\{\left|\varphi^{\mathcal{A}}\right|\right\}
$$

$\operatorname{IND}[f(n)]$ be the sublanguage of $\mathrm{FO}(\mathrm{LFP})$ in which only fixed points of first-order formulas φ for which $|\varphi|$ is $\mathcal{O}[f(n)]$ are included.

Iterating FO formulas

Moschovakis' Canonical Form for Positive Formulas

Lemma

Let φ be an R-positive first-order formula and $\vec{x}=\left(x_{1}, \ldots, x_{k}\right)$. Then φ can be written in the following form,

$$
\varphi(R, \vec{x}) \equiv\left(Q_{1} z_{1} \cdot M_{1}\right) \ldots\left(Q_{s} z_{s} \cdot M_{s}\right)\left(\exists x_{1} \ldots x_{k} \cdot M_{s+1}\right) R\left(x_{1}, \ldots, x_{k}\right)
$$

where the M_{i} 's are quantifier-free formulas in which R does not occur.

Let $\mathrm{QB} \doteqdot\left[\left(Q_{1} z_{1} \cdot M_{1}\right) \ldots\left(Q_{s} z_{s} \cdot M_{s}\right)\left(\exists x_{1} \ldots x_{k} \cdot M_{s+1}\right)\right]$. Then $\forall \mathcal{A}$ structure and $\forall r \in \mathbb{N}$

$$
\mathcal{A} \models\left(\left(\varphi^{\mathcal{A}}\right)^{r}(\emptyset) \leftrightarrow\left([\mathrm{QB}]^{r} \text { false }\right)\right)
$$

Let $\mathrm{QB} \doteqdot\left[\left(Q_{1} z_{1} \cdot M_{1}\right) \ldots\left(Q_{s} z_{s} \cdot M_{s}\right)\left(\exists x_{1} \ldots x_{k} \cdot M_{s+1}\right)\right]$. Then $\forall \mathcal{A}$ structure and $\forall r \in \mathbb{N}$

$$
\mathcal{A} \models\left(\left(\varphi^{\mathcal{A}}\right)^{r}(\emptyset) \leftrightarrow\left([\mathrm{QB}]^{r} \text { false }\right)\right)
$$

Thus if $t=|\varphi|(n)$ and \mathcal{A} is any structure of size n then

$$
\mathcal{A} \models\left((\operatorname{LFP} \varphi) \leftrightarrow\left([\mathrm{QB}]^{t} \text { false }\right)\right)
$$

Definition

A set $S \subseteq \operatorname{STRUC}[\tau]$ is a member of $\mathrm{FO}[t(n)]$ iff there exist quantifier free formulas $M_{i}, i \in[s]$, from $\mathcal{L}(\tau)$, a tuple \vec{c} of constants and a quantifier block,

$$
\mathrm{QB}=\left[\left(Q_{1} z_{1} \cdot M_{1}\right) \ldots\left(Q_{s} z_{s} \cdot M_{s}\right)\right]
$$

such that $\forall \mathcal{A} \in \operatorname{STRUC}[\tau]$,

$$
\mathcal{A} \in S \Leftrightarrow \mathcal{A} \models\left([\mathrm{QB}]^{t(\|\mathcal{A}\|)} M_{0}\right)(\vec{c} / \vec{x})
$$

Example

Let's recall the alternative inductive definition of the reflexive transitive closure, E^{*}, of E, that we saw in the previous lecture:

$$
\varphi^{*}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
$$

with depth

$$
\left|\varphi^{*}\right|(n)=\lceil\log n\rceil+1
$$

We want to find out how to wright this inductive definition in the Moschovakis' Canonical Form for Positive Formulas.

Solution

First, code the base case using a dummy universal quantification:

$$
\begin{gathered}
\varphi^{*}(R, x, y) \equiv\left(\forall z . M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} \equiv x=y \vee E(x, y)
\end{gathered}
$$

Solution

First, code the base case using a dummy universal quantification:

$$
\begin{gathered}
\varphi^{*}(R, x, y) \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} \equiv x=y \vee E(x, y)
\end{gathered}
$$

Next, use universal quantification to replace the two occurrences of R with a single one:

$$
\begin{gathered}
\varphi^{*}(R, x, y) \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)(R(u, v)) \\
M_{2} \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{gathered}
$$

Solution

Finally, requantify x and y :

$$
\begin{gathered}
\varphi^{*}(R, x, y) \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right) R(x, y) \\
M_{3} \equiv(x=u \wedge v=y)
\end{gathered}
$$

Define the quantifier block:

$$
\mathrm{QB}^{*} \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)
$$

Define the quantifier block:

$$
\mathrm{QB}^{*} \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)
$$

Thus $\forall r \in \mathbb{N}$:

$$
\varphi^{*^{r}}(\emptyset) \equiv\left[\mathrm{QB}^{*}\right]^{r}(\text { false })
$$

Define the quantifier block:

$$
\mathrm{QB}^{*} \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)
$$

Thus $\forall r \in \mathbb{N}$:

$$
{\varphi^{*}}^{r}(\emptyset) \equiv\left[\mathrm{QB}^{*}\right]^{r}(\text { false })
$$

The boolean query REACH is expressible as:

$$
\mathrm{REACH} \equiv\left(\operatorname{LFP}_{R_{x y}} \varphi^{*}\right)(s, t)
$$

Define the quantifier block:

$$
\mathrm{QB}^{*} \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)
$$

Thus $\forall r \in \mathbb{N}$:

$$
\varphi^{*^{r}}(\emptyset) \equiv\left[\mathrm{QB}^{*}\right]^{r}(\text { false })
$$

The boolean query REACH is expressible as:

$$
\operatorname{REACH} \equiv\left(\operatorname{LFP}_{R_{x y}} \varphi^{*}\right)(s, t)
$$

Thus by previous example we have that

$$
\mathrm{REACH} \in \mathrm{FO}[\log n]
$$

We are ready to prove the main Theorem of this Section.

We are ready to prove the main Theorem of this Section.

Theorem

Let S be a boolean query. For all polynomially bounded, parallel time constructible $t(n)$, the following are equivalent:
$1 S$ is computable by a CRAM in parallel time $t(n)$ using polynomially many processors and registers of polynomially bounded word size.
$2 S$ is definable as a uniform first-order induction whose depth, for structures of size n, is at most $t(n)$.
3 There exists a first-order quantifier-block [QB], a quantifier-free formula M_{0} and a tuple \vec{c} of constants such that the query S for structures of size at most n is expressed as $[\mathrm{QB}]^{t(n)} M_{0}(\vec{c} / \vec{x})$.

In symbols, the previous theorem can be stated as:

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

In symbols, the previous theorem can be stated as:

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

In order to prove this theorem we will need 3 Lemmas.

Lemma

For all $t(n)$ and all classes of finite structures,

$$
\operatorname{IND}[t(n)] \subseteq \operatorname{FO}[t(n)]
$$

Lemma

For all $t(n)$ and all classes of finite structures,

$$
\operatorname{IND}[t(n)] \subseteq \operatorname{FO}[t(n)]
$$

Proof.

Hint: Previous lemma and straight forward from definitions.

Lemma

For any polynomially bounded $t(n)$ we have,

$$
\operatorname{CRAM}[t(n)] \subseteq \operatorname{IND}[t(n)]
$$

Lemma

For any polynomially bounded $t(n)$ we have,

$$
\operatorname{CRAM}[t(n)] \subseteq \operatorname{IND}[t(n)]
$$

Proof.

Sketching of solution: We want to simulate the computation of a CRAM M, on input $\mathcal{A}:\|\mathcal{A}\|=n$, by defining the contents of all the relevant registers for any processor of M by induction on the time step, through a relation $\operatorname{VALUE}(\bar{p}, \bar{t}, \bar{x}, r, b)$, meaning that bit \bar{x} in register r of processor p just after step t is equal to b.

Proof.

■ We need constant number of variables x_{1}, \ldots, x_{k} each ranging over the n element universe of \mathcal{A}, to name any bit in any register belonging to any processor at any step of the computation.

Proof.

■ We need constant number of variables x_{1}, \ldots, x_{k} each ranging over the n element universe of \mathcal{A}, to name any bit in any register belonging to any processor at any step of the computation.

- For $\bar{t}=0$ the memory is correctly loaded with $\operatorname{bin}(\mathcal{A})$.

Proof.

■ We need constant number of variables x_{1}, \ldots, x_{k} each ranging over the n element universe of \mathcal{A}, to name any bit in any register belonging to any processor at any step of the computation.

- For $\bar{t}=0$ the memory is correctly loaded with $\operatorname{bin}(\mathcal{A})$.
- The inductive definition of the relation $\operatorname{VALUE}(\bar{p}, \bar{t}, \bar{x}, r, b)$ is a disjunction depending on the value of p 's ProgramCounter at time $\bar{t}-1$.

Proof.

$■$ We need constant number of variables x_{1}, \ldots, x_{k} each ranging over the n element universe of \mathcal{A}, to name any bit in any register belonging to any processor at any step of the computation.

- For $\bar{t}=0$ the memory is correctly loaded with $\operatorname{bin}(\mathcal{A})$.
- The inductive definition of the relation $\operatorname{VALUE}(\bar{p}, \bar{t}, \bar{x}, r, b)$ is a disjunction depending on the value of p 's ProgramCounter at time $\bar{t}-1$.
- Addition, Subtraction, BLT are first-order expressible.

Proof.

■ We need constant number of variables x_{1}, \ldots, x_{k} each ranging over the n element universe of \mathcal{A}, to name any bit in any register belonging to any processor at any step of the computation.

- For $\bar{t}=0$ the memory is correctly loaded with $\operatorname{bin}(\mathcal{A})$.
- The inductive definition of the relation $\operatorname{VALUE}(\bar{p}, \bar{t}, \bar{x}, r, b)$ is a disjunction depending on the value of p 's ProgramCounter at time $\bar{t}-1$.
- Addition, Subtraction, BLT are first-order expressible.
- Shift is first-order expressible due to relation BIT.

Proof.

■ We need constant number of variables x_{1}, \ldots, x_{k} each ranging over the n element universe of \mathcal{A}, to name any bit in any register belonging to any processor at any step of the computation.

- For $\bar{t}=0$ the memory is correctly loaded with $\operatorname{bin}(\mathcal{A})$.
- The inductive definition of the relation $\operatorname{VALUE}(\bar{p}, \bar{t}, \bar{x}, r, b)$ is a disjunction depending on the value of p 's ProgramCounter at time $\bar{t}-1$.
- Addition, Subtraction, BLT are first-order expressible.
- Shift is first-order expressible due to relation BIT.

Thus we describe an inductive definition of relation VALUE, coding M's entire computation.

Lemma

For polynomially bounded and parallel time constructible $t(n)$,

$$
\operatorname{FO}[t(n)] \subseteq \operatorname{CRAM}[t(n)]
$$

Lemma

For polynomially bounded and parallel time constructible $t(n)$,

$$
\mathrm{FO}[t(n)] \subseteq \operatorname{CRAM}[t(n)]
$$

Proof.

Let the $\mathrm{FO}[t(n)]$ problem be determined by the following quantifier free formulas, quantifier block, and tuple of constants,

$$
M_{0}, \ldots, M_{k} ; \quad \mathrm{QB}=\left(Q_{1} x_{1} \cdot M_{1}\right) \ldots\left(Q_{k} x_{k} \cdot M_{k}\right) ; \quad \vec{c}
$$

Our CRAM must test whether an input structure \mathcal{A}, so that $\|\mathcal{A}\|=n$ satisfies the sentence,

$$
\varphi_{n} \equiv[\mathrm{QB}]^{t(n)} M_{0}(\vec{c} / \vec{x})
$$

Proof.

The CRAM will:

- use n^{k} processors (RAMs)

Proof.

The CRAM will:

- use n^{k} processors (RAMs)
- Each processor will have a number $a_{1} \ldots a_{k}$, where $a_{i} \in\{0, \ldots, n-1\} \doteqdot \mathrm{n}$
- Using the Shift operation it can retrieve each of the a_{i} 's in constant time.

Proof.

The CRAM will:

- use n^{k} processors (RAMs)

■ Each processor will have a number $a_{1} \ldots a_{k}$, where $a_{i} \in\{0, \ldots, n-1\} \doteqdot \mathrm{n}$

- Using the Shift operation it can retrieve each of the a_{i} 's in constant time.
■ use n^{k-1} bits of Global Memory

Proof.

The CRAM will:

- use n^{k} processors (RAMs)

■ Each processor will have a number $a_{1} \ldots a_{k}$, where $a_{i} \in\{0, \ldots, n-1\} \doteqdot \mathrm{n}$

- Using the Shift operation it can retrieve each of the a_{i} 's in constant time.
- use n^{k-1} bits of Global Memory

■ evaluate φ_{n} from right to left, simultaneously for all values of the variables x_{1}, \ldots, x_{k}.

Proof.

We will denote for $q \in \mathrm{t}(\mathrm{n}), i \in[k]$ and $r=k \cdot(q+1)+1-i$

$$
\varphi^{r} \equiv\left(Q_{i} x_{i} \cdot M_{i}\right) \ldots\left(Q_{k} x_{k} \cdot M_{k}\right)[\mathrm{QB}]^{q} M_{0}
$$

Proof.

We will denote for $q \in \mathrm{t}(\mathrm{n}), i \in[k]$ and $r=k \cdot(q+1)+1-i$

$$
\varphi^{r} \equiv\left(Q_{i} x_{i} \cdot M_{i}\right) \ldots\left(Q_{k} x_{k} \cdot M_{k}\right)[\mathrm{QB}]^{q} M_{0}
$$

That is

$$
\varphi^{1} \equiv\left(Q_{k} x_{k} \cdot M_{k}\right) M_{0}, \quad \varphi^{2} \equiv\left(Q_{k-1} x_{k-1} \cdot M_{k-1}\right)\left(Q_{k} x_{k} \cdot M_{k}\right) M_{0}, \ldots
$$

Proof.

We will denote for $q \in \mathrm{t}(\mathrm{n}), i \in[k]$ and $r=k \cdot(q+1)+1-i$

$$
\varphi^{r} \equiv\left(Q_{i} x_{i} \cdot M_{i}\right) \ldots\left(Q_{k} x_{k} \cdot M_{k}\right)[\mathrm{QB}]^{q} M_{0}
$$

That is

$$
\begin{gathered}
\varphi^{1} \equiv\left(Q_{k} x_{k} \cdot M_{k}\right) M_{0}, \quad \varphi^{2} \equiv\left(Q_{k-1} x_{k-1} \cdot M_{k-1}\right)\left(Q_{k} x_{k} \cdot M_{k}\right) M_{0}, \ldots \\
\varphi^{k} \equiv[\mathrm{QB}] M_{0}, \quad \varphi^{k+1} \equiv\left(Q_{k} x_{k} \cdot M_{k}\right)[\mathrm{QB}] M_{0}, \ldots
\end{gathered}
$$

Proof.

We will denote for $q \in \mathrm{t}(\mathrm{n}), i \in[k]$ and $r=k \cdot(q+1)+1-i$

$$
\varphi^{r} \equiv\left(Q_{i} x_{i} \cdot M_{i}\right) \ldots\left(Q_{k} x_{k} \cdot M_{k}\right)[\mathrm{QB}]^{q} M_{0}
$$

That is

$$
\begin{gathered}
\varphi^{1} \equiv\left(Q_{k} x_{k} \cdot M_{k}\right) M_{0}, \quad \varphi^{2} \equiv\left(Q_{k-1} x_{k-1} \cdot M_{k-1}\right)\left(Q_{k} x_{k} \cdot M_{k}\right) M_{0}, \ldots \\
\varphi^{k} \equiv[\mathrm{QB}] M_{0}, \quad \varphi^{k+1} \equiv\left(Q_{k} x_{k} \cdot M_{k}\right)[\mathrm{QB}] M_{0}, \ldots \\
\varphi^{t(n) k} \equiv[\mathrm{QB}]^{t(n)} M_{0}
\end{gathered}
$$

Proof.

We will denote for $q \in \mathrm{t}(\mathrm{n}), i \in[k]$ and $r=k \cdot(q+1)+1-i$

$$
\varphi^{r} \equiv\left(Q_{i} x_{i} \cdot M_{i}\right) \ldots\left(Q_{k} x_{k} \cdot M_{k}\right)[Q B]^{q} M_{0}
$$

That is

$$
\begin{gathered}
\varphi^{1} \equiv\left(Q_{k} x_{k} \cdot M_{k}\right) M_{0}, \quad \varphi^{2} \equiv\left(Q_{k-1} x_{k-1} \cdot M_{k-1}\right)\left(Q_{k} x_{k} \cdot M_{k}\right) M_{0}, \ldots \\
\varphi^{k} \equiv[\mathrm{QB}] M_{0}, \quad \varphi^{k+1} \equiv\left(Q_{k} x_{k} \cdot M_{k}\right)[\mathrm{QB}] M_{0}, \ldots
\end{gathered}
$$

$$
\varphi^{t(n) k} \equiv[\mathrm{QB}]^{t(n)} M_{0}
$$

We will denote with $x_{1} \ldots \hat{x}_{i} \ldots x_{k}$ the k - 1-tuple resulting from $x_{1} \ldots x_{k}$ by removing x_{i}.

Proof.

We will now give a program for the CRAM which is broken into rounds each consisting of three processor steps such that: Just after round r, the contents of memory location $a_{1} \ldots \hat{a}_{i} \ldots a_{k}$ is 1 or 0 according as whether $\mathcal{A} \vDash \varphi^{r}\left(a_{1}, \ldots, a_{k}\right)$ or not (Each processor $a_{1} \ldots a_{k}$, at step $r+1$ sets $b:=1$ iff $\mathcal{A} \models \varphi^{r}$.).

Proof.

We will now give a program for the CRAM which is broken into rounds each consisting of three processor steps such that: Just after round r, the contents of memory location $a_{1} \ldots \hat{a}_{i} \ldots a_{k}$ is 1 or 0 according as whether $\mathcal{A}=\varphi^{r}\left(a_{1}, \ldots, a_{k}\right)$ or not (Each processor $a_{1} \ldots a_{k}$, at step $r+1$ sets $b:=1$ iff $\mathcal{A} \models \varphi^{r}$.).

Base case:
At step 1, processor $a_{1} \ldots a_{k}$ must set:

$$
b=1 \Longleftrightarrow \mathcal{A} \models M_{0}\left(a_{1}, \ldots, a_{k}\right)
$$

Proof.

Inductive step:

At round r, processor number $a_{1} \ldots a_{k}$ executes the following three instructions according to whether Q_{i} is \exists or Q_{i} is \forall :

Proof.

Inductive step:

At round r, processor number $a_{1} \ldots a_{k}$ executes the following three instructions according to whether Q_{i} is \exists or Q_{i} is \forall :
Q_{i} is \exists
$1 b:=\operatorname{loc}\left(a_{1} \ldots \hat{a_{i+1}} \ldots a_{k}\right)$;
$2 \operatorname{loc}\left(a_{1} \ldots \hat{a_{j}} \ldots a_{k}\right):=0$;
3 If $M_{i}\left(a_{1}, \ldots, a_{k}\right)$ and b then $\operatorname{loc}\left(a_{1} \ldots \hat{a}_{i} \ldots a_{k}\right):=1$;

Proof.

Inductive step:

At round r, processor number $a_{1} \ldots a_{k}$ executes the following three instructions according to whether Q_{i} is \exists or Q_{i} is \forall :
Q_{i} is \exists
$1 b:=\operatorname{loc}\left(a_{1} \ldots \hat{i+1} \ldots a_{k}\right)$;
$2 \operatorname{loc}\left(a_{1} \ldots \hat{a}_{i} \ldots a_{k}\right):=0$;
3 If $M_{i}\left(a_{1}, \ldots, a_{k}\right)$ and b then $\operatorname{loc}\left(a_{1} \ldots \hat{a}_{i} \ldots a_{k}\right):=1$;
Q_{i} is \forall
$1 b:=\operatorname{loc}\left(a_{1} \ldots \hat{i+1} \ldots a_{k}\right)$;
$2 \operatorname{loc}\left(a_{1} \ldots \hat{a}_{i} \ldots a_{k}\right):=1$;
3 If $M_{i}\left(a_{1}, \ldots, a_{k}\right)$ and $\neg b$ then $\operatorname{loc}\left(a_{1} \ldots \hat{a}_{i} \ldots a_{k}\right):=0$;

From the three previous lemmas we prove the requested Theorem.

From the three previous lemmas we prove the requested Theorem.

1 Parallelism

- Motivation
- Random Access Machine
- $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$

2 Circuit Complexity

- Basic Definitions
- Addition in \mathbb{N}
- Basic Theorems

Definition

A boolean circuit is a directed acyclic graph (DAG)

$$
C=\left(V, E, G_{\wedge}, G_{\vee}, G_{\neg}, I, r\right)
$$

where $\tau_{c} \doteqdot\left\langle E^{2}, G_{\wedge}^{1}, G_{\vee}^{1}, G_{\neg}^{1}, I^{1}, r\right\rangle$ (vocabulery of circuits).
An internal node w is:

- an and-gate iff G_{\wedge} holds
- an or-gate iff G_{V} holds
- an not-gate iff G_{\neg} holds
- called a leaf iff it has no incoming edges and leaf w is on iff $I(w)$ holds
Define Circuit Value Problem (CVP) to consist of those circuits the root gate of which evaluate to one.

Let $\mathcal{A} \in \operatorname{STRUC}[\tau]$ and $\|\mathcal{A}\|=n$. A circuit C_{n}, with $\hat{n}_{\tau}(n) \doteqdot\left\|\operatorname{bin}_{\tau}(\mathcal{A})\right\|$ leaves, can take \mathcal{A} as input by placing the binary string $\operatorname{bin}_{\tau}(\mathcal{A})$ into its leaves.

Let $\mathcal{A} \in \operatorname{STRUC}[\tau]$ and $\|\mathcal{A}\|=n$. A circuit C_{n}, with $\hat{n}_{\tau}(n) \doteqdot\left\|\operatorname{bin}_{\tau}(\mathcal{A})\right\|$ leaves, can take \mathcal{A} as input by placing the binary string $\operatorname{bin}_{\tau}(\mathcal{A})$ into its leaves.

We write $C(w)$ to denote the output of circuit C on input w, i.e., the value of the root node r when w is placed at the leaves and C is then evaluated.

Let $\mathcal{A} \in \operatorname{STRUC}[\tau]$ and $\|\mathcal{A}\|=n$. A circuit C_{n}, with $\hat{n}_{\tau}(n) \doteqdot\left\|\operatorname{bin}_{\tau}(\mathcal{A})\right\|$ leaves, can take \mathcal{A} as input by placing the binary string $\operatorname{bin}_{\tau}(\mathcal{A})$ into its leaves.

We write $C(w)$ to denote the output of circuit C on input w, i.e., the value of the root node r when w is placed at the leaves and C is then evaluated.

We say that circuit C accepts structure \mathcal{A} iff $C\left(\operatorname{bin}_{\tau}(\mathcal{A})\right)=1$.

Let $S \subseteq \operatorname{STRUC}\left[\tau_{s}\right]$ be a boolean query on binary strings. Let $\mathcal{C}=\left\{C_{i}\right\}_{\mathbb{N}_{\geq 1}}$ an infinite sequence of circuits, where C_{n} is a circuit with n input bits.
We say that \mathcal{C} computes S iff for all $n \in \mathbb{N}_{\geq 1}$ and for all $w \in\{0,1\}^{n}$,

$$
w \in S \Longleftrightarrow C_{n}(w)=1
$$

Let $S \subseteq \operatorname{STRUC}\left[\tau_{s}\right]$ be a boolean query on binary strings. Let $\mathcal{C}=\left\{C_{i}\right\}_{\mathbb{N}_{\geq 1}}$ an infinite sequence of circuits, where C_{n} is a circuit with n input bits.
We say that \mathcal{C} computes S iff for all $n \in \mathbb{N}_{\geq 1}$ and for all $w \in\{0,1\}^{n}$,

$$
w \in S \Longleftrightarrow C_{n}(w)=1
$$

A threshold gate with threshold value i has output one iff at least i of its inputs have value one.

We generalize the vocabulary of circuits to the vocabulary of threshold circuits, $\tau_{\text {thc }} \doteqdot \tau_{c} \cup\left\{G_{t}^{2}\right\}$, where $G_{t}(g, k)$ means that g is a threshold gate with threshold value k.

Definition

Let \mathcal{C} be a sequence of circuits as above. Let $\tau \in\left\{\tau_{c}, \tau_{\text {thc }}\right\}$. Let $I: \operatorname{STRUC}\left[\tau_{s}\right] \rightarrow \operatorname{STRUC}[\tau]$ be a query such that for all $n \in \mathbb{N}, I\left(0^{n}\right)=C_{n}$. Then:

■ If $I \in \mathrm{FO}$, then \mathcal{C} is a first-order uniform sequence of circuits.

- If $I \in \mathrm{~L}$, then \mathcal{C} is a logspace uniform.
- If $I \in P$, then \mathcal{C} is a polynomial-time uniform.
- e.t.c.

In the next frame we will define 3 families of circuit complexity classes. They vary depending on whether:

- all gates have bounded fan-in (NC)
- the "and" and "or" gates may have unbounded fan-in (AC)
- there are threshold gates (ThC)

NC

AC

ThC

Definition

Let $t(n)$ be a polynomially bounded function and $S \subseteq \operatorname{STRUC}[\tau]$ be a boolean query. Then S is in the (first-order uniform) circuit complexity class $\mathrm{NC}[t(n)]$, $\mathrm{AC}[t(n)]$, $\operatorname{ThC}[t(n)]$, respectively iff there exists a first-order query $1: \operatorname{STRUC}\left[\tau_{s}\right] \rightarrow \operatorname{STRUC}\left[\tau_{\text {thc }}\right]$ defining a uniform class of circuits $\mathcal{C}=\left\{C_{n} \mid C_{n} \doteqdot I\left(0^{n}\right)\right\}$ with the following properties:

Definition

Let $t(n)$ be a polynomially bounded function and $S \subseteq \operatorname{STRUC}[\tau]$ be a boolean query. Then S is in the (first-order uniform) circuit complexity class $\mathrm{NC}[t(n)]$, $\mathrm{AC}[t(n)]$, $\operatorname{ThC}[t(n)]$, respectively iff there exists a first-order query $1: \operatorname{STRUC}\left[\tau_{s}\right] \rightarrow \operatorname{STRUC}\left[\tau_{\text {thc }}\right]$ defining a uniform class of circuits $\mathcal{C}=\left\{C_{n} \mid C_{n} \doteqdot I\left(0^{n}\right)\right\}$ with the following properties:

1 For all $\mathcal{A} \in \operatorname{STRUC}[\tau], \mathcal{A} \in S \Longleftrightarrow C_{\|\mathcal{A}\|}$ accepts \mathcal{A}.
2 The depth of C_{n} is $\mathcal{O}(t(n))$.
3 The gates of C_{n} consist of binary "and" and "or" gates (NC), unbounded fan-in "and" and "or" gates (AC), and unbounded fan-in threshold gates (ThC), respectively.

Definition

Let $t(n)$ be a polynomially bounded function and $S \subseteq \operatorname{STRUC}[\tau]$ be a boolean query. Then S is in the (first-order uniform) circuit complexity class $\mathrm{NC}[t(n)]$, $\mathrm{AC}[t(n)]$, $\operatorname{ThC}[t(n)]$, respectively iff there exists a first-order query $1: \operatorname{STRUC}\left[\tau_{s}\right] \rightarrow \operatorname{STRUC}\left[\tau_{t h c}\right]$ defining a uniform class of circuits $\mathcal{C}=\left\{C_{n} \mid C_{n} \doteqdot I\left(0^{n}\right)\right\}$ with the following properties:
1 For all $\mathcal{A} \in \operatorname{STRUC}[\tau], \mathcal{A} \in S \Longleftrightarrow C_{\|\mathcal{A}\|}$ accepts \mathcal{A}.
2 The depth of C_{n} is $\mathcal{O}(t(n))$.
3 The gates of C_{n} consist of binary "and" and "or" gates (NC), unbounded fan-in "and" and "or" gates (AC), and unbounded fan-in threshold gates (ThC), respectively.
For $i \in \mathbb{N}$ we denote $\mathrm{NC}^{i} \doteqdot \mathrm{NC}\left[(\log n)^{i}\right]$ and simillarly the AC^{i} and ThC^{i}. Also, $\mathrm{NC} \doteqdot \bigcup_{\mathbb{N}} \mathrm{NC}^{i}$.

1 Parallelism
■ Motivation

- Random Access Machine
- $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$

2 Circuit Complexity

- Basic Definitions
- Addition in \mathbb{N}
- Basic Theorems

Proposition

Addition of natural numbers, represented in binary, is first-order expressible.

Proposition

Addition of natural numbers, represented in binary, is first-order expressible.

We have already proven this Proposition using the well-known "carry-look-ahead" algorithm, through the formula $\varphi_{\text {add }}$, where:

- $\varphi_{\text {carry }}(x) \equiv(\exists y . y<x)[A(y) \wedge B(y) \wedge(\forall z . y<z<x)[A(z) \vee B(z)]]$
- $a \oplus b \equiv(a \vee b) \wedge(\neg a \vee \neg b)$
- $\varphi_{\text {add }} \equiv A(x) \oplus B(x) \oplus \varphi_{\text {carry }}(x)$

We assumed that the columns are denoted $n-1, \ldots, 0$ and the numbers similarly $a=a_{n-1} \ldots a_{0}$.

We want to express the formula $\varphi_{\text {add }}$ through a boolean circuit. Let:

$$
\begin{aligned}
& \square a_{i} \doteqdot A(i) b_{i} \doteqdot B(i) \text { and } s_{i} \doteqdot \varphi_{\text {add }}(i) \\
& g_{i} \equiv A(i) \wedge B(i) \text { and } p_{i} \equiv A(i) \vee B(i)
\end{aligned}
$$

We have:

It is easy to see that the boolean circuit bellow computes the addition for $n=4$

It is easy to see that depth of the equivalent circuit, resulted after the raplaement of the \oplus-gates with some "and", "or" and "not" gates, is constant (why?).
Thus Addition of two natural numbers is computable in AC^{0}.

It is easy to see that depth of the equivalent circuit, resulted after the raplaement of the \oplus-gates with some "and", "or" and "not" gates, is constant (why?).
Thus Addition of two natural numbers is computable in AC^{0}.
Every input in the new circuit can have at most n inputs. Therefore we can simulate each "and" ("or") gates with fan-in greater than 2, with at most $\log n$ "and" ("or") binary gates.
Thus Addition of two natural numbers is computable in NC^{1}.

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Let us calculate addition of two natural nunmbers using ambiguous arithmetic notation. That is a representation of natural numbers in binary, except that digits $0,1,2,3$ may be used. For example:
$3213=3 \cdot 2^{3}+2 \cdot 2^{2}+1 \cdot 2^{1}+3 \cdot 2^{0}=37=3221=3 \cdot 2^{3}+2 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$
We observe that we can calculate the carry from column i, by looking only at columns $i-1$ and $i-2$.

carries:	3	2	2	3	
		3	2	1	3
+		3	2	1	3
	3	2	2	1	0

Similarly:

carries:	3	2	2	2	
		3	2	1	3
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
		3	2	1	3
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
		3	2	1	3
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
	3	2	1	3	
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
		3	2	1	3
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
+		3	2	1	3
+	3	2	2	1	
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
		3	2	1	3
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
		3	2	1	3
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
		3	2	1	3
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

Similarly:

carries:	3	2	2	2	
		3	2	1	3
+		3	2	2	1
	3	2	2	1	0

Thus adding two n bit numbers in ambiguous notation can be done via an NC^{0} circuit.

1 Parallelism
■ Motivation

- Random Access Machine
- $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$

2 Circuit Complexity

- Basic Definitions
- Addition in \mathbb{N}
- Basic Theorems

Basic Theorems

Theorem

For all $i \in \mathbb{N}$,

$$
\mathrm{NC}^{i} \subseteq \mathrm{AC}^{i} \subseteq \mathrm{ThC}^{i} \subseteq \mathrm{NC}^{i+1}
$$

Theorem

For all $i \in \mathbb{N}$,

$$
\mathrm{NC}^{i} \subseteq \mathrm{AC}^{i} \subseteq \mathrm{ThC}^{i} \subseteq \mathrm{NC}^{i+1}
$$

In order to prove the theorem above we will use the next proposition:

Proposition

The boolean majority query MAJ is in NC^{1}, where
$\mathrm{MAJ} \doteqdot\left\{\mathcal{A} \in \mathrm{STRUC}\left[\tau_{s}\right] \mid \mathcal{A}\right.$ contains more than $\left.\|\mathcal{A}\| / 2^{\prime \prime} 1^{\prime \prime} s\right\}$

Theorem

For all $i \in \mathbb{N}$,

$$
\mathrm{NC}^{i} \subseteq \mathrm{AC}^{i} \subseteq \mathrm{ThC}^{i} \subseteq \mathrm{NC}^{i+1}
$$

In order to prove the theorem above we will use the next proposition:

Proposition

The boolean majority query MAJ is in NC^{1}, where
$\mathrm{MAJ} \doteqdot\left\{\mathcal{A} \in \mathrm{STRUC}\left[\tau_{s}\right] \mid \mathcal{A}\right.$ contains more than $\left.\|\mathcal{A}\| / 2^{\prime \prime} 1^{\prime \prime} s\right\}$
Hint: Build an NC^{1} circuit for majority by adding the n input bits via a full binary tree of height $\log n$, by using the ambiguous notation.

We give a sketching of the proof:
Proof.
The first two containments are obvious (why?).

We give a sketching of the proof:

Proof.

The first two containments are obvious (why?).
For the third we can simulate any ThC-gate using a circuit of depth $\log n$ recognising MAJ. Let threshold gate with threshold value k.

- If $k \leq\|w\| / 2$ we are just checking if $w 1^{\|w\|-2 k} \in$ MAJ.

We give a sketching of the proof:

Proof.

The first two containments are obvious (why?).
For the third we can simulate any ThC-gate using a circuit of depth $\log n$ recognising MAJ. Let threshold gate with threshold value k.

- If $k \leq\|w\| / 2$ we are just checking if $w 1^{\|w\|-2 k} \in$ MAJ.
- If $k>\|w\| / 2$, we are just checking if $w 0^{2 k-\|w\|} \in$ MAJ.

We give a sketching of the proof:

Proof.

The first two containments are obvious (why?).
For the third we can simulate any ThC-gate using a circuit of depth $\log n$ recognising MAJ. Let threshold gate with threshold value k.

- If $k \leq\|w\| / 2$ we are just checking if $w 1^{\|w\|-2 k} \in$ MAJ.
- If $k>\|w\| / 2$, we are just checking if $w 0^{2 k-\|w\|} \in$ MAJ.

Corollary

$$
\mathrm{NC}=\mathrm{AC} \doteqdot \bigcup_{\mathbb{N}} \mathrm{AC}^{i}=\mathrm{ThC} \doteqdot \bigcup_{\mathbb{N}} \mathrm{ThC}^{i}
$$

Theorem

For all polynomially bounded and first-order constructible $t(n)$, the following classes are equal:

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]=\mathrm{AC}[t(n)]
$$

Theorem

For all polynomially bounded and first-order constructible $t(n)$, the following classes are equal:

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]=\mathrm{AC}[t(n)]
$$

Proof.

The equality of the first three classes has been proved.
$\neg \mathrm{FO}[t(n)] \subseteq \mathrm{AC}[t(n)]$
Let $S \subseteq \operatorname{STRUC}[\tau]$ a $\operatorname{FO}[t(n)]$ boolean query given by the quantifier block, $\mathrm{QB}=\left(Q_{1} x_{1} \cdot M_{1}\right) \ldots\left(Q_{k} x_{k} \cdot M_{k}\right)$, initial formula, M_{0}, and tuple of constants, \bar{c}.

Proof.

We must write a first-order query, I, to generate circuit $C_{n}=I\left(0^{n}\right)$, so that for all $\mathcal{A} \in \operatorname{STRUC}[\tau]$,

$$
\mathcal{A}=[\mathrm{QB}]^{t(\|\mathcal{A}\|)} M_{0}(\vec{c} / \vec{x}) \Longleftrightarrow C_{\|\mathcal{A}\|} \text { accepts } \mathcal{A}
$$

Proof.

We must write a first-order query, I, to generate circuit $C_{n}=I\left(0^{n}\right)$, so that for all $\mathcal{A} \in \operatorname{STRUC}[\tau]$,

$$
\mathcal{A} \vDash[\mathrm{QB}]^{t(\|\mathcal{A}\|)} M_{0}(\vec{c} / \vec{x}) \Longleftrightarrow C_{\|\mathcal{A}\|} \text { accepts } \mathcal{A}
$$

Initially the circuit evaluates the quantifier-free formulas M_{i}, where $i \in \mathrm{n}+1$. The nodes $\left\langle M_{i}, b_{1}, \ldots, b_{k}\right\rangle$ will be the gates that have evaluated these formulas, i.e.,

$$
\left\langle M_{i}, b_{1}, \ldots, b_{k}\right\rangle(\operatorname{bin}(\mathcal{A}))=1 \Longleftrightarrow \mathcal{A} \models M_{i}\left(b_{1}, \ldots, b_{k}\right)
$$

Proof.

Let φ^{r} defined as in the proof of $\operatorname{FO}[t(n)] \subseteq \operatorname{CRAM}[t(n)]$. We construct inductively the gate $\left\langle 2 r, b_{1} \ldots \hat{b}_{i} \ldots b_{k}\right\rangle$ so that

$$
\left\langle 2 r, b_{1} \ldots \hat{b}_{i} \ldots b_{k}\right\rangle(\operatorname{bin}(\mathcal{A}))=1 \Longleftrightarrow \mathcal{A} \models \varphi^{r}\left(b_{1}, \ldots, b_{k}\right)
$$

Proof.

Let φ^{r} defined as in the proof of $\operatorname{FO}[t(n)] \subseteq \operatorname{CRAM}[t(n)]$. We construct inductively the gate $\left\langle 2 r, b_{1} \ldots \hat{b}_{i} \ldots b_{k}\right\rangle$ so that

$$
\left\langle 2 r, b_{1} \ldots \hat{b}_{i} \ldots b_{k}\right\rangle(\operatorname{bin}(\mathcal{A}))=1 \Longleftrightarrow \mathcal{A} \models \varphi^{r}\left(b_{1}, \ldots, b_{k}\right)
$$

This is achieved by letting gate $\left\langle 2 r, b_{1} \ldots \hat{b}_{i} \ldots b_{k}\right\rangle$:

- Be "and"-gate ("or"), if $Q_{i}=\forall(\exists)$
$■$ Has inputs $\left\langle 2 r-1, b_{1}, \ldots, b_{i}, \widehat{b_{i+1}}, \ldots, b_{k}\right\rangle$, where $b_{i} \in|\mathcal{A}|$
- $\left\langle 2 r-1, b_{1}, \ldots, b_{i}, \widehat{b_{i+1}}, \ldots, b_{k}\right\rangle$ is a binary "and"-gate whoses inputs are $\left\langle M_{i}, b_{1}, \ldots, b_{k}\right\rangle$ and $\left\langle 2 r-2, b_{1}, \ldots, b_{i}, \widehat{b_{i+1}}, \ldots, b_{k}\right\rangle$

Basic Theorems

Proof.

This circuit can be constructed via a first-order query I.

Proof.

$\Rightarrow \mathrm{AC}[t(n)] \subseteq \operatorname{IND}[t(n)]$
Let $I: \operatorname{STRUC}\left[\tau_{s}\right] \rightarrow \operatorname{STRUC}\left[\tau_{c}\right]$, a first-order query and $\mathcal{C}=\left\{C_{i}\right\}_{\mathbb{N}_{\geq 1}}=\left\{I\left(0^{i}\right)\right\}_{\mathbb{N}_{\geq 1}}$, a uniform sequence of $\mathrm{AC}[t(n)]$ circuits.

Proof.

$\Rightarrow \mathrm{AC}[t(n)] \subseteq \operatorname{IND}[t(n)]$
Let $I: \operatorname{STRUC}\left[\tau_{s}\right] \rightarrow \operatorname{STRUC}\left[\tau_{c}\right]$, a first-order query and $\mathcal{C}=\left\{C_{i}\right\}_{\mathbb{N}_{\geq 1}}=\left\{I\left(0^{i}\right)\right\}_{\mathbb{N}_{\geq 1}}$, a uniform sequence of $\mathrm{AC}[t(n)]$ circuits.

We must wright an inductive formula:

$$
\Phi \equiv(\operatorname{LFP} \varphi(\bar{c}))
$$

so that for all $\mathcal{A} \in \operatorname{STRUC}[\tau]$,

$$
\mathcal{A} \models \Phi \Longleftrightarrow C_{\|\mathcal{A}\|} \text { accepts } \mathcal{A}
$$

Proof.

From \mathcal{A} we can get the circuit $C_{\|\mathcal{A}\|} \doteqdot\left\langle E, G_{\wedge}, G_{\vee}, G_{\neg}, \operatorname{bin}(\mathcal{A}), r\right\rangle$ via the first-order query l.

Proof.

From \mathcal{A} we can get the circuit $C_{\|\mathcal{A}\|} \doteqdot\left\langle E, G_{\wedge}, G_{\vee}, G_{\neg}, \operatorname{bin}(\mathcal{A}), r\right\rangle$ via the first-order query l.

The following is a first-order inductive definition of the relation $V(x, b)$ meaning that gate x has boolean value b,

$$
\begin{gathered}
V(x, b) \equiv \operatorname{DEFINED}(x) \wedge[(L(x) \wedge(I(x) \leftrightarrow b)) \vee \\
\left(G_{\wedge}(x) \wedge(C(x) \leftrightarrow b)\right) \vee \\
\left(G_{\vee} \wedge(D(x) \leftrightarrow b)\right) \vee \\
\left.\left(G_{\neg}(x) \wedge(N(x) \leftrightarrow b)\right)\right]
\end{gathered}
$$

Basic Theorems

Proof.

Where we have the abbreviations:

Proof.

Where we have the abbreviations:

$$
L(x) \equiv(\forall y) \neg E(y, x)
$$

Proof.

Where we have the abbreviations:

$$
L(x) \equiv(\forall y) \neg E(y, x) \quad x \text { is a leaf }
$$

$\operatorname{DEFINED}(x) \equiv(\forall y)(\exists c)(E(y, x) \rightarrow V(y, c))$
x is ready to be defined.

Proof.

Where we have the abbreviations:
$L(x) \equiv(\forall y) \neg E(y, x) \quad x$ is a leaf
$\operatorname{DEFINED}(x) \equiv(\forall y)(\exists c)(E(y, x) \rightarrow V(y, c))$
x is ready to be defined.
$C(x) \equiv(\forall y)(E(y, x) \rightarrow V(y, 1)) \quad$ all inputs of x 's inputs are true

Proof.

Where we have the abbreviations:

$$
L(x) \equiv(\forall y) \neg E(y, x) \quad x \text { is a leaf }
$$

$\operatorname{DEFINED}(x) \equiv(\forall y)(\exists c)(E(y, x) \rightarrow V(y, c))$
x is ready to be defined.
$C(x) \equiv(\forall y)(E(y, x) \rightarrow V(y, 1)) \quad$ all inputs of x 's inputs are true $D(x) \equiv(\exists y)(E(y, x) \wedge V(y, 1)) \quad$ some of x 's inputs are true

Proof.

Where we have the abbreviations:

$$
\begin{aligned}
& L(x) \equiv(\forall y) \neg E(y, x) \quad x \text { is a leaf } \\
& \text { DEFINED }(x) \equiv(\forall y)(\exists c)\left(E(y, x) \rightarrow \begin{array}{c}
V(y, c)) \\
\text { x is ready to be defined. }
\end{array}\right. \\
& C(x) \equiv(\forall y)(E(y, x) \rightarrow V(y, 1)) \quad \text { all inputs of } x \text { 's inputs are true } \\
& D(x) \equiv(\exists y)(E(y, x) \wedge V(y, 1)) \quad \text { some of x's inputs are true } \\
& N(x) \equiv(\exists!y) E(y, x) \wedge(\exists y)(E(y, x) \wedge V(y, 0)) \\
& \text { x's (unique) input is false. }
\end{aligned}
$$

Proof.

The inductive definition of V closes in exactly the depth of C_{n}, which is $\mathcal{O}(t(n))$ iterations.

Proof.

The inductive definition of V closes in exactly the depth of C_{n}, which is $\mathcal{O}(t(n))$ iterations.
Once it closes, $\Phi \equiv V(r, 1)$ expresses the acceptance condition in $\operatorname{IND}[t(n)]$, as desired.

Proof.

The inductive definition of V closes in exactly the depth of C_{n}, which is $\mathcal{O}(t(n))$ iterations.
Once it closes, $\Phi \equiv V(r, 1)$ expresses the acceptance condition in $\operatorname{IND}[t(n)]$, as desired.

Proposition

$$
\mathrm{NC}=\mathrm{AC}=\mathrm{ThC}=\bigcup_{k=1}^{\infty} \mathrm{FO}\left[(\log n)^{k}\right]=\bigcup_{k=1}^{\infty} \operatorname{CRAM}\left[(\log n)^{k}\right]
$$

Summary

Today we have seen:

Summary

Today we have seen:

- An introduction a new model of computaion (RAM).

Summary

Today we have seen：
■ An introduction a new model of computaion（RAM）．
－An introduction to Iterating FO formulas，using Quantifier Blocks（QB）．

Summary

Today we have seen：
■ An introduction a new model of computaion（RAM）．
■ An introduction to Iterating FO formulas，using Quantifier Blocks（QB）．
－An introduction to Parallel computation．

Summary

Today we have seen:
■ An introduction a new model of computaion (RAM).
■ An introduction to Iterating FO formulas, using Quantifier Blocks (QB).

- An introduction to Parallel computation.

■ A precise model of Parallel computation (CRAM).

Summary

Today we have seen:
■ An introduction a new model of computaion (RAM).
■ An introduction to Iterating FO formulas, using Quantifier Blocks (QB).

- An introduction to Parallel computation.

■ A precise model of Parallel computation (CRAM).

- An introduction to Circuit complexity.

Summary

Today we have seen:
■ An introduction a new model of computaion (RAM).
■ An introduction to Iterating FO formulas, using Quantifier Blocks (QB).

- An introduction to Parallel computation.

■ A precise model of Parallel computation (CRAM).

- An introduction to Circuit complexity.
- Relations between complexity calsses:

Summary

Today we have seen:
■ An introduction a new model of computaion (RAM).
■ An introduction to Iterating FO formulas, using Quantifier Blocks (QB).

- An introduction to Parallel computation.

■ A precise model of Parallel computation (CRAM).

- An introduction to Circuit complexity.
- Relations between complexity calsses:

■ $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]=\mathrm{AC}[t(n)]$

Summary

Today we have seen：
－An introduction a new model of computaion（RAM）．
■ An introduction to Iterating FO formulas，using Quantifier Blocks（QB）．
－An introduction to Parallel computation．
－A precise model of Parallel computation（CRAM）．
－An introduction to Circuit complexity．
－Relations between complexity calsses：
－ $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]=\mathrm{AC}[t(n)]$
－ $\mathrm{NC}^{i} \subseteq \mathrm{AC}^{i} \subseteq \mathrm{ThC}^{i} \subseteq \mathrm{NC}^{i+1}$

Summary

Today we have seen:

- An introduction a new model of computaion (RAM).

■ An introduction to Iterating FO formulas, using Quantifier Blocks (QB).

- An introduction to Parallel computation.

■ A precise model of Parallel computation (CRAM).

- An introduction to Circuit complexity.
- Relations between complexity calsses:
- $\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]=\mathrm{AC}[t(n)]$
- $\mathrm{NC}^{i} \subseteq \mathrm{AC}^{i} \subseteq \mathrm{ThC}^{i} \subseteq \mathrm{NC}^{i+1}$
- $\mathrm{NC}=\mathrm{AC}=\mathrm{ThC}=\bigcup_{k=1}^{\infty} \mathrm{FO}\left[(\log n)^{k}\right]=\bigcup_{k=1}^{\infty} \operatorname{CRAM}\left[(\log n)^{k}\right]$

Bibliography

Immerman, N. "Descriptive Complexity." (1999).
围 Immerman, Neil. "Expressibility and parallel complexity." SIAM Journal on Computing 18.3 (1989): 625-638.
R Aho, Alfred V., and John E. Hopcroft. The design and analysis of computer algorithms. Pearson Education India, (1974).

- Stockmeyer, Larry, and Uzi Vishkin. "Simulation of parallel random access machines by circuits." SIAM Journal on Computing 13.2 (1984): 409-422.
圊 Vollmer, H. "Introduction to Circuit Complexity: A Uniform Approach. 1999." Texts Theoret. Comput. Sci (1999).
Parhami, Behrooz. Introduction to parallel processing: algorithms and architectures. Springer Science \& Business Media, (1999): 5-13.

Bibliography

囯 Barrington, David A. Mix, Neil Immerman, and Howard Straubing. "On uniformity within NC1." Journal of Computer and System Sciences 41.3 (1990): 274-306.

R Moschovakis, Y. "Elementary Induction on Abstract Structures. Vol. 77." Studies in Logic series", (1974): 57-59.

