RSA

October 23, 2014

Euclidean Algorithm

• For $a, b \in \mathbb{N}$, Euclid's algorithm computes d = gcd(a, b).

Euclidean Algorithm

- For $a, b \in \mathbb{N}$, Euclid's algorithm computes d = gcd(a, b).
- A simple way to express Euclid's algorithm is by the recursive formula:

$$gcd(a,b) = egin{cases} gcd(a,0) = a & ext{if } b = 0 \ gcd(b,a(mod \ b)) & ext{if } b
eq 0. \end{cases}$$

Euclidean Algorithm

- For $a, b \in \mathbb{N}$, Euclid's algorithm computes d = gcd(a, b).
- A simple way to express Euclid's algorithm is by the recursive formula:

$$gcd(a,b) = egin{cases} gcd(a,0) = a & ext{if } b = 0 \ gcd(b,a(mod \ b)) & ext{if } b
eq 0. \end{cases}$$

EUCLID(a, b)
1. if b=0
2. then return a
3. else return EUCLID(b, a mod b)

Extended Euclidean Algorithm

In practice, we often want to compute integers (x, y) such that d = gcd(a, b) = ax + by in which case we use the extended Euclidean algorithm (due to Lagrange).

Extended Euclidean Algorithm

In practice, we often want to compute integers (x, y) such that d = gcd(a, b) = ax + by in which case we use the extended Euclidean algorithm (due to Lagrange).

```
EXTENDED-EUCLID(a, b)

1. if b=0

2. then return a

3. (d', x', y') \leftarrow \text{EXTENDED-EUCLID}(b, a \mod b)

4. (d, x, y) \leftarrow (d', y', x' - \lfloor a/b \rfloor y')

5. return (d, x, y)
```

Modular exponentiation

$$x \mod N \rightarrow x^2 \mod N \rightarrow x^4 \mod N \rightarrow x^8 \mod N \rightarrow ... \rightarrow x^{2 \lfloor \log y \rfloor} \mod N$$

Modular exponentiation

$$x mod N \rightarrow x^2 mod N \rightarrow x^4 mod N \rightarrow x^8 mod N \rightarrow ... \rightarrow x^{2\lfloor logy
flog} mod N$$

$$x^{y} = \begin{cases} (x^{\lfloor y/2 \rfloor})^{2} & \text{if } y \text{ is even} \\ x \cdot (x^{\lfloor y/2 \rfloor})^{2} & \text{if } y \text{ is odd.} \end{cases}$$

Modular exponentiation

$$x mod N \rightarrow x^2 mod N \rightarrow x^4 mod N \rightarrow x^8 mod N \rightarrow ... \rightarrow x^{2 \lfloor logy \rfloor} mod N$$

$$x^{y} = \begin{cases} (x^{\lfloor y/2 \rfloor})^{2} & \text{if } y \text{ is even} \\ x \cdot (x^{\lfloor y/2 \rfloor})^{2} & \text{if } y \text{ is odd.} \end{cases}$$

MODULAR-EXPONENTIATION(x, y, N)

- 1. if y=0: return 1
- 2. z=MODULAR-EXPONENTIATION($x, \lfloor y/2 \rfloor, N$)

4. return
$$z^2 \mod N$$

6. return
$$x \cdot z^2 \mod N$$

In modular arithmetic, the modular multiplicative inverse (a^{-1}) of an integer *a* mod *m* is an integer *x* such that $ax \equiv 1 \pmod{m}$.

In modular arithmetic, the modular multiplicative inverse (a^{-1}) of an integer *a mod m* is an integer *x* such that $ax \equiv 1 \pmod{m}$. The multiplicative inverse of *a mod n* exists iff *a* and *m* are coprime (gcd(a, m) = 1).

In modular arithmetic, the modular multiplicative inverse (a^{-1}) of an integer *a mod m* is an integer *x* such that $ax \equiv 1 \pmod{m}$. The multiplicative inverse of *a mod n* exists iff *a* and *m* are coprime (gcd(a, m) = 1).

Example

• Suppose we wish to find modular multiplicative inverse x of 3 mod 11: $3^{-1} \equiv x \pmod{11}$.

In modular arithmetic, the modular multiplicative inverse (a^{-1}) of an integer *a mod m* is an integer *x* such that $ax \equiv 1 \pmod{m}$. The multiplicative inverse of *a mod n* exists iff *a* and *m* are coprime (gcd(a, m) = 1).

Example

- Suppose we wish to find modular multiplicative inverse x of 3 mod 11: $3^{-1} \equiv x \pmod{11}$.
- This is the same as finding x such that $3x \equiv 1 \pmod{11}$.

In modular arithmetic, the modular multiplicative inverse (a^{-1}) of an integer *a mod m* is an integer *x* such that $ax \equiv 1 \pmod{m}$. The multiplicative inverse of *a mod n* exists iff *a* and *m* are coprime (gcd(a, m) = 1).

Example

- Suppose we wish to find modular multiplicative inverse x of 3 mod 11: $3^{-1} \equiv x \pmod{11}$.
- This is the same as finding x such that $3x \equiv 1 \pmod{11}$.
- Working in Z₁₁ we find that the only value of x that satisfies this congruence is 4 because 3(4) = 12 ≡ 1(mod 11). Therefore, the modular inverse of 3 modulo 11 is 4.

In modular arithmetic, the modular multiplicative inverse (a^{-1}) of an integer *a mod m* is an integer *x* such that $ax \equiv 1 \pmod{m}$. The multiplicative inverse of *a mod n* exists iff *a* and *m* are coprime (gcd(a, m) = 1).

Example

- Suppose we wish to find modular multiplicative inverse x of 3 mod 11: $3^{-1} \equiv x \pmod{11}$.
- This is the same as finding x such that $3x \equiv 1 \pmod{11}$.
- Working in Z₁₁ we find that the only value of x that satisfies this congruence is 4 because 3(4) = 12 ≡ 1(mod 11). Therefore, the modular inverse of 3 modulo 11 is 4.
- Generalizing in Z, all possible solutions for this example can be formed from 4 + (11 ⋅ z), z ∈ Z, yielding {..., -18, -7, 4, 15, 26, ...}.

Fermat's little theorem states that if p is prime and $1 \le a < p$ then $a^{p-1} \equiv 1 \pmod{p}$.

• If the equality does not hold for a value of *a*, then *p* is **composite**. If the equality hold for many values of *a*, then we can say that *p* is **probable prime**.

- If the equality does not hold for a value of *a*, then *p* is **composite**. If the equality hold for many values of *a*, then we can say that *p* is **probable prime**.
- It is possible for a composite number *N* to pass Fermat's test for certain choices of *a*.

- If the equality does not hold for a value of *a*, then *p* is **composite**. If the equality hold for many values of *a*, then we can say that *p* is **probable prime**.
- It is possible for a composite number *N* to pass Fermat's test for certain choices of *a*.
- Carmichael numbers: rare composite numbers that pass Fermat's test for *all a* relatively prime to *N*.

- If the equality does not hold for a value of *a*, then *p* is **composite**. If the equality hold for many values of *a*, then we can say that *p* is **probable prime**.
- It is possible for a composite number *N* to pass Fermat's test for certain choices of *a*.
- Carmichael numbers: rare composite numbers that pass Fermat's test for *all a* relatively prime to *N*.
- For composite *N*, *most* values of *a* will fail the test.

Symmetric Cryptography (1)

Symmetric Cryptography (2)

Symmetric Cryptography (3)

Diffie-Hellman-Merkle key exchange

Asymmetric Cryptography

Figure : Public Key Cryptography

Rivest, Shamir, Adleman (1977)

Alice:

Alice:

• chooses two large primes p and q of similar size and computes N = pq,

Alice:

- chooses two large primes p and q of similar size and computes N = pq,
- chooses $e \in \mathbb{N}$ coprime to $\phi(N) = (p-1)(q-1)$,

Alice:

- chooses two large primes p and q of similar size and computes N = pq,
- chooses $e \in \mathbb{N}$ coprime to $\phi(\mathsf{N}) = (p-1)(q-1)$,
- computes $d \in \mathbb{N}$ such that $ed \equiv 1 \pmod{\phi(N)}$.

Alice:

- chooses two large primes p and q of similar size and computes N = pq,
- chooses $e \in \mathbb{N}$ coprime to $\phi(N) = (p-1)(q-1)$,
- computes $d \in \mathbb{N}$ such that $ed \equiv 1 \pmod{\phi(N)}$.

Alice's **public key** is the pair of integers (N, e) and her **private key** is the integer d.

To encrypt a message to Alice, Bob does the following:

To encrypt a message to Alice, Bob does the following:

• obtains an authentic copy of Alice's public key (N, e),

To encrypt a message to Alice, Bob does the following:

- obtains an authentic copy of Alice's public key (N, e),
- encodes the message as an integer $1 \le m < N$,

To encrypt a message to Alice, Bob does the following:

- obtains an authentic copy of Alice's public key (N, e),
- encodes the message as an integer $1 \le m < N$,
- computes and trasmits the ciphertext $c = m^e \pmod{N}$.

To encrypt a message to Alice, Bob does the following:

- obtains an authentic copy of Alice's public key (N, e),
- encodes the message as an integer $1 \le m < N$,
- computes and trasmits the ciphertext $c = m^e \pmod{N}$.

To **decrypt** the ciphertext, Alice computes $m = c^d \pmod{N}$ and decodes this to obtain the original message.
We will list the tools we need to prove the correctness of RSA:

We will list the tools we need to prove the correctness of RSA:

Theorem (Fermat's Little Theorem)

If p is a prime number and a an integer such that a and p are relatively prime, then $a^{p-1} - 1$ is an integer multiple of p or equivalently $a^{p-1} \equiv 1 \pmod{p}$.

We will list the tools we need to prove the correctness of RSA:

Theorem (Fermat's Little Theorem)

If p is a prime number and a an integer such that a and p are relatively prime, then $a^{p-1} - 1$ is an integer multiple of p or equivalently $a^{p-1} \equiv 1 \pmod{p}$.

Lemma (Euclid's Lemma)

Let a, b and d be integers where $d \neq 0$. Then if d divides $a \cdot b$ (symbolically $d|a \cdot b$), then either d|a or d|b.

We will list the tools we need to prove the correctness of RSA:

Theorem (Fermat's Little Theorem)

If p is a prime number and a an integer such that a and p are relatively prime, then $a^{p-1} - 1$ is an integer multiple of p or equivalently $a^{p-1} \equiv 1 \pmod{p}$.

Lemma (Euclid's Lemma)

Let a, b and d be integers where $d \neq 0$. Then if d divides $a \cdot b$ (symbolically $d|a \cdot b$), then either d|a or d|b.

Lemma (2)

Let *M* be an integer. Let *p* and *q* be prime numbers with $p \neq q$. Then if $a \equiv M(mod p)$ and $a \equiv M(mod q)$, then $a \equiv M(mod p \cdot q)$.

We need to prove that $(M^e)^d \equiv M^{ed} \equiv M \pmod{N}$.

Proof.

We first show that $M^{ed} \equiv M(mod \ p)$ and $M^{ed} \equiv M(mod \ q)$. The desired result follows from lemma 2. To show $M^{ed} \equiv M(mod \ p)$, we consider two cases: $M \equiv 0(mod \ p)$, or $M \not\equiv 0(mod \ p)$.

Case 1. $M \equiv 0 \pmod{p}$. Then M is an integer multiple of p, say $M = p \cdot w, w \in \mathbb{Z}$. Then $M^{ed} = (p \cdot w)^{ed} = p \cdot p^{ed-1} \cdot w^{ed}$. So both M and M^{ed} are integer multiples of p. Thus $M^{ed} \equiv M \pmod{p}$.

We need to prove that $(M^e)^d \equiv M^{ed} \equiv M \pmod{N}$.

Proof.

Case 2. $M \not\equiv 0 \pmod{p}$. This means that p and M are relatively prime. Thus we can use Fermat's Little Theorem. We have $M^{p-1} \equiv 1 \pmod{p}$. From the way the decryption key d is defined above, we have $ed - 1 = (p - 1) \cdot (q - 1) \cdot k$, $k \in \mathbb{Z}$. We then have:

$$M^{ed} = M^{ed-1} \cdot M$$

= $M^{(p-1)\cdot(q-1)\cdot k} \cdot M$
= $(M^{p-1})^{(q-1)\cdot k} \cdot M$
 $\equiv (1)^{(q-1)\cdot k} \cdot M \pmod{p}$ (apply Fermat's Little Theorem)
 $\equiv M \pmod{p}$

We need to prove that $(M^e)^d \equiv M^{ed} \equiv M \pmod{N}$.

Proof.

In a similar way we can show that $M^{ed} = M(mod q)$.

By Lemma 2, it follows that $M^{ed} \equiv M(mod \ N = p \cdot q)$.

One-way & Trapdoor fuctions (1)

A *one-way function* is a function that is easy to compute on every input, but hard to invert given the image of a random input.

One-way & Trapdoor fuctions (1)

A *one-way function* is a function that is easy to compute on every input, but hard to invert given the image of a random input.

Do one-way functions exist?

One-way & Trapdoor fuctions (1)

A *one-way function* is a function that is easy to compute on every input, but hard to invert given the image of a random input.

Do one-way functions exist? Yes, if $\mathbf{P} \neq \mathbf{NP}$.

One-way & Trapdoor fuctions (2)

Candidates for one-way functions:

- Multiplication and factoring
- The Rabin function (modular squaring)
- Discrete exponential and logarithm
- Cryptographically secure hash functions
- Elliptic curves

One-way & Trapdoor fuctions (3)

One-way & Trapdoor fuctions (3)

A trapdoor function is a function that is easy to compute in one direction, yet believed to be difficult to compute in the opposite direction without **special information**, called the "trapdoor".

One-way & Trapdoor fuctions (3)

A trapdoor function is a function that is easy to compute in one direction, yet believed to be difficult to compute in the opposite direction without **special information**, called the "trapdoor".

As of 2004, the best known trapdoor function candidates are the RSA and Rabin functions. Both are written as exponentiation modulo a composite number, and both are related to the problem of prime factorization.

One-way & Trapdoor fuctions (4)

Indeed, exponentiation modulo N is a one-way permutation on $(\mathbb{Z}/N\mathbb{Z})^{\times}$ when e is co-prime to $\phi(N)$. The private key allows the permutation to be efficiently inverted and it is the trapdoor.

Key Length and Encryption Strength

p,q	N	time to crack
256 bits	512 bits	few weeks
512 bits	1024 bits	50-100 years
1024 bits	2048 bits	>100 years
2048 bits	4096 bits	pprox age of the universe