OIKONOMIKO ATHENS UNIVERSITY
MANENIETHMIO OF ECONOMICS
AOHNON AND BUSINESS

M.Sc. Program in Computer Science
Department of Informatics

Algorithmic Game Theory
Selfish Routing

Vangelis Markakis
markakis@gmail.com

Selfish routing

In mechanism design, we studied how to enforce a
particular strategy (the truthful one)

We designed the rules of the game so that being truthful
was a dominant strategy of the game

In many other settings, we cannot design a game from
scratch

But we can observe or recommend strategies

Goal: Evaluate the equilibria of a game, as the outcomes
more likely to occur

Non-atomic selfish routing

Nonatomic selfish routing

Informal description
*Consider a directed graph depicting a network

*Users want to send traffic from a start point to some end
point
*Each user controls an infinitesimally small quantity of traffic

*The traffic needs to cross the edges of a path to reach the
destination

*Each edge incurs a cost (time delay, etc)
*The cost depends on the traffic volume crossing the edge

Pigou's Example

[Pigou 1920]: One unit of traffic wants to go from sto t

c(x)=x _ cost depends on congestion

<S:> c(x)=1 ZE)

T—no congestion effects

Q: what will selfish network users do?
® assume everyone wants smallest-possible cost

Pigou's Example

Claim: All traffic will take the top link

c(x)=x

<S:> c(x)=1 ZE)

Reason:

Suppose an e-fraction of traffic takes the bottom link

1-€ on the upper link

The users on the bottom link are envious

Only way to have an equilibrium is for everybody to take the top link
Average delay = 1

Can We Do Better?

®* We take the average delay as a metric for the network performance
® Consider instead: traffic split equally

cx)=x __— Flow= %

/\
s) ([t
c(x)=1 -
Improvement: T Flow = 15

® half of the traffic has cost 1 (same as before)
® half of the traffic has cost % (much improved!)
® Averagedelay: % - 1+% - Y%o=%

Braess Paradox

Initial Network:

Suppose again 1 unit of traffic
wantsto gofromstot
Equilibrium flow: equal split

¥ of the traffic takes the upper
route

The rest take the bottom route
In any other split some users will
have incentives to deviate

Braess Paradox

Initial Network:

Delay in eachroute=%+1=1.5
Average delay = 3/2

* Suppose the government is thinking of adding 1 very
fast new road to help decrease the congestion

Braess Paradox

Initial Network: Augmented Network:

* What will the network users do in the augmented
network?
* Unique equilibrium to use the route with the fast road

10

Braess Paradox

Initial Network: Augmented Network:

Cost=1.5 Cost=2

All traffic incurs more cost! [Braess '68]

11

Selfish Routing Games

Formal description:

edirected graph G = (V,E)

®source-destination pairs (s.,tq), ..., (Si,ty)

*r, = amount of traffic that needs to go from s; to t;
- The traffic can be split into different paths from s, to t;

*for each edge e, a cost function c.()

- Assumed continuous, non-negative, and nondecreasing
- Depends on the traffic crossing edge e
- Usually expresses the delay of the traffic crossing edge e

12

Selfish Routing Games

Players

= Each player controls an infinitesimally small amount of flow
® carsin aroad network
® packets in a network

Outcomes of a selfish routing game: feasible flows
- Need to specify the flow routed on every path connecting some s; to t;
- For an s-t; path p, f, = amount of traffic choosing p

Feasible flow vectors:
- f, 20, for every path p connecting some s; to t;

- Fori=1,..., k, total flow on all s-t; paths must equal the demand r;

13

Selfish Routing Games

Consider a feasible flow f

- f can be written as a vector specifying the flow f, for every path p
connecting some s; to t;

- Let P, = set of all distinct paths from s; to t;
- Let P,, = U, P; = all the paths in the graph that are of interest to us
- f has a coordinate f, for every p € P,
Representation as an edge flow vector:
— We can also write f as a vector along edges of the graph
- Foreveryedgee, f.=2, ., f,

- We need this representation since the delay is evaluated per edge

14

Selfish Routing Games

Example:
®As a path vector we would need to specify 3 values for the 3
possible paths

®| et

= p1l be the upper path
— p2 be the bottom path
- p3 be the path using the fast link

* A feasible flow for 1.2 units of traffic: f = (0.5, 0.3, 0.4)

®*As an edge flow vector:
— sum in each edge e the flow that goes through e

- E.g., for the upper rightmost edge: f. = 0.9

15

Utility functions vs latencies

To complete the description of the game, we need to define
the utility function of a player

Each player here is choosing a path

It is more convenient to talk about latency/cost rather than
utility

Given a feasible flow f

- Latency/cost on an edge e: c.(f.) = cost experienced by the traffic
going through edge e

~ Latency/cost on a path p € P,;: ¢,(f) = 2ec, Celfe)

16

Equilibrium flows

When can we say that a flow is at equilibrium?

When no arbitrarily small quantity of traffic can have an
incentive to deviate

Consider a feasible flow f, and a player controlling a 6
amount of flow, who has chosen a path p, € P,

New flow after a deviation to a path p,:

f, -0, ifp=p,
f'=5 f,+5, ifp=p,
f O.W.

p’
Definition: A feasible flow f is a Nash equilibrium flow if for
anyi=1,..,kanyp,p, €P,withf >0, and & € [0, fpl]

¢ ,(F) < ¢ ,(F)

17

Equilibrium flows

Due to continuity of the cost functions:

Equivalent definition: [Wardrop '52] A flow f is a Nash flow if for
anyi=1,...,k,and any p4, p, € P;, with f,;, > 0,

Cpl(f) < Cp2 (f)

l.e., all flow is routed on min-cost paths [given current edge congestion]

T
Examples of non- %

%
equilibrium flows: ’

18

Existence

When can we guarantee that a Nash flow exists?

Lemma: If the cost function of every edge is continuous and

non-decreasing, then the game admits a Nash flow with
pure strategies

Existence can be actually guaranteed for a wider class of
congestion games (next lecture)

Main conclusion: no matter how complex the network is,
there is a way that the users can reach an equilibrium

19

Wardrop Equilibrium (Nash flow)
- 0]

A feasible flow is a Wardrop equilibrium if for
every commodity i :

\V/paqEP’bfp >O:Cp(f) ch(f)

Intuitively, no player has incentive to deviate

Moreover: Vp,q € P; : fp > Oafq > 0= Cp(f) — Cq(f)

Existence and Uniqueness
- 0000

Let ®(f) ==Y ocp [cola)da
Assume fis an equilibrium flow.

Change fto a feasible flow f’ that differs with fin only two
paths (p, q) of the same commodity: f, = f, =6, fi = fg +9

()~ B(f) = Yecpug Ji* jf<sc>dx ~ Y ecpug Ji cel)dz

D(f) = B(f) = Leeqp J7 " co(0)ds = Fecy-s Jf: s celw)da

for d = 0:

D(f') ~ B(f) % g p 0¢elll) = Seepg0¢elfe) = 8(ecq(f) — cp()) = 0

Existence and Uniqueness
- 0000

Consider the convex program CP:

min ®(f) == g Ji° ce(z)dz
so that

Zpepi fo=mri,Vie{l... k}

fe — ZpEP:eEp fpave ek

fp > O,Vp c P

By Karush-Kuhn-Tucker optimality conditions:
A feasible flow f is optimal for CP ep(f) < cq(f)

0 7

B =3, Je co(m)da) < S ey I co(w)da) = i,
Vie{l...k},Vp,qe€ P;, f, >0

Optimal Flow
-]

A feasible flow f* is optimal if for every feasible flow x:

C(f)<C@) () = Leep fecelf))

Once again: min) g ce(fe)fe
so that

ZPEPZ' fp — Ti,V’I: c {]. . k}
fe — ZpEP:eEp fpave ck
fp > O,Vp e P
By KKT conditions
f* optimal < ¢,(£7) + X e, ()2 < Cq(f) + Coeq b (FI7

Vie{l...k},Vp,qe P;, f, >0

Evaluating equilibria

To evaluate the performance of Nash equilibria, we need to
consider the derived social welfare

Social welfare vs social cost: Since we considered the
cost/latency for each user, it is more natural to consider the
social cost as our performance measure: i.e., the average
delay experienced in the network

Definition: Given a feasible flow f, the social cost of f is
C(f)=2_f c (f)=2_f_c(f.)

P p P e e "¢

Theorem: All the equilibrium flows attain the same social
cost
* Follows again from the fact that cost functions are continuous and

non-decreasing
20

Price of Anarchy in selfish routing

Q: How bad are the equilibria of a selfish routing game?

Let f be an optimal flow (minimizing the social cost) and f be
an equilibrium flow

*Given a class of selfish routing games,

PoA = max C(f)/C(f")

* The maximization is w.r.t. all the games of the class
under consideration

* E.g., how bad is PoA for arbitrary cost functions?

* For special classes of cost functions?

21

Price of Anarchy in selfish routing

Let’s start with linear (affine) cost functions
Suppose that for every edge e, c_(f,) = a_f_+ b_, for some
constants a_, b,

Recall that the examples of Pigou and Braess fall under this

class
c(x)=x

<SZ> c(x)=1 ZD

Pigou’s example shows that PoA > 4/3
Can it get worse for more complex networks?

22

How bad is selfish routing?

Theorem [Roughgarden, Tardos '00]: For the class of selfish
routing games with a linear cost function on each edge

PoA =4/3

* Independent of the network topology, no matter what the
graph looks like!

* Pigou’s example achieves the worst-case scenario

* Main take-home message: If the cost functions are linear,
selfish behavior cannot affect too much the network
performance

23

How bad is selfish routing?

Main ingredients of the proof for linear cost functions
*Formulate the problem as a convex optimization problem

min C(f) =) fe- ce(fe)

eckE
s. t.:
N fp=mi Vie{1,2,...,k}
peF;
fe=)_ fos Ve € E
pecp
fp=0 Vp € Py

The analysis of the convex program shows that
Lemma: A Nash flow of a given instance is an optimal flow

for the instance where traffic is reduced to half (r,’ =r,/2)
24

How bad is selfish routing?

Main ingredients of the proof for linear cost functions

*Remaining proof relates the optimal flow with the optimal at
half the traffic

*Main consequence from the proof: If every cost function is in
the form c_ = a f, (no constant term), then PoA = 1!

* No loss in performance in this case

25

How bad is selfish routing?

* Generalizing: What about non-linear cost functions?

* Itis natural to assume polynomial cost functions as the next

step
Description | Typical Representative Price of Anarchy
Linear ar + b 4/3
: 2 3vV3 .
Quadratic ar® + bxr + ¢ 3\/_%/12 ~ 1.6
. 3 2 4v4
Cubic ar® +br* +cx +d 1913 ~ 1.9
Quartic axt 4+ b3 4+ cx? +dr + e 5_‘1?/% ~ 2.2
P () ¥p+l p
Degree < p "o a; T oD Vot ~ Tnp

* PoA can become unbounded as p -> oo

* But as long as we have low degree polynomials, PoA does
not grow too much

26

How bad is selfish routing?

* (Can we understand the worst-case scenarios under non-
linear cost functions?

* A non-linear Pigou-like network for polynomial cost
functions of degree p:

c(x)=xP
<S:> c(x)=1 ZE)

Theorem (informal statement): The worst-case PoA is
achieved at Pigou-like networks

27

Price of Anarchy (PoA)

A measure for the inefficiency of the network:

p(G,r,c) = PoA := W@V f an equilibrium flow and f* an optimal flow

Example: Optimal flow (OPT) and Equilirium flow (WE)

Flow=% c(X)=x C(X)=X " Flow =1
Ci c(x)= E) Cz c(x)=1 j)
Flow = Flow=0

C(f)=(3)(3)+5-1=32,C(f)=1and POA:ﬂgScf*) =z

Variational Inequality
S

Variational inequality:
f Wardrop equilibrium < > __pce(fe)fe < D ocpce(fe) f2,Vf* feasible

e The < part: consider f* differing from fin two “same commodity”
paths by >0 units (for all commodities).

S celflfe <D celffs = S celf) (fom(f=0)) <3 celfo)((feto)-f.)

ecl eckE ecp ecq

e The = part: same commodity “nonzero” paths are the cheapest
of the commodity i and cost equal (say c,(f)). Thus

2.2 alf Z Ny fh= Z (DS =S wlh)fr < elh)f

i peP; pEeP; peP; 1 peP; peP

S N <Y D)y = Y celfo)fe <Y celfo)f

peEP peP eck eck

Bounding the PoA
- 00000

Let f be an equilibrium flow and f* an optimal:
C) =D celfelfe <D0 celfel i = 3 (Celfel fi + el fV 2 — el JIZ) =

C(f) < D celf i+ (celfe) —cel£)) f2 = CU)+ Y (celfe) —ee(f2)) £

We bound the last term:

72 (ecF)—eel52)) < olferee) Fecolfo), vluee) = —

uce(u)

maazmzo{x(ce (U) _Ce(x))}

Let v(Ce) = sup, > v(u, ce) and v(D) = sup,._v(ce.) where D
Is the family of the cost functions. We get

> (eclfe) = eclf) 12 < 0(D) P aelf)fe = OU) < =5 €U

eckE eckE

Tightness
]

Assume that u units are to Flow = k c(x)
be routed from s to t.

At WE everybody goes up Flow = U=
OPT minimizes: kc(k) + (u — k)c(u) c(u)

B uc(u) e B c(k) \ 1 — 1 max c(u) — c(k)
o = A icou (@ — R(w) T Re®)] — r) (1-k)+k uc(u)) ! e (==

Previous slide: PoA < <1 ~ sup max {z(ce(u) — ce(:c))}>—1

ce€Du>0 >0 uce(u)

Special cases
000000

e For linear latency functions: v(D) = 1 and PoA <
e For polynomial of degree d latency functions:

~1
v(D) = (d+1)§ld+1>/d and PoA < (1 — (d+1)§ld+1)/d>

QO [~

1 unit is to be routed. Flow = k c(x)

At WE everybody goes up

For c(z) = < OPT minimizes:
k-k?+(1—k) Flow = T-

c(1)
d

' __ d/_1_ 1 _
Itis k = dd—|—1 and OPT =1 (d+1)d+1/d

