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Euclidean Algorithm

For a, b ∈ N, Euclid’s algorithm computes d = gcd(a, b).

A simple way to express Euclid’s algorithm is by the recursive
formula:

gcd(a, b) =

{
gcd(a, 0) = a if b = 0

gcd(b, a(mod b)) if b 6= 0.

EUCLID(a, b)
1. if b=0
2. then return a
3. else return EUCLID(b,a mod b)
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Extended Euclidean Algorithm

In practice, we often want to compute integers (x , y) such that
d = gcd(a, b) = ax + by in which case we use the extended
Euclidean algorithm (due to Lagrange).

EXTENDED-EUCLID(a, b)
1. if b=0
2. then return a
3. (d ′, x ′, y ′)← EXTENDED-EUCLID(b,a mod b)
4. (d , x , y)← (d ′, y ′, x ′ − ba/bcy ′)
5. return (d , x , y)
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Modular exponentiation

xmodN → x2modN → x4modN → x8modN → ...→ x2
blogyc

modN

xy =

{
(xby/2c)2 if y is even

x · (xby/2c)2 if y is odd.

MODULAR-EXPONENTIATION(x , y ,N)
1. if y=0: return 1

2. z=MODULAR-EXPONENTIATION(x , by/2c,N)
3. if y is even:

4. return z2 mod N
5. else:

6. return x · z2 mod N
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Modular multiplicative inverse

In modular arithmetic, the modular multiplicative inverse (a−1) of
an integer a mod m is an integer x such that ax ≡ 1 (mod m).

The multiplicative inverse of a mod n exists iff a and m are coprime
(gcd(a,m) = 1).

Example

Suppose we wish to find modular multiplicative inverse x of
3 mod 11: 3−1 ≡ x (mod 11).

This is the same as finding x such that 3x ≡ 1 (mod 11).

Working in Z11 we find that the only value of x that satisfies
this congruence is 4 because 3(4) = 12 ≡ 1(mod 11).
Therefore, the modular inverse of 3 modulo 11 is 4.

Generalizing in Z, all possible solutions for this example can
be formed from 4 + (11 · z), z ∈ Z, yielding
{...,−18,−7, 4, 15, 26, ...}.
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Fermat Primality Test

Fermat’s little theorem states that if p is prime and 1 ≤ a < p
then ap−1 ≡ 1(mod p).

If the equality does not hold for a value of a, then p is
composite. If the equality hold for many values of a, then we
can say that p is probable prime.

It is possible for a composite number N to pass Fermat’s test
for certain choices of a.

Carmichael numbers: rare composite numbers that pass
Fermat’s test for all a relatively prime to N.

For composite N, most values of a will fail the test.
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Symmetric Cryptography (1)
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Symmetric Cryptography (2)

Figure : One-time pad
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Symmetric Cryptography (3)
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Diffie-Hellman-Merkle key exchange
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Asymmetric Cryptography

Figure : Public Key Cryptography
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Rivest, Shamir, Adleman (1977)
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’textbook’ RSA: Key Generation

Alice:

chooses two large primes p and q of similar size and computes
N = pq,

chooses e ∈ N coprime to φ(N) = (p − 1)(q − 1),

computes d ∈ N such that ed ≡ 1(mod φ(N)).

Alice’s public key is the pair of integers (N, e) and her private
key is the integer d .
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’textbook’ RSA: Encryption & Decryption

To encrypt a message to Alice, Bob does the following:

obtains an authentic copy of Alice’s public key (N, e),

encodes the message as an integer 1 ≤ m < N,

computes and trasmits the ciphertext c = me(mod N).

To decrypt the ciphertext, Alice computes m = cd(mod N) and
decodes this to obtain the original message.
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RSA Correctness (1)

We will list the tools we need to prove the correctness of RSA:

Theorem (Fermat’s Little Theorem)

If p is a prime number and a an integer such that a and p are
relatively prime, then ap−1 − 1 is an integer multiple of p or
equivalently ap−1 ≡ 1(mod p).

Lemma (Euclid’s Lemma)

Let a, b and d be integers where d 6= 0. Then if d divides a · b
(symbolically d |a · b), then either d |a or d |b.

Lemma (2)

Let M be an integer. Let p and q be prime numbers with p 6= q.
Then if a ≡ M(mod p) and a ≡ M(mod q), then
a ≡ M(mod p · q).
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RSA Correctness (2)

We need to prove that (Me)d ≡ Med ≡ M(mod N).

Proof.

We first show that Med ≡ M(mod p) and Med ≡ M(mod q). The
desired result follows from lemma 2.
To show Med ≡ M(mod p), we consider two cases:
M ≡ 0(mod p), or M 6≡ 0(mod p).

Case 1. M ≡ 0(mod p). Then M is an integer multiple of p, say
M = p · w ,w ∈ Z. Then Med = (p · w)ed = p · ped−1 · w ed . So
both M and Med are integer multiples of p. Thus
Med ≡ M(mod p).
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RSA Correctness (2)

We need to prove that (Me)d ≡ Med ≡ M(mod N).

Proof.

Case 2. M 6≡ 0(mod p). This means that p and M are relatively
prime. Thus we can use Fermat’s Little Theorem. We have
Mp−1 ≡ 1(mod p).
From the way the decryption key d is defined above, we have
ed − 1 = (p − 1) · (q − 1) · k, k ∈ Z. We then have:

Med = Med−1 ·M
= M(p−1)·(q−1)·k ·M
= (Mp−1)(q−1)·k ·M
≡ (1)(q−1)·k ·M (mod p) (apply Fermat’s Little Theorem)

≡ M (mod p)
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RSA Correctness (2)

We need to prove that (Me)d ≡ Med ≡ M(mod N).

Proof.

In a similar way we can show that Med = M(mod q).

By Lemma 2, it follows that Med ≡ M(mod N = p · q).
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One-way & Trapdoor fuctions (1)

A one-way function is a function that is easy to compute on every
input, but hard to invert given the image of a random input.

Do one-way functions exist?
Yes, if P 6= NP.
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One-way & Trapdoor fuctions (2)

Candidates for one-way functions:

Multiplication and factoring

The Rabin function (modular squaring)

Discrete exponential and logarithm

Cryptographically secure hash functions

Elliptic curves
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One-way & Trapdoor fuctions (3)

A trapdoor function is a function that is easy to compute in one
direction, yet believed to be difficult to compute in the opposite
direction without special information, called the ”trapdoor”.

As of 2004, the best known trapdoor function candidates are the
RSA and Rabin functions. Both are written as exponentiation
modulo a composite number, and both are related to the problem
of prime factorization.
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One-way & Trapdoor fuctions (4)

Indeed, exponentiation modulo N is a one-way permutation on
(Z/NZ)× when e is co-prime to φ(N). The private key allows the
permutation to be efficiently inverted and it is the trapdoor.
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Key Length and Encryption Strength

p,q N time to crack
256 bits 512 bits few weeks

512 bits 1024 bits 50-100 years

1024 bits 2048 bits >100 years

2048 bits 4096 bits ≈ age of the universe
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