## RSA

October 23, 2014

## Euclidean Algorithm

- For $a, b \in \mathbb{N}$, Euclid's algorithm computes $d=\operatorname{gcd}(a, b)$.


## Euclidean Algorithm

- For $a, b \in \mathbb{N}$, Euclid's algorithm computes $d=\operatorname{gcd}(a, b)$.
- A simple way to express Euclid's algorithm is by the recursive formula:

$$
\operatorname{gcd}(a, b)= \begin{cases}\operatorname{gcd}(a, 0)=a & \text { if } b=0 \\ \operatorname{gcd}(b, a(\bmod b)) & \text { if } b \neq 0\end{cases}
$$

## Euclidean Algorithm

- For $a, b \in \mathbb{N}$, Euclid's algorithm computes $d=\operatorname{gcd}(a, b)$.
- A simple way to express Euclid's algorithm is by the recursive formula:

$$
\operatorname{gcd}(a, b)= \begin{cases}\operatorname{gcd}(a, 0)=a & \text { if } b=0 \\ \operatorname{gcd}(b, a(\bmod b)) & \text { if } b \neq 0\end{cases}
$$

$\operatorname{EUCLID}(a, b)$

1. if $b=0$
2. then return a
3. else return $\operatorname{EUCLID}(b, a \bmod b)$

## Extended Euclidean Algorithm

In practice, we often want to compute integers $(x, y)$ such that $d=\operatorname{gcd}(a, b)=a x+b y$ in which case we use the extended Euclidean algorithm (due to Lagrange).

## Extended Euclidean Algorithm

In practice, we often want to compute integers $(x, y)$ such that $d=\operatorname{gcd}(a, b)=a x+b y$ in which case we use the extended Euclidean algorithm (due to Lagrange).

```
EXTENDED-EUCLID( }a,b
1. if b=0
2. then return a
3. }(\mp@subsup{d}{}{\prime},\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\leftarrow\mathrm{ EXTENDED-EUCLID ( }b,a\operatorname{mod}b
4. }(d,x,y)\leftarrow(\mp@subsup{d}{}{\prime},\mp@subsup{y}{}{\prime},\mp@subsup{x}{}{\prime}-\lfloora/b\rfloor\mp@subsup{y}{}{\prime}
5. return (d,x,y)
```


## Modular exponentiation

$$
x \bmod N \rightarrow x^{2} \bmod N \rightarrow x^{4} \bmod N \rightarrow x^{8} \bmod N \rightarrow \ldots \rightarrow x^{2\lfloor\log y\rfloor} \bmod N
$$

## Modular exponentiation

$$
\begin{aligned}
& x \bmod N \rightarrow x^{2} \bmod N \rightarrow x^{4} \bmod N \rightarrow x^{8} \bmod N \rightarrow \ldots \rightarrow x^{2\lfloor\log y\rfloor} \bmod N \\
& \qquad x^{y}= \begin{cases}\left(x^{\lfloor y / 2\rfloor}\right)^{2} & \text { if } y \text { is even } \\
x \cdot\left(x^{\lfloor y / 2\rfloor}\right)^{2} & \text { if } y \text { is odd. }\end{cases}
\end{aligned}
$$

## Modular exponentiation

$$
\begin{gathered}
x \bmod N \rightarrow x^{2} \bmod N \rightarrow x^{4} \bmod N \rightarrow x^{8} \bmod N \rightarrow \ldots \rightarrow x^{2\lfloor\log y\rfloor} \bmod N \\
x^{y}= \begin{cases}\left(x^{\lfloor y / 2\rfloor}\right)^{2} & \text { if } y \text { is even } \\
x \cdot\left(x^{\lfloor y / 2\rfloor}\right)^{2} & \text { if } y \text { is odd. }\end{cases}
\end{gathered}
$$

$$
\text { MODULAR-EXPONENTIATION }(x, y, N)
$$

1. if $y=0$ : return 1
2. $z=M O D U L A R-E X P O N E N T I A T I O N(x,\lfloor y / 2\rfloor, N)$
3. if $y$ is even:
4. return $z^{2} \bmod N$
5. else:
6. return $x \cdot z^{2} \bmod N$

## Modular multiplicative inverse

In modular arithmetic, the modular multiplicative inverse $\left(a^{-1}\right)$ of an integer $\operatorname{amod} m$ is an integer $x$ such that $a x \equiv 1(\bmod m)$.

## Modular multiplicative inverse

In modular arithmetic, the modular multiplicative inverse $\left(a^{-1}\right)$ of an integer $\operatorname{a} \bmod m$ is an integer $x$ such that $a x \equiv 1(\bmod m)$. The multiplicative inverse of $\operatorname{amod} n$ exists iff $a$ and $m$ are coprime $(\operatorname{gcd}(a, m)=1)$.

## Modular multiplicative inverse

In modular arithmetic, the modular multiplicative inverse $\left(a^{-1}\right)$ of an integer $\operatorname{a} \bmod m$ is an integer $x$ such that $a x \equiv 1(\bmod m)$. The multiplicative inverse of $\operatorname{amod} n$ exists iff $a$ and $m$ are coprime $(\operatorname{gcd}(a, m)=1)$.

## Example

- Suppose we wish to find modular multiplicative inverse $x$ of $3 \bmod 11: 3^{-1} \equiv x(\bmod 11)$.


## Modular multiplicative inverse

In modular arithmetic, the modular multiplicative inverse $\left(a^{-1}\right)$ of an integer a mod $m$ is an integer $x$ such that $a x \equiv 1(\bmod m)$. The multiplicative inverse of $\operatorname{amod} n$ exists iff $a$ and $m$ are coprime $(\operatorname{gcd}(a, m)=1)$.

## Example

- Suppose we wish to find modular multiplicative inverse $x$ of $3 \bmod 11: 3^{-1} \equiv x(\bmod 11)$.
- This is the same as finding $x$ such that $3 x \equiv 1(\bmod 11)$.


## Modular multiplicative inverse

In modular arithmetic, the modular multiplicative inverse $\left(a^{-1}\right)$ of an integer $\operatorname{a} \bmod m$ is an integer $x$ such that $a x \equiv 1(\bmod m)$. The multiplicative inverse of $\operatorname{amod} n$ exists iff $a$ and $m$ are coprime $(\operatorname{gcd}(a, m)=1)$.

## Example

- Suppose we wish to find modular multiplicative inverse $x$ of $3 \bmod 11: 3^{-1} \equiv x(\bmod 11)$.
- This is the same as finding $x$ such that $3 x \equiv 1(\bmod 11)$.
- Working in $\mathbb{Z}_{11}$ we find that the only value of $x$ that satisfies this congruence is 4 because $3(4)=12 \equiv 1(\bmod 11)$.
Therefore, the modular inverse of 3 modulo 11 is 4 .


## Modular multiplicative inverse

In modular arithmetic, the modular multiplicative inverse $\left(a^{-1}\right)$ of an integer $\operatorname{a} \bmod m$ is an integer $x$ such that $a x \equiv 1(\bmod m)$. The multiplicative inverse of a mod $n$ exists iff $a$ and $m$ are coprime $(\operatorname{gcd}(a, m)=1)$.

## Example

- Suppose we wish to find modular multiplicative inverse $x$ of $3 \bmod 11: 3^{-1} \equiv x(\bmod 11)$.
- This is the same as finding $x$ such that $3 x \equiv 1(\bmod 11)$.
- Working in $\mathbb{Z}_{11}$ we find that the only value of $x$ that satisfies this congruence is 4 because $3(4)=12 \equiv 1(\bmod 11)$.
Therefore, the modular inverse of 3 modulo 11 is 4 .
- Generalizing in $\mathbb{Z}$, all possible solutions for this example can be formed from $4+(11 \cdot z), z \in \mathbb{Z}$, yielding $\{\ldots,-18,-7,4,15,26, \ldots\}$.


## Fermat Primality Test

Fermat's little theorem states that if $p$ is prime and $1 \leq a<p$ then $a^{p-1} \equiv 1(\bmod p)$.

## Fermat Primality Test

Fermat's little theorem states that if $p$ is prime and $1 \leq a<p$ then $a^{p-1} \equiv 1(\bmod p)$.

- If the equality does not hold for a value of $a$, then $p$ is composite. If the equality hold for many values of $a$, then we can say that $p$ is probable prime.


## Fermat Primality Test

Fermat's little theorem states that if $p$ is prime and $1 \leq a<p$ then $a^{p-1} \equiv 1(\bmod p)$.

- If the equality does not hold for a value of $a$, then $p$ is composite. If the equality hold for many values of $a$, then we can say that $p$ is probable prime.
- It is possible for a composite number $N$ to pass Fermat's test for certain choices of $a$.


## Fermat Primality Test

Fermat's little theorem states that if $p$ is prime and $1 \leq a<p$ then $a^{p-1} \equiv 1(\bmod p)$.

- If the equality does not hold for a value of $a$, then $p$ is composite. If the equality hold for many values of $a$, then we can say that $p$ is probable prime.
- It is possible for a composite number $N$ to pass Fermat's test for certain choices of $a$.
- Carmichael numbers: rare composite numbers that pass Fermat's test for all a relatively prime to $N$.


## Fermat Primality Test

Fermat's little theorem states that if $p$ is prime and $1 \leq a<p$ then $a^{p-1} \equiv 1(\bmod p)$.

- If the equality does not hold for a value of $a$, then $p$ is composite. If the equality hold for many values of $a$, then we can say that $p$ is probable prime.
- It is possible for a composite number $N$ to pass Fermat's test for certain choices of $a$.
- Carmichael numbers: rare composite numbers that pass Fermat's test for all a relatively prime to $N$.
- For composite $N$, most values of a will fail the test.


## Symmetric Cryptography (1)



## Symmetric Cryptography (2)



Figure : One-time pad

## Symmetric Cryptography (3)



## Diffie-Hellman-Merkle key exchange



## Asymmetric Cryptography



Figure: Public Key Cryptography

Rivest, Shamir, Adleman (1977)


## 'textbook' RSA: Key Generation

Alice:

## 'textbook' RSA: Key Generation

Alice:

- chooses two large primes $p$ and $q$ of similar size and computes $N=p q$,


## 'textbook' RSA: Key Generation

Alice:

- chooses two large primes $p$ and $q$ of similar size and computes $N=p q$,
- chooses $e \in \mathbb{N}$ coprime to $\phi(N)=(p-1)(q-1)$,


## 'textbook' RSA: Key Generation

Alice:

- chooses two large primes $p$ and $q$ of similar size and computes $N=p q$,
- chooses $e \in \mathbb{N}$ coprime to $\phi(N)=(p-1)(q-1)$,
- computes $d \in \mathbb{N}$ such that $e d \equiv 1(\bmod \phi(N))$.


## 'textbook' RSA: Key Generation

Alice:

- chooses two large primes $p$ and $q$ of similar size and computes $N=p q$,
- chooses $e \in \mathbb{N}$ coprime to $\phi(N)=(p-1)(q-1)$,
- computes $d \in \mathbb{N}$ such that $e d \equiv 1(\bmod \phi(N))$.

Alice's public key is the pair of integers ( $N, e$ ) and her private key is the integer $d$.

## 'textbook' RSA: Encryption \& Decryption

To encrypt a message to Alice, Bob does the following:

## 'textbook' RSA: Encryption \& Decryption

To encrypt a message to Alice, Bob does the following:

- obtains an authentic copy of Alice's public key ( $N, e$ ),


## 'textbook' RSA: Encryption \& Decryption

To encrypt a message to Alice, Bob does the following:

- obtains an authentic copy of Alice's public key ( $N, e$ ),
- encodes the message as an integer $1 \leq m<N$,


## 'textbook' RSA: Encryption \& Decryption

To encrypt a message to Alice, Bob does the following:

- obtains an authentic copy of Alice's public key ( $N, e$ ),
- encodes the message as an integer $1 \leq m<N$,
- computes and trasmits the ciphertext $c=m^{e}(\bmod N)$.


## 'textbook' RSA: Encryption \& Decryption

To encrypt a message to Alice, Bob does the following:

- obtains an authentic copy of Alice's public key ( $N, e$ ),
- encodes the message as an integer $1 \leq m<N$,
- computes and trasmits the ciphertext $c=m^{e}(\bmod N)$.

To decrypt the ciphertext, Alice computes $m=c^{d}(\bmod N)$ and decodes this to obtain the original message.

## RSA Correctness (1)

We will list the tools we need to prove the correctness of RSA:

## RSA Correctness (1)

We will list the tools we need to prove the correctness of RSA:

## Theorem (Fermat's Little Theorem)

If $p$ is a prime number and $a$ an integer such that $a$ and $p$ are relatively prime, then $a^{p-1}-1$ is an integer multiple of $p$ or equivalently $a^{p-1} \equiv 1(\bmod p)$.

## RSA Correctness (1)

We will list the tools we need to prove the correctness of RSA:

## Theorem (Fermat's Little Theorem)

If $p$ is a prime number and $a$ an integer such that $a$ and $p$ are relatively prime, then $a^{p-1}-1$ is an integer multiple of $p$ or equivalently $a^{p-1} \equiv 1(\bmod p)$.

## Lemma (Euclid's Lemma)

Let $a, b$ and $d$ be integers where $d \neq 0$. Then if $d$ divides $a \cdot b$ (symbolically $d \mid a \cdot b$ ), then either $d \mid a$ or $d \mid b$.

## RSA Correctness (1)

We will list the tools we need to prove the correctness of RSA:

## Theorem (Fermat's Little Theorem)

If $p$ is a prime number and $a$ an integer such that $a$ and $p$ are relatively prime, then $a^{p-1}-1$ is an integer multiple of $p$ or equivalently $a^{p-1} \equiv 1(\bmod p)$.

## Lemma (Euclid's Lemma)

Let $a, b$ and $d$ be integers where $d \neq 0$. Then if $d$ divides $a \cdot b$ (symbolically $d \mid a \cdot b$ ), then either $d \mid a$ or $d \mid b$.

## Lemma (2)

Let $M$ be an integer. Let $p$ and $q$ be prime numbers with $p \neq q$.
Then if $a \equiv M(\bmod p)$ and $a \equiv M(\bmod q)$, then
$a \equiv M(\bmod p \cdot q)$.

## RSA Correctness (2)

We need to prove that $\left(M^{e}\right)^{d} \equiv M^{e d} \equiv M(\bmod N)$.

## Proof.

We first show that $M^{e d} \equiv M(\bmod p)$ and $M^{e d} \equiv M(\bmod q)$. The desired result follows from lemma 2.
To show $M^{e d} \equiv M(\bmod p)$, we consider two cases:
$M \equiv 0(\bmod p)$, or $M \not \equiv 0(\bmod p)$.
Case 1. $M \equiv 0(\bmod p)$. Then $M$ is an integer multiple of $p$, say $M=p \cdot w, w \in \mathbb{Z}$. Then $M^{e d}=(p \cdot w)^{\text {ed }}=p \cdot p^{e d-1} \cdot w^{\text {ed }}$. So both $M$ and $M^{\text {ed }}$ are integer multiples of $p$. Thus $M^{e d} \equiv M(\bmod p)$.

## RSA Correctness (2)

We need to prove that $\left(M^{e}\right)^{d} \equiv M^{e d} \equiv M(\bmod N)$.

## Proof.

Case 2. $M \not \equiv 0(\bmod p)$. This means that $p$ and $M$ are relatively prime. Thus we can use Fermat's Little Theorem. We have $M^{p-1} \equiv 1(\bmod p)$.
From the way the decryption key $d$ is defined above, we have ed $-1=(p-1) \cdot(q-1) \cdot k, k \in \mathbb{Z}$. We then have:

$$
\begin{aligned}
M^{e d} & =M^{e d-1} \cdot M \\
& =M^{(p-1) \cdot(q-1) \cdot k} \cdot M \\
& =\left(M^{p-1}\right)^{(q-1) \cdot k} \cdot M \\
& \left.\equiv(1)^{(q-1) \cdot k} \cdot M(\bmod p) \quad \text { (apply Fermat's Little Theorem }\right) \\
& \equiv M(\bmod p)
\end{aligned}
$$

## RSA Correctness (2)

We need to prove that $\left(M^{e}\right)^{d} \equiv M^{e d} \equiv M(\bmod N)$.

## Proof.

In a similar way we can show that $M^{e d}=M(\bmod q)$.
By Lemma 2, it follows that $M^{e d} \equiv M(\bmod N=p \cdot q)$.

## One-way \& Trapdoor fuctions (1)



A one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input.

## One-way \& Trapdoor fuctions (1)



A one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input.

Do one-way functions exist?

## One-way \& Trapdoor fuctions (1)



A one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input.

Do one-way functions exist?
Yes, if $\mathbf{P} \neq \mathbf{N P}$.

## One-way \& Trapdoor fuctions (2)

Candidates for one-way functions:

- Multiplication and factoring
- The Rabin function (modular squaring)
- Discrete exponential and logarithm
- Cryptographically secure hash functions
- Elliptic curves


## One-way \& Trapdoor fuctions (3)

## One-way \& Trapdoor fuctions (3)

A trapdoor function is a function that is easy to compute in one direction, yet believed to be difficult to compute in the opposite direction without special information, called the "trapdoor".

## One-way \& Trapdoor fuctions (3)

A trapdoor function is a function that is easy to compute in one direction, yet believed to be difficult to compute in the opposite direction without special information, called the "trapdoor".

As of 2004, the best known trapdoor function candidates are the RSA and Rabin functions. Both are written as exponentiation modulo a composite number, and both are related to the problem of prime factorization.

## One-way \& Trapdoor fuctions (4)

Indeed, exponentiation modulo $N$ is a one-way permutation on $(\mathbb{Z} / N \mathbb{Z})^{\times}$when $e$ is co-prime to $\phi(N)$. The private key allows the permutation to be efficiently inverted and it is the trapdoor.

## easy



Easy with trapdoor info (d)

## Key Length and Encryption Strength

| $\mathbf{p , q}$ | $\mathbf{N}$ | time to crack |
| :---: | :---: | :---: |
| 256 bits | 512 bits | few weeks |
| 512 bits | 1024 bits | $50-100$ years |
| 1024 bits | 2048 bits | $>100$ years |
| 2048 bits | 4096 bits | $\approx$ age of the universe |

