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Descriptive Complexity
Second order logic and lower bounds
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Introduction

What is second order logic?
Second order consists of first-order logic plus the power to
quantify over relations (e.g. sets) of the universe.

Definition
Let SO (second order) be the second order expressible
boolean queries.

Definition
Let SO∃ (or ESO) be the set of second order existential
boolean queries.
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Example
Φ3−color ≡ (∃R1)(∃Y1)(∃B1)(∀x)[(R(x) ∨ Y(x) ∨ B(x)) ∧
(∀y)(E(x, y) → ¬(R(x)∧R(y))∧¬(Y(x)∧Y(y))∧¬(B(x)∧B(y)))]

R(ed), Y(ellow) and B(lue) are the possible colorings for each
node. R(x) is 1 if the node x is colored red. Same for Y(x)
and B(x). E(x, y) is 1 if there exists an edge (x, y) on our
graph.

Remark
While first order queries can be computed on a CRAM in
constant time using polynomially many processors, second
order queries can be computed in constant parallel time
using exponentially many processors.
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Example
ΦSAT ≡ (∃S)(∀x)(∃y)((P(x, y) ∧ S(y)) ∨ (N(x, y) ∧ ¬S(y)))

ΦSAT asserts that there exists a set S of variables (the set of
true variables) that is a satysfying assignment for the
formula. P(x, y) is 1 if the variable y occurs positively in
clause x, S(y) is 1 if y = 1 in our formula and N(x, y) is 1 if
the variable y occurs negatively in clause x.
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Another example
Inf(f) ≡ (∀x)(∀y)(f(x) = f(y) → x = y)
ΦCLIQUE ≡ (∃f1.Inf(f))(∀xy)((x ̸= y ∧ f(x) < k ∧ f(y) < k) →
E(x, y))

There is a numbering of the vertices such that those vertices
numbered less than k form a clique. To describe this
numbering, we use the function f. Inf(f) means that f is an
injective function.
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One last example
ΦHP ≡ (∃P)(ψ1 ∧ ψ2 ∧ ψ3)
ψ1 ≡ (∀x)(∀y)(P(x, y) ∨ P(y, x) ∨ x = y)
ψ2 ≡ (∀x)(∀y)(∀z)(¬P(x, x) ∧ (P(x, y) ∧ P(y, z) → P(x, z)))
ψ3 ≡ (∀x)(∀y)(P(x, y) ∧ ∀z(¬P(x, y) ∨ ¬P(z, y) → E(x, y)))

ψ1: 1 if we have a path from x to y, or a path from y to x, or
if x=y.
ψ2: 1 if P is transitive but not reflexive.
ψ3: 1 if we have a path xy and there is no z between x and y,
then xy is an edge of our graph.
Thus, ΦHP is true when we have a hamilton path.

Konstantinos Chatzikokolakis Descriptive Complexity



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

One last example
ΦHP ≡ (∃P)(ψ1 ∧ ψ2 ∧ ψ3)
ψ1 ≡ (∀x)(∀y)(P(x, y) ∨ P(y, x) ∨ x = y)
ψ2 ≡ (∀x)(∀y)(∀z)(¬P(x, x) ∧ (P(x, y) ∧ P(y, z) → P(x, z)))
ψ3 ≡ (∀x)(∀y)(P(x, y) ∧ ∀z(¬P(x, y) ∨ ¬P(z, y) → E(x, y)))

ψ1: 1 if we have a path from x to y, or a path from y to x, or
if x=y.
ψ2: 1 if P is transitive but not reflexive.
ψ3: 1 if we have a path xy and there is no z between x and y,
then xy is an edge of our graph.
Thus, ΦHP is true when we have a hamilton path.

Konstantinos Chatzikokolakis Descriptive Complexity



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

SO∃ ⊆ NP
Given a SO∃ sentence Φ ≡ (∃Rr1

1 ) . . . (∃Rrk
k )ψ, let τ be the

vocabulary of Φ. Our task is to build an NP machine N s.t.
for all A ∈ STRUC[τ ] (A |= Φ) ⇔ (N(bin(A)) ↓).

Proof
Let A be an input and n = ||A||. N nondeterministically
chooses whether to write 0 or 1 and writes down a string of
length nr1 representing R1, and similarly for R2, . . . ,Rk. After
this polynomial number of steps, we have an expanded
structure A′ = (A,R1, . . . ,Rk). N should accept iff A′ |= ψ.
This can be tested in logspace, so certainly in NP. Also, N
accepts A iff there is some choice of relations R1 through Rk
such that (A,R1, . . . ,Rk) |= ψ.
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Second order games
The second order version of Ehrenfeucht–Fraïssé games gives
player the power to choose new relations over the universe.

SO∃ (monadic) games
Let A,B be structures of the same vocabulary. For c,m ∈ N,
define the so (monadic) c-color, m-move game on A,B as
follows.

1 Samson (spoiler) chooses c monadic relation
CA

1 ,CA
2 , . . . ,CA

c on |A|.
2 Delilah (duplicator) chooses c monadic relation

CB
1 ,CB

2 , . . . ,CB
c on |B|.

3 The two players play the m-move Ehrenfeucht–Fraïssé
game.

Remark: The coloring phase is not symmetic.
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Theorem
The following are equivalent:

1 For any formula Φ ≡ (∃C1
1 . . .C1

c)ϕ, with ϕ FO of
quantifier rank m, A |= Φ ⇒ B |= Φ.

2 Delilah has a winning strategy for the SO(monadic) c, m
game on A,B.

Proof
Assume 1 and let CA

1 ,CA
2 , . . . ,CA

c be Samson’s move in the
coloring phase. Let ϕ be the conjuction of all quantifier rank
m sentences that are true of (A,CA

1 ,CA
2 , . . . ,CA

c ). By 1,
B ≡ (∃C1

1 . . .C1
c)ϕ. Thus, Delilah can play CB

1 ,CB
2 , . . . ,CB

c . It
follows that (A,CA

1 ,CA
2 , . . . ,CA

c ) ≡m (B,CB
1 ,CB

2 , . . . ,CB
c ).

Conversely, suppose 1 is false and that A |= Φ, but B |= ¬Φ.
(A,CA

1 ,CA
2 , . . . ,CA

c ) and (B,CB
1 ,CB

2 , . . . ,CB
c ) disagree on the

quantifier rank m, so Samson is the winner.
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SO∃(monadic) Ehrenfeucht–Fraïssé games give a complete
methodology for determining whether a boolean query is
expressible in SO∃(monadic). Since SO∃(monadic)
Ehrenfeucht–Fraïssé game is still fairly difficult for Delilah
to play, Ajtai and Fagin invented an equivalent game.

Ajtai-Fagin game
Let I ⊆ STRUC[τ ] be a boolean query. Define the game as
follows:

1 Samson chooses c, m.
2 Delilah chooses a structure A ∈ STRUC[τ ], s.t. A ∈ I.
3 Samson chooses c monadic relations CA

1 ,CA
2 , . . . ,CA

c on
|A|.

4 Delilah chooses a structure B ∈ STRUC[τ ], s.t. B ̸∈ I. She
also chooses c monadic relations CB

1 ,CB
2 , . . . ,CB

c on |B|.
5 The two players play the Ehrenfeucht–Fraïssé game.
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Ajtai-Fagin methodology theorem
Let I ⊆ STRUC[τ ] be a boolean query. Then, the following
are equivalent:

1 Delilah has a winning strategy for the Ajtai-Fagin game
on I.

2 I ̸∈ SO∃(monadic).

Proof
Suppose I = MOD[Φ], where MOD[Φ] = {A|A |= ϕ},
Φ ≡ (∃C1

1 . . .C1
c)ϕ.

1 Samson chooses c, m.
2 Let A ∈ I be chosen by Delilah.
3 Samson choose colorings that satisfy ϕ.
4 Delilah then chooses a structure B ̸∈ I, so B |= ¬Φ.

It follows that Samson is the winner.
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Proof (continue)
Conversely, suppose I ̸∈ SO∃(monadic). Let Samson choose c,
m. Let Ψ be the disjunction of all the sentences in T, where
T are the sentences that are not satisfied by any structure in
I. By assumption, A ∈ I, so A |= ¬Ψ. Delilah should play this
A, and as it is in I, Delilah is the winner.
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Theorem
CONNECTED ̸∈ SO∃(monadic)(wo≤).

Proof
Suppose that Samson chooses c, m and that Delilah responds
with a sufficiently large cycle, as in the following figure. Note
that the node a (with its neighborhood) has the same
coloring with c (with its neighborhood). The same holds also
for b and d. So, to construct B (right), Delilah has to delete
the edges ab and cd and connect a with d and b with c, so
they will have the ”same” neighborhood as before.
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We saw before that we cannot express connected with
SO∃(monadic)(wo≤). But we can express CONNECTED with
SO∃(monadic)(wo≤) as follows:

CONNECTED ≡
(∃S1)[(∃xy)(S(x) ∧ ¬S(y)) ∧ (∀xy)((S(x) ∧ E(x, y)) → S(y))].

Remark
SO∃(monadic)(wo≤) is not closed under complementation.
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In 1986, Paris Kanellakis observed that undirected
reachability is expressible in SO∃(monadic) and asked
whether directed reachability is expressible in SO∃(monadic).

Kanellakis observation
The undirected reachability query is expressible in
SO∃(monadic)(wo≤).
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Proof
To express the existence of an undirected path s, t, we assert
the existence of a set of vertices S s.t.:

1 s and t ∈ S.
2 s, t have unique neighbors in S.
3 All the other members of S have exactly 2 neighbors.

These three condition are FO expressible.

Remark
But this does not hold for directed graphs!
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Proof
To express the existence of an undirected path s, t, we assert
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REACH ̸∈ SO∃(monadic)(wo ≤)

Observe that Hn is identical to Gn except for the edge (i,
i + 1). Let Samson begin by playing c, m. Delilah now plays
one of the random graphs Gn (random because a backedge
like (k, j) exist with some probability p(n)). After that,
Samson colors Gn with c colors, and Delilah plays Hn.
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Gc
n ∼m Hc

n

At first move, Delilah answers any v played by Samson with
a vertex v′ with the same color. From then on, Delilah
answers almost any move of Samson’s according to her
winning strategy in the game on (Gn, v), (Gn, v′).

Remark
There is one exception in this process. If Samson play
something near gi (recall that Hn does not have the edge (i,
i + 1)), Delilah should play either a vertex w which is far
away from gi or a vertex w with the same color as gi having
a backedge to gi+1.
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Lower bounds including ordering
Schwentick proved the lower bound via the following game:
Fix constants c,m in the first move of Samson. Delilah
answers by playing An, which we will describe now. Let Sn
be the set of permutation of n elements. Let s = π1, . . . , πr be
a sequence of elements of Sn. Define the graph Pn

s = (Vn
s ,En

s )
as follows:
Vn

s = {1, . . . , r + 1} × {1, . . . ,n},
En

s = {(< i, j >,< i, πi(j) >)|i ∈ [r], j ∈ [n]}.
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Permutations
Reminder. If the permutation has rank 4, then e, the identity
permutation, is the following: (1 → 1, 2 → 2, 3 → 3, 4 → 4).
Also, (12) means (1 → 2, 2 → 1, 3 → 3, 4 → 4), where the node
before the arrow corresponds to the left columns item and
the node after the arrow corresponds to the right columns
item in our problem.
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Example
Let the graph P4

s where s = (1234), (12), (23), e, (1234). For the
first s = (1234), we observe that the 1st node (1) of the first
column is connected with the 2nd node (6) of the second
column, etc.
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Lemma
Let Bc

n result from Ac
n by replacing any number of parts PQi

by the part PQj , for pairs σi, σj ∈ A. Then Ac
n ∼m Bc

n.

This lemma tells us that if we transplant PQi with PQj , then
the colors of the graphs remain the same. But, even if the
colors remain the same, the structure of the graphs is not
the same, as An is connected but Bn is not. We conclude
that connectivity is not expressible in SO∃(monadic)(wo≤).
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Thank you!
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