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Selfish routing

• In mechanism design, we studied how to enforce a 

particular strategy (the truthful one) 

• We designed the rules of the game so that being truthful 

was a dominant strategy of the game

• In many other settings, we cannot design a game from 

scratch

• But we can observe or recommend strategies

• Goal: Evaluate the equilibria of a game, as the outcomes 

more likely to occur
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Non-atomic selfish routing
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Nonatomic selfish routing

Informal description

•Consider a directed graph depicting a network

•Users want to send traffic from a start point to some end 

point

•Each user controls an infinitesimally small quantity of traffic

•The traffic needs to cross the edges of a path to reach the 

destination

•Each edge incurs a cost (time delay, etc)

•The cost depends on the traffic volume crossing the edge
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Pigou's Example

[Pigou 1920]: One unit of traffic wants to go from s to t

Q: what will selfish network users do?

• assume everyone wants smallest-possible cost

s t

c(x)=x

c(x)=1

cost depends on congestion

no congestion effects
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Pigou's Example

Claim: All traffic will take the top link

Reason:
• Suppose an ε-fraction of traffic takes the bottom link

• 1-ε on the upper link

• The users on the bottom link are envious

• Only way to have an equilibrium is for everybody to take the top link

• Average delay = 1

s t

c(x)=x

c(x)=1
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Can We Do Better?
• We take the average delay as a metric for the network performance

• Consider instead: traffic split equally

Improvement:

• half of the traffic has cost 1 (same as before)

• half of the traffic has cost ½ (much improved!)

• Average delay: ½  1 + ½  ½ = ¾  

s t

c(x)=x

c(x)=1

Flow = ½

Flow = ½
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Braess Paradox

   Initial Network:

s t

x 1

x1

• Suppose again 1 unit of traffic 

wants to go from s to t

• Equilibrium flow: equal split

• ½ of the traffic takes the upper 

route

• The rest take the bottom route

• In any other split some users will 

have incentives to deviate



9

Braess Paradox

   Initial Network:

s t

x 1
½

x1
½

½

½

Delay in each route = ½ + 1 = 1.5

Average delay = 3/2 

• Suppose the government is thinking of adding 1 very 

fast new road to help decrease the congestion
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Braess Paradox

   Initial Network:                     Augmented Network:

s t

x 1

x1

s t

x 1

x1

0

• What will the network users do in the augmented 

network?

• Unique equilibrium to use the route with the fast road
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Braess Paradox

   Initial Network:                    Augmented Network:

All traffic incurs more cost! [Braess ’68]

s t

x 1
½

x1
½

½

½

 Cost = 1.5  Cost = 2

s t

x 1

x1

0
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Selfish Routing Games

Formal description:

•directed graph G = (V,E)

•source-destination pairs (s1,t1), …, (sk,tk)

•ri = amount of traffic that needs to go from si to ti

– The traffic can be split into different paths from si to ti

•for each edge e, a cost function ce()

– Assumed continuous, non-negative, and nondecreasing

– Depends on the traffic crossing edge e

– Usually expresses the delay of the traffic crossing edge e
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Selfish Routing Games
Players

– Each player controls an infinitesimally small amount of flow 
• cars in a road network 
• packets in a network

Outcomes of a selfish routing game: feasible flows

– Need to specify the flow routed on every path connecting some s i to ti

– For an si-ti path p, fP = amount of traffic choosing p

Feasible flow vectors:

– fp ≥ 0, for every path p connecting some si to ti

– For i=1,..., k, total flow on all si-ti paths must equal the demand ri
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Selfish Routing Games
Consider a feasible flow f 

– f can be written as a vector specifying the flow fp for every path p 
connecting some si to ti

– Let Pi = set of all distinct paths from si to ti

– Let Pall = i Pi = all the paths in the graph that are of interest to us

– f has a coordinate fp for every p  Pall

Representation as an edge flow vector:
– We can also write f as a vector along edges of the graph

– For every edge e, fe = Σp: ep fp

– We need this representation since the delay is evaluated per edge
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Selfish Routing Games

Example:

•As a path vector we would need to specify 3 values for the 3 

possible paths

•Let
– p1 be the upper path

– p2 be the bottom path

– p3 be the path using the fast link

•A feasible flow for 1.2 units of traffic: f = (0.5, 0.3, 0.4)

•As an edge flow vector: 
– sum in each edge e the flow that goes through e

– E.g., for the upper rightmost edge: fe = 0.9  

s t

x 1

x1

0
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Utility functions vs latencies
• To complete the description of the game, we need to define 

the utility function of a player

• Each player here is choosing a path

• It is more convenient to talk about latency/cost rather than 

utility

• Given a feasible flow f

– Latency/cost on an edge e: ce(fe) =  cost experienced by the traffic 

going through edge e

– Latency/cost on a path p  Pall: cp(f) = Σep ce(fe)
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Equilibrium flows
• When can we say that a flow is at equilibrium?

• When no arbitrarily small quantity of traffic can have an 

incentive to deviate

• Consider a feasible flow f, and a player controlling a δ 

amount of flow, who has chosen a path p1  Pi

• New flow after a deviation to a path p2: 

f’ = 

fp – δ,  if p = p1

fp + δ,  if p = p2

fp,        o.w.

• Definition: A feasible flow f is a Nash equilibrium flow if for 

any i = 1, ..., k, any p1, p2  Pi, with fp1>0,  and δ  [0, fp1]

cp1(f) ≤ cp2(f’)
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Equilibrium flows

Due to continuity of the cost functions:

Equivalent definition: [Wardrop ’52] A flow f is a Nash flow if for 

any i = 1, ..., k, and any p1, p2  Pi, with fp1 > 0, 

cp1(f) ≤ cp2(f)

I.e., all flow is routed on min-cost paths [given current edge congestion]

x

s t
1Examples of non-

equilibrium flows:

½

½

s t

x 1

x1

0
½

½



Existence

• When can we guarantee that a Nash flow exists?

• Lemma: If the cost function of every edge is continuous and 

non-decreasing, then the game admits a Nash flow with 

pure strategies

• Existence can be actually guaranteed for a wider class of 

congestion games (next lecture)

• Main conclusion: no matter how complex the network is, 

there is a way that the users can reach an equilibrium
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Wardrop Equilibrium (Nash flow)

A feasible flow is a Wardrop equilibrium if for 
every commodity i :                                                 

Intuitively, no player has incentive to deviate

Moreover:

∀p, q ∈ Pi, fp > 0 : cp(f) ≤ cq(f)

∀p, q ∈ Pi : fp > 0, fq > 0⇒ cp(f) = cq(f)



Existence and Uniqueness

Let

Assume f is an equilibrium flow. 

Change f to a feasible flow f� that differs with f in only two 
paths (p, q) of the same commodity:

Φ(f) :=
P

e∈E
R fe
0
ce(x)dx

f 0p = fp − δ, f 0q = fq + δ

Φ(f 0)− Φ(f) =Pe∈p∪q
R f 0e
0
ce(x)dx−

P
e∈p∪q

R fe
0
ce(x)dx

⇓
Φ(f 0)− Φ(f) =Pe∈q−p

R fe+δ
fe

ce(x)dx−
P

e∈p−q
R fe
fe−δ ce(x)dx⇓

for δ → 0 :
Φ(f 0)− Φ(f) ≈Pe∈q−p δce(f

0
e)−

P
e∈p−q δce(fe) = δ(cq(f

0)− cp(f)) ≥ 0



Existence and Uniqueness

Consider the convex program CP:

By Karush-Kuhn-Tucker optimality conditions:

min Φ(f) :=
P

e∈E
R fe
0
ce(x)dx

so thatP
p∈Pi fp = ri, ∀i ∈ {1 . . . k}

fe =
P

p∈P :e∈p fp, ∀e ∈ E
fp ≥ 0, ∀p ∈ P

A feasible �ow f is optimal for CP
m

h0p :=
P

e∈p(
R fe
0
ce(x)dx)

0 ≤Pe∈q(
R fe
0
ce(x)dx)

0 = h0q,
∀i ∈ {1 . . . k}, ∀p, q ∈ Pi, fp > 0

m cp(f) ≤ cq(f)



Optimal Flow

A feasible flow f* is optimal if for every feasible flow x: 

Once again:

By KKT conditions

C(f∗) ≤ C(x)
³
C(f) =

P
e∈E fece(fe)

´

min
P

e∈E ce(fe)fe
so thatP

p∈Pi fp = ri, ∀i ∈ {1 . . . k}
fe =

P
p∈P :e∈p fp, ∀e ∈ E

fp ≥ 0, ∀p ∈ P

f∗ optimal ⇔ cp(f
∗) +

P
e∈p c

0
e(f

∗
e )f

∗
e ≤ cq(f∗) +

P
e∈q c

0
e(f

∗
e )f

∗
e ,

∀i ∈ {1 . . . k}, ∀p, q ∈ Pi, fp > 0



Evaluating equilibria

• To evaluate the performance of Nash equilibria, we need to 

consider the derived social welfare

• Social welfare vs social cost: Since we considered the 

cost/latency for each user, it is more natural to consider the 

social cost as our performance measure: i.e., the average 

delay experienced in the network

• Definition: Given a feasible flow f, the social cost of f is

C(f) = Σp fp cp(f) = Σe fe ce(fe)

• Theorem: All the equilibrium flows attain the same social 

cost

• Follows again from the fact that cost functions are continuous and 

non-decreasing 
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Price of Anarchy in selfish routing

Q: How bad are the equilibria of a selfish routing game?

•Let f* be an optimal flow (minimizing the social cost) and f be 

an equilibrium flow

•Given a class of selfish routing games, 

21

PoA = max C(f)/C(f*)

• The maximization is w.r.t. all the games of the class 

under consideration

• E.g., how bad is PoA for arbitrary cost functions?

• For special classes of cost functions?



Price of Anarchy in selfish routing

• Let’s start with linear (affine) cost functions

• Suppose that for every edge e, ce(fe) = aefe + be, for some 

constants ae, be 

• Recall that the examples of Pigou and Braess fall under this 

class

22

• Pigou’s example shows that PoA ≥ 4/3

• Can it get worse for more complex networks?

s t

c(x)=x

c(x)=1



How bad is selfish routing?

Theorem [Roughgarden, Tardos ’00]: For the class of selfish 

routing games with a linear cost function on each edge

PoA = 4/3
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• Independent of the network topology, no matter what the 

graph looks like!

• Pigou’s example achieves the worst-case scenario

• Main take-home message: If the cost functions are linear, 

selfish behavior cannot affect too much the network 

performance



How bad is selfish routing?

Main ingredients of the proof for linear cost functions

•Formulate the problem as a convex optimization problem
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The analysis of the convex program shows that

Lemma: A Nash flow of a given instance is an optimal flow 

for the instance where traffic is reduced to half (ri’ = ri/2)



How bad is selfish routing?

Main ingredients of the proof for linear cost functions

•Remaining proof relates the optimal flow with the optimal at 

half the traffic

•Main consequence from the proof: If every cost function is in 

the form ce = aefe (no constant term), then PoA = 1!

• No loss in performance in this case
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How bad is selfish routing?

• Generalizing: What about non-linear cost functions?

• It is natural to assume polynomial cost functions as the next 

step
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• PoA can become unbounded as p -> ∞

• But as long as we have low degree polynomials, PoA does 

not grow too much



How bad is selfish routing?

• Can we understand the worst-case scenarios under non-

linear cost functions?

• A non-linear Pigou-like network for polynomial cost 

functions of degree p:
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Theorem (informal statement): The worst-case PoA is 

achieved at Pigou-like networks

s t

c(x)=xp

c(x)=1



Price of Anarchy (PoA)

A measure for the inefficiency of the network:

Example:

ρ(G, r, c) = PoA := C(f)
C(f∗) , f an equilibrium �ow and f ∗ an optimal �ow

s t

c(x)=xFlow = ½

Flow = ½
c(x)=1

s t

c(x)=x Flow = 1

Flow = 0
c(x)=1

C(f∗) = ( 12 ) · ( 12 ) + 1
2 · 1 = 3

4 , C(f) = 1 and PoA =
C(f)
C(f∗) =

4
3

Optimal flow (OPT) and Equilirium flow (WE) 



Variational Inequality

Variational inequality:

� The      part: consider f* differing from f in two “same commodity”
paths by δ>0 units (for all commodities).

� The      part: same commodity “nonzero” paths are the cheapest 
of the commodity i and cost equal (say ci(f)). Thus

f Wardrop equilibrium ⇔P
e∈E ce(fe)fe ≤

P
e∈E ce(fe)f

∗
e , ∀f∗ feasible

X

p∈P
cp(f)fp ≤

X

p∈P
cp(f)f

∗
p ⇒

X

e∈E
ce(fe)fe ≤

X

e∈E
ce(fe)f

∗
e

⇐

⇒

X

e∈E
ce(fe)fe ≤

X

e∈E
ce(fe)f

∗
e ⇒

X

e∈p
ce(fe)

³
fe−(fe−δ)

´
≤
X

e∈q
ce(fe)

³
(fe+δ)−fe

´

X

i

X

p∈Pi
cp(f)fp =

X

i

ci(f)
X

p∈Pi
fp =

X

i

ci(f)
X

p∈Pi
f∗p =

X

i

X

p∈Pi
ci(f)f

∗
p ≤

X

p∈P
cp(f)f

∗
p



Bounding the PoA

Let f be an equilibrium flow and f* an optimal: 

We bound the last term:

Let                                                             where D 
is the family of the cost functions. We get

C(f) =
X

e∈E
ce(fe)fe ≤

X

e∈E
ce(fe)f

∗
e =

X

e∈E

³
ce(fe)f

∗
e + ce(f

∗
e )f

∗
e − ce(f∗e )f∗e

´
⇒

C(f) ≤
X

e∈E
ce(f

∗
e )f

∗
e +

X

e∈E

¡
ce(fe)−ce(f∗e )

¢
f∗e = C(f

∗)+
X

e∈E

¡
ce(fe)−ce(f∗e )

¢
f∗e

f∗e
³
ce(fe)−ce(f∗e )

´
≤ v(fe, ce)fece(fe), v(u, ce) =

1

uce(u)
maxx≥0{x(ce(u)−ce(x))}

v(ce) = supu≥0 v(u, ce) and v(D) = supce v(ce)

X

e∈E

¡
ce(fe)− ce(f∗e )

¢
f∗e ≤ v(D)

X

e∈E
ce(fe)fe ⇒ C(f) ≤ 1

1− v(D)C(f
∗)



Tightness

Assume that u units are to 
be routed from s to t.

At WE everybody goes up 
OPT minimizes:

Previous slide:

s t

c(x)

c(u)

Flow = k

Flow = u-k

PoA ≤
³
1− sup

ce∈D,u≥0
max
x≥0

{x(ce(u)− ce(x))}
uce(u)

´−1

kc(k) + (u− k)c(u)

PoA =
uc(u)

mink∈[0,v][(u− k)c(u) + kc(k)]
= max

k∈[0,v]

³
(1−k)+k c(k)

uc(u)

´−1
=
h
1− max

k∈[0,v]
k
¡c(u)− c(k)

uc(u)

¢i−1



Special cases

� For linear latency functions:
� For polynomial of degree d latency functions:

v(D) = 1
4 and PoA ≤ 4

3

1 unit is to be routed.
At WE everybody goes up
For                  OPT minimizes: 

It is                          and k = d

q
1
d+1

OPT = 1− d

(d+ 1)d+1/d

v(D) = d
(d+1)(d+1)/d

and PoA ≤
³
1− d

(d+1)(d+1)/d

´−1

s t

c(x)

c(1)

c(x) = xd

Flow = k

Flow = 1-kk · kd + (1− k)


