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Data, Expression and Combined Complexity

Let us first consider the complexity of the model-checking problem: that
is, given a sentence Φ in a logic L and a structure A , does A satisfy Φ?

There are two parameters of this question: the sentence Φ, and the
structure A.
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Data, Expression and Combined Complexity

Suppose we have a structure A ∈STRUCT[σ]. Let A={a1,a2,...,an}.

We choose an order of the universe, say, a1 <a2 <....<an.

The encoding of a k-ary relation RA will be as follows:

The jth bit of enc(RA) is 1 if ~aj ∈RA, and 0 if ~aj /∈ RA.

If σ={R1,R2,...,Rp} then the encoding of a structure is the concatenation
of 0n1 and all the enc(RA

i )’s:

enc(A) = 0n1enc(RA
1 ) · · · enc(RA

p )
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Data, Expression and Combined Complexity

Definition

Let K be a complexity class, and L a logic. We say that

the data complexity of L is K if for every sentence Φ of L, the
language

{enc(A) | A |=Φ }

belongs to K;

the expression complexity of L is K if for every finite structure A, the
language

{enc(Φ) | A |=Φ }

belongs to K; and

the combined complexity of L is K if the language
{(enc(A),enc(Φ)) | A |=Φ }

belongs to K.

7



Data, Expression and Combined Complexity

The notion of data complexity is most often in the database context.

The notion of expression and combined complexity are often used in
verification and model-checking.

We shall see that for most logics of interest, all hardness results for the
combined complexity will be shown on very simple structures, thereby
giving us matching bounds for expression and combined complexity.
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Circuits and FO Queries

Definition

A Boolean circuit with n inputs x1,...,xn is a tuple

C = (V,E,λ,o)
where
1. (V,E) is a directed graph with the set of nodes V (which we call gates)
and the set of edges E.
2. λ is a function from V to {x1,...,xn} ∪ {∧,∨,¬} such that

λ(u)∈ {x1,...,xn} implies that u has in-degree 0;

λ(u)=¬ implies that u has in-degree 1.

3. o∈V.

The in-degree of a node is called its fan-in. The size of C is the number of
nodes in V; the depth of C is the length of the longest path from a node of
in-degree 0 to o.
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Circuits and FO Queries

A circuit C computes a Boolean function with n inputs x1,..,xn as follows.
Suppose we are given values of x1,...,xn. We compute the values
associated with each node of in-degree 0:

for a node xi , it is the value of xi

for a node labeled ∨ it is false

for a node labeled ∧ it is true

Next we compute the value of each node by induction: if we have a node
u with incoming edges from u1,..,ul and we know that their values are
a1,..,al then the value of u is:

a1∨...∨al if λ(u)=∨;

a1∧...∧al if λ(u)=∧;

¬a1 if λ(u)=¬(in this case we know that l=1)
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Circuits and FO Queries

An example of a circuit computing the Boolean function
(x1 ∧ ¬x2∧x3)∨¬(x3 ∧ ¬x4):

x1 x2 x3 x4

∧

∨

¬ ¬

¬

∧
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Circuits and FO Queries

Definition

A family of circuits is a sequence C=(Cn)n≥0 where each Cn is a circuit
with n inputs. It accepts the language L(C)⊆ {0,1}∗ defined as follows.
Let s be a string of length n. It can be viewed as a Boolean vector ~xs such
that the ith component of ~xs is the ith symbol in s. Then s∈L(C) iff Cn

outputs 1 on ~xs .

The class of the languages accepted by polynomial-sized constant-depth
families of circuits is called nonuniform AC0.

Example

The language that consists of strings containing at least two ones is in
nonuniform AC0: each circuit Cn, n > 1, has ∧-gates for every pair of
inputs xi and xj , and then the outputs of those ∧-gates form an input for
one ∨-gate.
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Circuits and FO Queries

A class of structures C ⊆STRUCT[σ] is in nonuniform AC0 if so is the
language {enc(A) | A ∈C }.

The class EVEN of structures of the empty vocabulary: that is ,
{〈A, ∅〉 | |A| mod2 = 0} belongs to nonuniform AC0 and is not
FO-definable. The encoding of such a structure with |A|=n is simply 0n1;
hence Ck returns true for odd k and false for even k.
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Circuits and FO Queries

Let P be a collection, finite or infinite, numerical predicates;that is, subset
of Nk .For example, + considered as a ternary predicate {(i,j,l)|i+j=l}.

For P including the linear order, we define FO(P) an an extension of FO
with atomic formulas of the form P(x1,...,xk), for a k-ary P∈ P.

Suppose A is a σ-structure, ant its universe is ordered by < as
a0 <....<an−1. Then A |=P(ai1 ,....,aik ) iff the tuple of numbers (i1,...,ik)
belongs to P.

For example, let P2 ⊆ N consist of the even numbers. Then the query
EVEN is expressed as an FO({<,P2}) sentence as follows:

∀x(∀y(y ≤ x)→ P2(x))

.
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Circuits and FO Queries

Theorem

Let C be a class of structures definable by an FO(All) sentence. Then C is
in nonuniform AC0. That is,

FO(All) ⊆ nonuniform AC 0

Furthermore, for every FO(All) sentence Φ, there is a family of circuits of
depth O(||Φ||) accepting {A | A |=Φ}.
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Circuits and FO Queries

Proof.

� If k is not of the form ||A|| for some structure A, then Ck always
returns false.

� Assume that k is the size of the encodings of structures A with
n-elements universe.

� We replace in Φ each quantifier ∃xφ(x,~y) or ∀xφ(x,~y) with
∨n−1

c=0φ(c,~y) and ∧n−1
c=0φ(c,~y) respectively and we have Φ

′
.

� Note that Φ
′

is a Boolean combination of formulas of type form

� P(i1,...,ik), where P is a numerical predicate and
� R(i1,...,ik), where R is a m-ary symbol in σ.

� The depth of the resulting circuit is bounded by the number of the
connectives in Φ

′
and hence depends only on Φ, and not on k and the

size of the circuit is polynomial in k.

25



Circuits and FO Queries

Proof.

� If k is not of the form ||A|| for some structure A, then Ck always
returns false.

� Assume that k is the size of the encodings of structures A with
n-elements universe.

� We replace in Φ each quantifier ∃xφ(x,~y) or ∀xφ(x,~y) with
∨n−1

c=0φ(c,~y) and ∧n−1
c=0φ(c,~y) respectively and we have Φ

′
.

� Note that Φ
′

is a Boolean combination of formulas of type form

� P(i1,...,ik), where P is a numerical predicate and
� R(i1,...,ik), where R is a m-ary symbol in σ.

� The depth of the resulting circuit is bounded by the number of the
connectives in Φ

′
and hence depends only on Φ, and not on k and the

size of the circuit is polynomial in k.

26



Circuits and FO Queries

Proof.

� If k is not of the form ||A|| for some structure A, then Ck always
returns false.

� Assume that k is the size of the encodings of structures A with
n-elements universe.

� We replace in Φ each quantifier ∃xφ(x,~y) or ∀xφ(x,~y) with
∨n−1

c=0φ(c,~y) and ∧n−1
c=0φ(c,~y) respectively and we have Φ

′
.

� Note that Φ
′

is a Boolean combination of formulas of type form

� P(i1,...,ik), where P is a numerical predicate and
� R(i1,...,ik), where R is a m-ary symbol in σ.

� The depth of the resulting circuit is bounded by the number of the
connectives in Φ

′
and hence depends only on Φ, and not on k and the

size of the circuit is polynomial in k.

27



Circuits and FO Queries

Corollary

The data complexity of FO(ALL) is nonuniform AC0.

Given an FO formula φ, its width is the maximum number of free variables
is a subformula of φ.

Proposition

Let Φ be an FO sentence in vocabulary σ, and let A ∈STRUCT[σ]. If the
width of Φ is k, then checking whether A |=Φ can be done in time

O(||Φ||× ||A||k).
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Circuits and FO Queries

Proof.

� Let φ1,..,φm enumerate all the subformulae of Φ; we know that they
contain at most k free variables.

� We know inductively construct φi (A). If φi has ki free variables, then
φi (A)⊆Aki . If φi is:

� an atomic formula
� ¬φj(A)
� φj∧φl
� φi (~x)=∃zφj(z,~x)

� It is easy to see that the above algorithm can be implemented in time
O(||Φ||× ||A||k), since none of the formulae φi has more than k free
variables.
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Combined Complexity of FO

Theorem

The combined complexity of FO is PSPACE-complete.

Proof.
The membership in PSPACE follows from the evaluation method used in
the proof of a previous proposition. To show hardness, recall the problem
QBF:

Input : A formula Φ=Q1x1...Qnxna(x1,...,xn), where: each Qi is
either ∃ or ∀, and a is a proposition formula in x1,...,xn.

Question : If all xi ’s range {true,false}, is Φ true?
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Combined Complexity FO

Given a formula Φ= Q1x1...Qnxna(x1,...,xn), we construct a structure A
whose vocabulary includes one unary relation U as follows: A={0,1}, and
UA={1}. Then modify a by changing each occurrence of xi to U(xi ) , and
each occurrence of ¬xi to ¬U(xi ).

Examples

If a(x1,x2,x3)=(x1∧x2)∨(¬x1∧x3), then aU is
(U(x1)∧U(x2))∨(¬U(x1)∧U(x3)).

Then Φ is true ⇔ A |=Q1x1...QnxnaU(x1,...,xn).

Corollary

The expression complexity of FO is PSPACE-complete.
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Parametric Complexity and Locality

We already know that the checking whether A |=Φ can be done in time
O(||Φ|| · ||A||k), where k is the width of Φ.

Parametric Complexity is a complexity where the standard input of a
problem is split into the input part and the parameter part, and one looks
for fixed-parameter tractable problems that admit algorithms with running
time O(g(π)·nk) for a fixed k.

38



Parametric Complexity and Locality

We already know that the checking whether A |=Φ can be done in time
O(||Φ|| · ||A||k), where k is the width of Φ.

Parametric Complexity is a complexity where the standard input of a
problem is split into the input part and the parameter part, and one looks
for fixed-parameter tractable problems that admit algorithms with running
time O(g(π)·nk) for a fixed k.

39



Parametric Complexity and Locality

Definition

We say that the model-checking problem for L on C(C is a class of
structures) is FPT, if there is a constant p and a function g:N→ N such
that for every A ∈ C and every L-sentence Φ, checking whether A |=Φ can
be done in time

g(||Φ||) · ||A||p.

Remark

For p=1 the model-checking problem can be done in time
g(||Φ||) · ||A||,

and is called fixed parameter linear.
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Parametric Complexity and Locality

Definition(Threshold equivalence)

Given two structures A,B in a relational vocabulary, we write A �thr
d ,m B if

for every isomorphism type τ of a d-neighborhood of a point either

� both A and B have the same number of points that d-realize τ, or

� both A and B have at least m points that d-realize τ.

Theorem 1

For each k,l>0, there exist d,m > 0 such that for A,B ∈STRUCTl [σ],

A �thr
d ,m B implies A ≡k B
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Parametric Complexity and Locality

Theorem 2

Fix l>0. Then the model-checking problemfor FO on STRUCTl [σ] is
fixed-parameter linear.

Proof.

� Given l and Φ, we can find numbers d and m such that for every
A,B ∈STRUCTl [σ], its is the case that A �A

d ,m B implies that A
and B agree on Φ.

� We assume that τ1,...,τM enumerate isomorphism types of all the
structures of the form NA

d (a) for A ∈STRUCTl [σ].

� Let ni (A)=|{ a | N A
d (a) of type τi }|. With each structures A, we now

associate an M-tuple ~t(A)=(t1,..,tM) such that

ti =

{
ni (A) , if ni (A) ≤ m,

∗ , otherwise
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Parametric Complexity and Locality

� Let T be the set of all M-tuples whose elements come from
{1,2...,m} ∪ {*}, so each ~t(A) is a member of T.

� From Theorem 1, ~t(A)=~t(B) implies that A and B agree on Φ.

� Let T0 be the set of ~t ∈T such that for some structure
A ∈STRUCTl [σ], we have A |=Φ and ~t(A)=~t.

� We compute, for a given structure A, the tuple ~t(A) and then check
if ~t ∈T0.

� The computation of T0 depends entirely on Φ and l, but not on A;
hence the resulting algorithm has linear running time.
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Parametric Complexity and Locality

Theorem

If C is a minor-closed class of graphs which does not include all the graphs,
then model-checking for FO on C is fixed parameter tractable.

Corollary

Model-checking for FO on the class of planar graphs is fixed parameter
tractable.
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Conjunctive Queries

Definition

A first order formula φ(~x) over a relational vocabulary σ is called a
conjunctive query if it is built from atomic formulae using only conjunction
∧ and existential quantification ∃.

Every conjunctive query can be expressed as:
φ(~x) = ∃~y∧k

i=1ai (~x , ~y).

Example

If there is a path of length k+1 between x and x
′

in a graph E, one can
write as a conjunctive query as follows:

∃y1, ..., ykR(x , y1)∧ R(y1, y2)∧ ...∧ R(yk , x
′
)
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Conjunctive Queries

Suppose we have a formula φ(x1,...,xm) over vocabulary σ, then for each
A ∈STRUCT[σ] this formula defines an m-ary relation φ(A)={ ~a |

A |=φ(~a)}.

The join of R and S is defined as
R 1 S = {t : X ∪ Y → A | t |X ∈ R, t |Y ∈ S}

where R is viewed as a set of mappings t: X → A and S is viewed as a set
of mappings t: Y → A.
Suppose that R is φ(A) and S is ψ(A) then R1S=[φ∧ψ](A).
The projection of R on Y(⊆X) is defined as:

πY = { t: Y → A | ∃t
′ ∈R : t

′
|Y =t }.

If R is φ(A), where φ has free variables (~x , ~y), then π~y (R)=[∃~xφ(~x , ~y)](A).
Suppose we have a conjunctive query

φ(~y) ≡ ∃~x (a1(~u1)∧....∧an( ~un)).
Then for any structure A

φ(A) ≡ π~y (a1(A)1....1an(A)).
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Conjunctive Queries
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Conjunctive Queries

Theorem

The combined and expression complexity of conjunctive queries are
NP-complete(even for Boolean conjunctive queries).

Proof.
The combined complexity is NP: for the query φ(~x) = ∃~y∧k

i=1ai (~x , ~y) and

a tuple ~a, to check if φ(~a) holds, one has to guess a tuple ~b and then
check in polynomial time if ∧k

i=1ai (~a, ~b) holds.
For completeness,we use reduction from 3-colorability

� Define a structure A=〈{0,1,2},N〉, where N is the binary inequality
relation N={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}

� Let G=(U,E) be a graph, where U={a1,...,an} and E⊆U×U

� Define the Boolean conjunctive query Φ
∃x1...∃xn ∧(ai ,aj )∈E N(xi , xj)

� A |=Φ iff G is 3-colorable.
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Conjunctive Queries

A tree decomposition of a hyper-graph H is a tree T together with a set
Bt ⊆U for each node t of T such that the two following condition hold:

1 For every a∈U, the set { t | a∈Bt } is a subtree of T .

2 Every hyper-edge of H is contained in one of the Bt ’s.

x y z

u

v w t1{x , y , z}

{z , u, v }

{v ,w }

t2

t3
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Conjunctive Queries

Φ≡ ∃x∃y∃zR(x,y)∧R(y,z)

x

y z

Φ is acyclic

Φ≡ ∃x∃y∃zR(x,y)∧R(y,z)∧
∧R(x,z)

x

y z

Φ is not acyclic
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Conjunctive Queries
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Conjunctive Queries

Φ≡ ∃x∃y∃z∃u∃v
R(x,y,z)∧R(z,u,v)∧
∧S(u,z)∧S(x,y)∧S(v,w)

x y z

u

v w

Φ is acyclic

Φ≡ ∃x∃y∃z∃u∃v
R(x,y,z)∧R(z,u,v)∧R(x,v,w)

x y z

u

v

w

Φ is not acyclic
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Conjunctive Queries

Φ≡ ∃x∃y∃z∃u∃v
R(x,y,z)∧R(z,u,v)∧
∧S(u,z)∧S(x,y)∧S(v,w)

x y z

u

v w

Φ is acyclic

Φ≡ ∃x∃y∃z∃u∃v
R(x,y,z)∧R(z,u,v)∧R(x,v,w)

x y z

u

v

w

Φ is not acyclic
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Conjunctive Queries

Theorem

Let Φ be a Boolean acyclic conjunctive query over σ-structure, and let
A ∈STRUCT[σ]. Then checking whether A |=Φ can be done in time
O(||Φ|| · ||A||).

Proof.

� Let Φ ≡ ∃x1...xm∧
n
i=1ai (~ui )

� A decomposition (T ,(Bt)t∈T ) for H(Φ) can compute in time O(||Φ||).

� We define
Rt = 1i∈[1,n],vi=t ai (A) (1)

� Our goal is to compute the join of all Rt ’s,since
A |=Φ ⇔ 1t∈T Rt 6= ∅ (2)
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Conjunctive Queries
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Conjunctive Queries

� We define
Rt = 1i∈[1,n],vi=t ai (A) (1)

� Our goal is to compute the join of all Rt ’s, since
A |=Φ ⇔ 1t∈T Rt 6= ∅ (2)

� We can see that Rt ⊆ait (A) and we conclude that the entire family
Rt ,t∈ T , can be computed in time O(||Φ|| · ||A||).

� We define Pt = 1u�t Ru:

� Pt=Rt , if t is a leaf of T
� Pt = Rt 1 (11≤i≤lPti ), where t1,..,tl are children of t.

� We compute Pr = 1tRt in time O(||T || ·maxt ||Rt ||)=O(||Φ|| · ||A||),
which together with (2) implies that A |=Φ can be done in time
O(||Φ|| · ||A||).
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