Improving Selfish Routing

Algorithmic Game Theory '20

ΑΛΜΑ, ΣΗΜΜΥ

Improving Selfish Routing

2 Tolls to Improve Equilibria

- 3 Braess Paradox and Network Design
- 4 Stackelberg Strategies

Selfish Routing

Selfish users traveling on a network

Improving Selfish Routing

Selfish routing

Selfish users traveling on a network

- Graph G = (V, E),
- Vertices $s_i, t_i \in V$,
- Edge functions $\ell_e(x)$
- Demands that consists of infinite infinitesimally small selfish players.

Users minimize their cost: $\ell_p(x) := \sum_{e \in p} \ell_e(x)$

Optimal and Equilibrium Flows

Social cost of flow *x*

$$SC(x) = \sum_{p} x_{p}\ell_{p}(x) = \sum_{e} x_{e}\ell_{e}(x_{e})$$

Optimal flow, x^*

minimizes the social cost:

$$x^* = \arg\min_{x \text{ flow}} \{SC(x)\}$$

Equilibrium flow, *f*

For any commodity all positive flow paths have minimum costs. Property:

$$f = \arg\min_{x \text{ flow}} \Phi(x) := \sum_{e \in E} \int_0^{x_e} \ell_e(x) \, dx$$

Optimal vs Equilibrium Flow

$$SC(x) = \sum_{e} x_e \ell_e(x_e) \operatorname{vs} \Phi(x) = \sum_{e \in E} \int_0^{x_e} \ell_e(x) \, dx$$

Feasible region:

$$egin{aligned} &\sum_{p\in P_i} x_p = d_i, & commod. & &\sum_{e\in \delta^-(u)} x_e = \sum_{e\in \delta^+(u)} x_e, & nodes \ & x_e = \sum_{p\in \mathcal{P}} x_p, & edges & x_{s_i}\in \delta^-(s_i), & x_{t_i}\in \delta^+(t_i) \end{aligned}$$

Variational Inequality \rightarrow PoA bound

$$\sum_{e} f_e \ell_e(f_e) \leq \sum_{e} x_e^* \ell_e(f_e) = \sum_{e} x_e^* \ell_e(x_e^*) + \sum_{e} x_e^* (\ell_e(f_e) - \ell_e(x_e^*))$$
$$\leq \sum_{e} x_e^* \ell_e(x_e^*) + \beta(\mathcal{L}) \sum_{e} f_e \ell_e(f_e) \Rightarrow PoA(\mathcal{L}) \leq \frac{1}{1 - \beta(\mathcal{L})}$$

The Power of Tolls

Introducing tolls on edges:

- Each user now minimizes $\ell_p(x) + \sum_{e \in p} t_e$
- Users' equilibrium minimizes

$$x(t) = \arg\min_{y \text{ flow}} \Phi_t(y) := \sum_{e \in E} \int_0^{y_e} (\ell_e(y) + t_e) \, dy$$

• Marginal tolls, i.e. $\hat{t}_e := x_e^* \ell'_e(x_e^*)$, are optimal:

$$x^* = x(\hat{t}) = \arg\min_{y \text{ flow}} \sum_{e \in E} \int_0^{y_e} (\ell_e(y) + \hat{t}_e) \, dy$$

Improving Selfish Routing

Uniqueness of Tolls?

<ロ > < 回 > < 回 > < 回 > < 回 > < Ξ. 5900

Improving Selfish Routing

Goal: Minimize the payments while inducing the optimal flow at NE.

$$\min \sum_{e \in E} x_e^* t_e$$

$$\nu_u - \nu_v + t_e = -\ell_e(x_e^*) \quad \forall e = (u, v) : x_e^* > 0$$

$$\nu_u - \nu_v + t_e \ge -\ell_e(x_e^*), \quad \forall e = (u, v) : x_e^* = 0$$

$$t \ge 0$$

Algorithmic Game Theory '20

Improving Selfish Routing

< □

< 돈 ▶ < 돈 ▶

E.

Tolls for Heterogeneous Users

Introducing tolls on edges:

- User of sensitivity a_i minimizes $\ell_p(x) + a_i \sum_{e \in p} t_e$ (or $\frac{1}{a_i} \ell_p(x) + \sum_{e \in p} t_e$)
- Users' equilibrium minimizes ????
- Marginal tolls are no more optimal (in general)

Improving Selfish Routing

∃ ▶

- < ∃ > _

Ξ.

A Magic LP

Let *g* be a flow to be enforced.

$$\begin{array}{lll} \text{minimize} & \sum_{i} a_{i} \sum_{p \in P_{i}} c_{p}(g) f_{p}^{i} & \text{maximize} & \sum_{i} d_{i} z_{i} - \sum_{e \in E} g_{e} t_{e} \\ \text{so that} & \text{so that} \\ \forall e \in E : & \sum_{i} \sum_{p \in P: e \in p} f_{p}^{i} \leq g_{e} & (1) \quad \forall i \forall p \in P_{i} : & z_{i} - \sum_{e \in p} t_{e} \leq a_{i} c_{p}(g) \\ \forall i : & \sum_{p \in P_{i}} f_{p}^{i} = d_{i} & (2) \quad \forall e \in E : & t_{e} \geq 0 \\ \forall i \forall p \in P_{i} : & f_{p}^{i} \geq 0 & (3) \end{array}$$

- (feasible) g is minimal if inequality 1 is tight (for all *e*)
- g is enforceable if there are tolls to enforce it on equilibrium.

g minimal <u>iff</u> g enforceable

"
$$\Rightarrow$$
": $f_e = g_e$ and $f_p^i > 0 \Rightarrow z_i = a_i c_p(g) + \sum_{e \in p} t_e$
" \Leftarrow ": There are tolls for which g is Nash, thus
 $g_p^i > 0 \Rightarrow z_i := a_i c_p(g) + \sum_{e \in p} t_e$
 $\Rightarrow g$ and (z,t) complementary

$$\begin{array}{lll} \text{minimize} & \sum_{i} a_{i} \sum_{p \in P_{i}} c_{p}(g) f_{p}^{i} & \text{maximize} & \sum_{i} d_{i} z_{i} - \sum_{e \in E} g_{e} t_{e} \\ \text{so that} & \text{so that} \\ \forall e \in E : & \sum_{i} \sum_{p \in P: e \in p} f_{p}^{i} \leq g_{e} & (1) \ \forall i \forall p \in P_{i} : & z_{i} - \sum_{e \in p} t_{e} \leq a_{i} c_{p}(g) \\ \forall i : & \sum_{p \in P_{i}} f_{p}^{i} = d_{i} & (2) \quad \forall e \in E : & t_{e} \geq 0 \\ \forall i \forall p \in P_{i} : & f_{p}^{i} \geq 0 & (3) \end{array}$$

Is optimal *g* minimal??

If not, reduce g_e 's up to right before losing feasibility: $C(g^*) \leq C(g)$

Generalizations:

- *g* can minimize any non-decreasing function, not only the Social Cost
- player specific latencies
- proves existence of tolls for continuous heterogeneity

< E ▶

₹.

Other Toll Directions

- Tolls affect the Social Cost
- Upper bounds on the tolls
- Use tolls on the minimum number of edges
- Profit maximizers operate tolls
 - Existence of equilibria?
 - Optimality?

And of course atomic players!!

Improving Selfish Routing

▲ 글 ▶

< ≣ ▶

Ξ.

Braess Paradox and Network Design

- <u>Problem</u>: route traffic in a network of selfish non-cooperative players.
- <u>Motivation</u>: simple examples show that Nash equilibria can be inefficient (Price of Anarchy).
- <u>Question</u>: which subnetwork will exhibit the best performance when used selfishly?

< ∃ ►

Э.

Braess's Paradox

Algorithmic Game Theory '20

Improving Selfish Routing

< ロ > < 団 > < 国 > < 国 > < 国 > < 回 < つ < ()

Problem

Given an instance (G, r, I), find a subgraph H of G that minimizes L(H, r, I).

Algorithmic Game Theory '20

Improving Selfish Routing

Lemma

For every instance (G, r, I), L(G, r, I) is a non-decreasing function of r.

Lemma

Let f be a flow feasible for (G, r, l). For a vertex v in G, let d(v) denote the length, with respect to edge lengths $\{I_e(f_e)\}_{e \in E}$ of a shortest s - v path in G. Then f is at Nash equilibrium iff

$$d(w) - d(v) \le I_e(f_e)$$

for all edges e = (v, w), with equality holding whenever $f_e > 0$.

Lemma

If f is a flow at NE for (G, r, I), then $C(f) = r \cdot L(G, r, I)$.

< 문 ▶ < 문 ▶

Э.

We consider latency functions of the form $l_e(x) = a_e x + b_e$, a_e , $b_e \ge 0$. We then call the problem the LINEAR LATENCY NETWORK DESIGN. It is known that the price of anarchy in such networks is at most $\frac{4}{3}$.

Trivial Algorithm

Given an instance (G, r, I), build the whole network G.

Lemma (Roughgarden - Tardos)

Let f^* and f be feasible and Nash flows, respectively, for an instance (G, r, l) with linear latency functions. Then,

$$C(f) \leq \frac{4}{3} \cdot C(f^*).$$

∃ ▶

< ∃ →

Corollary

The trivial algorithm is a $\frac{4}{3}$ -approximation algorithm for LINEAR LATENCY NETWORK DESIGN.

Απόδειξη.

- Let *H* be the subgraph that minimizes *L*(*H*, *r*, *l*), and *f* and *f*^{*} be the flows at NE for (*G*, *r*, *l*) and (*H*, *r*, *l*).
- $C(f) = r \cdot L(G, r, I)$ and $C(f^*) = r \cdot L(H, r, I)$.
- f^* feasible for (G, r, I), thus $C(f) \leq \frac{4}{3}C(f^*)$.
- Hence, $L(G, r, l) \leq \frac{4}{3}L(H, r, l)$.

Э.

Optimality of the Trivial Algorithm (1 / 3)

Theorem

For every $\epsilon > 0$, there is no $\frac{4}{3} - \epsilon$ -approximation algorithm for LINEAR LATENCY NETWORK DESIGN, assuming $P \neq NP$.

We will use a reduction from the 2 DIRECTED DISJOINT PATHS (2DDP) problem: given a directed graph G = (V, E) and distinct vertices $s_1, s_2, t_1, t_2 \in V$, are there $s_i - t_i$ paths P_i for i = 1, 2, such that P_1 and P_2 are vertex-disjoint? 2DDP is NP-complete.

Improving Selfish Routing

.∃ ▶

I = I

Optimality of the Trivial Algorithm (2 / 3)

Απόδειξη.

- If algorithm returns a subgraph *H* with *L*(*H*, 1, *l*) < 2, then "yes" instance of 2DDP, else "no".
- If "yes" instance, let P_1 and P_2 be vertext disjoint $s_1 t_1$ and $s_2 t_2$ paths. Obtain H by deleting all other edges. Observe now that $L(H, 1, I) = \frac{3}{2}$ (1/2 routed in $s_1 \rightarrow t_1 \rightarrow t$ and 1/2 in $s_2 \rightarrow t_2 \rightarrow t$). So, $ALG \leq \frac{4}{3} \epsilon + \frac{3}{2} < 2$.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Э.

SQ (?

Optimality of the Trivial Algorithm (3 / 3)

Proof (continued).

- We will prove that if "no" instance, then L(H, 1, I) ≥ 2 for all subgraphs of G', and so ALG ≥ 2.
- Split subgraphs of G' in 3 groups: (i) those with an s₂ − t₁ path, (ii) those with an s₁ − t₂ path and (iii) those with an s_i − t_i path for exactly one i ∈ {1,2}.
- In all cases, routing flow in such a path gives NE and L(H) = 2.
- Thus, $ALG \ge OPT \ge 2$, and so we solve 2DDP.

.∃. ▶

(▲ 臣) 문 :

- Efficiently detecting Braess's Paradox in networks with linear latency functions is impossible (i.e. NP-hard). This holds even in the most severe cases, where $PoA = \frac{4}{3}$.
- However, by restricting our linear latency functions only to strictly increasing ones, we can get positive results!

< ∃ > _

3

For instances with strictly increasing linear latencies, the optimal flow is **unique** and can be efficiently computed.

Definition

An instance (G, r, I) is called *paradox-free* if for every subgraph H of G, $L(H, r, I) \ge L(G, r, I)$. An instance (G, r, I) is called *paradox-ridden* if there is a subgraph H of G, such that $L(H, r, I) = L^*(G, r, I) = L(G, r, I)/PoA(G, r, I) \le L(G, r, I)$.

<u>Note</u>: In a paradox-free instance PoA cannot be improved by edge removal.

Lemma

An instance (G, r, I) with G = (V, E) is paradox-ridden iff there is an optimal flow f^* that is a Nash flow on the subgraph $G^*(V, E^*)$, where $E^* = \{e \in E : f_e^* > 0\}.$

÷.

Theorem (Fotakis, Kaporis, Spirakis)

Given an instance (G, r, l) with strictly increasing linear latencies, one can decide in polynomial time whether the instance is paradox-ridden or not.

Απόδειξη.

- We can efficiently compute the *unique* optimal flow *f**.
- We then compute the length *d*(*v*) of a shortest *s* − *v* path wrt edge lengths {*I*_e(*f*^{*}_e)}_{*e*∈*E*^{*}} for all *v* ∈ *V*.
- f^* Nash flow $\Leftrightarrow \forall (u, v) \in E^*, d(v) = d(u) + I_{(u,v)}(f^*_{(u,v)}).$

< ∃ >

Э.

Towards a Positive Result for Arbitrary Linear Latencies

- As already stated, we cannot decide whether an instance with arbitrary linear latencies is paradox-ridden or not.
- However, we can reach sufficient conditions under which we can answer the above question.
- Let (*G*, *r*, *l*) be an instance with *l_e*(*x*) = *a_e*(*x*) + *b_e* and
 E^c = {*e* ∈ *E* : *a_e* = 0}. Let *Eⁱ* = *E* \ *E^c* and let *O* be the set of optimal flows.

<u>Note</u>: All optimal flows assign the same traffic to the edges with strictly increasing latencies, and can differ only on edges with constant latencies. This motivates the following LP formulation, given a **fixed** optimal flow *o*.

'문 ▶ ◀ 문 ▶ ' 문

An LP formulation

(LP):

$$\begin{split} \min & \sum_{e \in E^c} f_e b_e, \quad s.t.: \\ \sum_{u:(v,u) \in E^i} o_{(v,u)} + \sum_{u:(v,u) \in E^c} f_{(v,u)} = \sum_{u:(u,v) \in E^i} o_{(u,v)} + \sum_{u:(u,v) \in E^c} f_{(u,v)} \\ & \forall v \in V \setminus \{s,t\}, \\ \sum_{u:(s,u) \in E^i} o_{(s,u)} + \sum_{u:(s,u) \in E^c} f_{(s,u)} = r, \\ & \sum_{u:(u,t) \in E^i} o_{(u,t)} + \sum_{u:(u,t) \in E^c} f_{(u,t)} = r, \end{split}$$

 $f_e \geq 0 \qquad \forall e \in E^c.$

Improving Selfish Routing

< ロ > < 団 > < 国 > < 国 > < 国 > < 国 < の < ()

- An optimal solution to (LP) corresponds to a feasible flow for (*G*, *r*, *l*) that agrees with *o* on all edges in *Eⁱ* and allocates traffic to the edges in *E^c* so that the total latency is minimized.
- Optimal solutions to (LP) $\leftrightarrow 1 1$ Optimal flows in \mathcal{O} .
- Given an optimal flow o, the problem of checking if there is a *o* ∈ *O* that is a Nash flow on *G_o* reduces to the problem of generating all optimal solutions of (LP) and checking whether some of them can be translated into a Nash flow on the corresponding subnetwork.
- This can be performed in polynomial time if (LP)'s optimal solution is unique.

-

< ∃ >

3

A Positive Result for Arbitrary Linear Latencies (1 / 2)

Theorem

Given an instance (G, r, I) with arbitrary linear latencies where the corresponding (LP) has a unique optimal solution, one can decide in polynomial time whether the instance is paradox-ridden or not.

<u>Note</u>: In fact, it suffices to generate all optimal basic feasible solutions, as the (LP) allocates traffic to constant latency edges. Observe that if a feasible flow f is a Nash flow, then any solution f with $\{e : f_e > 0\} \subseteq \{e : f_e > 0\}$ is a Nash flow, too.

< ∃ ►

Э.

A Positive Result for Arbitrary Linear Latencies (2 / 2)

Theorem

Given an instance (G, r, l) with arbitrary linear latencies where the corresponding (LP) has a polynomial number of basic feasible solutions, one can decide in polynomial time whether the instance is paradox-ridden or not.

<u>Note</u>: The above class includes instances with a constant number of constant latency edges.

< ∃ >

Э.

Finding Near-Optimal Subnetworks

- In general, finding optimal subnetworks in paradox-ridden instances is NP-hard.
- However, we can reach a subexponential-time approximation scheme on networks with polynomially many paths, each of polylogarithmic length.
- For this purpose, we need to turn our attention to "sparse" flows and $\varepsilon\text{-Nash}$ flows.

Definition (ε -Nash flow)

For some $\varepsilon > 0$, a flow *f* is an ε -Nash flow if for every path *P* and *P'* with $f_P > 0$, $I_P(f) \le I_{P'}(f) + \varepsilon$.

▲ 글 ▶

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Lemma (Fotakis, Kaporis, Spirakis)

Let (G, 1, I) be an instance on a graph G = (V, E), and let f be any feasible flow. For any $\varepsilon > 0$, there exists a feasible flow \tilde{f} that assigns positive traffic to at most $\lfloor \log(2m)/(2\varepsilon^2) \rfloor + 1$ paths, such that $|\tilde{f}_e - f_e| \le \varepsilon$, $\forall e \in E$.

Απόδειξη.

- Let $\mu = |\mathcal{P}|$, and we index the s t paths by integers in $[\mu]$.
- Flow f can be seen as a probability distribution on \mathcal{P} .
- We prove that if we select k > log(2m)/(2ε²) paths uniformly at random with replacement according to f, and assign to each path j a flow equal to the number of times j is selected divided by k, we obtain a flow that is an ε-approximation to f with positive probability. (Probabilistic Method)

Э.

Proof (continued).

- Fix ε and let $k = \lfloor \log(2m)/(2\varepsilon^2) \rfloor + 1$.
- Define random variables $P_1, ..., P_k \in [\mu]$, i.i.d., such that $P[P_i = j] = f_j$.
- For each path $j \in [\mu]$, $F_j = |\{i \in [k] : P_i = j\}| / k$. Note that $\mathbf{E}[F_j] = f_j$.
- For each edge *e* and random variable P_i , define the independent indicator variables $F_{e,i} = 1$ if *e* in path P_i , otherwise 0.
- Let $F_e = \frac{1}{k} \sum_{i=1}^{k} F_{e,i}$. Observe that $F_e = \sum_{j:e \in j} F_j$ and $\mathbf{E}[F_e] = f_e$.

Making a Flow "Sparse" (3 / 3)

Proof (continued).

- Note that ∑_{j=1}^µ F_j = 1. Thus, F₁, ..., F_µ define a feasible flow that assignes positive traffic to at most *k* paths and "agrees" with *f* on expectation.
- By the Chernoff-Hoeffding bound we get that for every edge *e*

$$P[|F_e - f_e| > \varepsilon] \le 2e^{-2\varepsilon^2 k} < 1/m$$

- Thus, by union bound, $P[\exists e : |F_e f_e| > \varepsilon] < m(1/m) = 1$.
- So, there is positive probability that the flow (*F*₁, ..., *F*_μ) satisfies
 |*F_e − f_e*| ≤ ε, ∀*e* ∈ *E*. Thus, there exists a flow *f* with the properties of
 (*F*₁, ..., *F_μ*).

E.

Theorem

Let $(G(V, E), 1, \{a_ex + b_e\}_{e \in E})$ be an instance, $\alpha = \max_{e \in E}\{a_e\}$, and let H^B be the best subnetwork of G. For some constants $d_1, d_2 > 0$, let $|\mathcal{P}| \leq m^{d_1}$ and $|\mathcal{P}| \leq \log^{d_2} m$, for all $\mathcal{P} \in \mathcal{P}$. Then, for any $\varepsilon > 0$, we can compute in time $m^{O(d_1\alpha^2 \log^{2d_2+1}(2m)/\varepsilon^2)}$ a flow \tilde{f} that is an ε -Nash flow on $G_{\tilde{f}}$ and satisfies $I_{\mathcal{P}}(\tilde{f}) \leq L(H^B, 1, \{a_ex + b_e\}_{e \in E(H^B)}) + \varepsilon/2$, for all paths $\mathcal{P} \in G_{\tilde{f}}$.

Improving Selfish Routing

Theorem (Barman: approximate version of Caratheodory's Theorem)

Let X be a set of vectors $X = \{x_1, ..., x_n\} \subset \mathbb{R}^d$ and $\epsilon > 0$. For every $\mu \in conv(X)$ and $2 \leq p \leq inf$ there exist an $O(\frac{p\gamma^2}{\epsilon^2})$ uniform vector $\mu' \in conv(X)$ such that $||\mu - \mu'||_p \leq \epsilon$, where $\gamma = \max_{x \in X} ||x||_p$.

How to apply:

- Let X be the set of different paths described by an "edge"vector: path containing e₁, e₂ and e₆ out of 7 edges corresponds to (1, 1, 0, 0, 0, 1, 0).
- Any flow can be seen as a convex combination of the x_i 's and vice versa.
- There are $|X|^{O(\frac{p\gamma^2}{\epsilon^2})}$ different $O(\frac{p\gamma^2}{\epsilon^2})$ uniform vectors.
- Enumerate, evaluate and keep the one of lowest cost
General Latency Functions

- We will now consider general (continuous, non-decreasing) latency functions (we call this problem the GENERAL LATENCY NETWORK DESIGN).
- We will see that the trivial algorithm is still the best thing we can do. However, the approximation factor gets worse.
- In order to prove the above, we will need new techniques, as in networks with general latency functions, a Nash flow can be arbitrarily more costly than other feasible flows.

< ∃ →

E.

500

The Trivial Algorithm for GENERAL LATENCY NETWORK DESIGN

Theorem

The trivial algorithm is a $\lfloor n/2 \rfloor$ -approximation algorithm for GENERAL LATENCY NETWORK DESIGN.

- *f* Nash flow, *o* best subnetwork's Nash flow
- $A = \{e : o_e \ge f_e\}$ and $B = \{e : o_e < f_e\}$

For the cost of *f*:

• $C_k^f + B_k^f \leq C_{k-1}^f + A_k^f$

•
$$C_k^f + A_{k+1}^f \leq \sum_i A_i^f - \sum_i B_i^f$$

•
$$L(f) \leq C_m^f + A_{m+1}^f \leq \sum_i A_i^f \leq \sum_i A_i^o \leq \frac{n}{2}L(o)$$

Improving Selfish Routing

< E > < E > ...

÷.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Tightness of the $\lfloor n/2 \rfloor$ bound: the B^k Braess Graph

Algorithmic Game Theory '20

Improving Selfish Routing

590

Tightness of the $\lfloor n/2 \rfloor$ bound (1 / 2)

Theorem

For every integer $n \ge 2$, there is an instance (G, r, I) in which G has n vertices and a subgraph H with

$$L(G, r, l) = \left\lfloor \frac{n}{2} \right\rfloor \cdot L(H, r, l).$$

Απόδειξη.

- Assume that $n \ge 4$ is even (otherwise, add an isolated vertex).
- So, n = 2k + 2 and we consider the instance (B^k, k, l^k) .
- NE for (B^k, k, l^k) : 1 unit on each path $s \to v_i \to w_i \to t$, and $L(B^k, k, l^k) = k + 1$.

 $\bullet \equiv \bullet$

Э.

500

Tightness of the $\lfloor n/2 \rfloor$ bound (2 / 2)

Proof (continued).

- We now remove all A-type edges and obtain *H*.
- Routing k/(k+1) units on paths $s \to v_1 \to t$, $s \to w_k \to t$ and $\{s \to v_i \to w_{i-1} \to t\}_{(i=2,...,k)}$, we get a NE with $L(H, k, l^k) = 1$.

• Thus,
$$L(G)/L(H) = k + 1 = n/2$$
.

SQ (?

Hardness of approximation for GENERAL LATENCY NETWORK DESIGN

Theorem (Roughgarden)

For every $\epsilon > 0$, there is no $(\lfloor n/2 \rfloor - \epsilon)$ -approximation algorithm for GENERAL LATENCY NETWORK DESIGN, assuming $P \neq NP$.

Proof is based on a reduction from the NP-complete problem PARTITION.

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

How often does Braess's paradox occur?

Is Braess's paradox often in practical networks or is it just a theoretical curiosity?

Braess Paradox in real life

- Stuttgart Germany In 1969 a newly constructed road worsened traffic. Traffic improved when the road was closed.
- New York City Earth Day 1990 Traffic improved when 42nd St was closed
- Seoul, Korea A 6 lane road that was perpetually jammed was closed and removed, traffic improved.

Valiant and Roughgarden: occurs in many networks by utilizing random graph models.

.∃ ▶

÷.

500

< ∃ > _

The model

- Probability distribution oven graphs and edge latency functions.
- Graph *G* distributed according to the standard Erdös-Renyi $\mathcal{G}(n, p)$ model. For a fixed $n \ge 2$, each edge is present independently with probability *p*. We assume that $p = \Omega(n^{-1/2+\epsilon})$ for some $\epsilon > 0$.
- Source *s* and destination *t* are chosen randomly or arbitrarily. (we assume that there is no edge (*s*, *t*)).
- Linear latency functions l(x) = ax + b, $a, b \ge 0$:
 - Independent coefficients model: two fixed distributions \mathcal{A} and \mathcal{B} , and each edge is independently given a latency function I(x) = ax + b, where a and b are drawn independently from \mathcal{A} and \mathcal{B} , respectively.
 - 2 1/x model: each edge present in the graph (independently) has the latency function l(x) = x with probability q and l(x) = 1 with probability 1 q.

▶ ▲ 토 ▶ ▲ 토 ▶ – 토 –

500

Theorem (Independent coefficients model)

Let A and B be reasonable distributions. There is a constant p = p(A, B) > 1such that, with high probability, a random network (G, I) admits a choice of traffic rate r such that the Braess ration of the instance (G, r, I) is at least p.

Theorem (The 1/x model)

There is a traffic rate R = R(n, p, q) such that, with high probability as $n \to \infty$, the Braess ratio of a random n-node network from $\mathcal{G}(n, p, q)$ with traffic rate R is at least

$$\frac{4-3pq}{3-2pq}.$$

Improving Selfish Routing

< ∃ ▶ < ∃ ▶

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Braess Paradox Everywhere!

Algorithmic Game Theory '20

Improving Selfish Routing

▲ロ▶▲□▶▲三▶▲三▶ 回 のへで

Stackelberg Routing

- In (classic) selfish routing <u>all players act selfishly</u>.
- In Stackelberg routing there exist players <u>willing to cooperate</u> for social welfare (a fraction of the total players).
 - Both Selfish and Cooperative players are present.
 - Leader determines the paths of the coordinated players.
 - Selfish players (followers) minimize their own cost.
- Nash Equilibria are considered as the possible outcomes of the game.
- A Stackelberg Strategy is an algorithm that allocates paths to coordinated players so as to lead selfish players to a good Nash Equilibrium.

Example: Braess's Network

One unit of flow is to be routed from s to t

Example: Braess's Network One unit of flow is to be $x = \frac{1}{2}$

One unit of flow is to be routed from s to t

Optimal flow

Slightly more formal

- We will consider single commodity networks.
- An instance in such networks: (G, c_e, r)
- Assume that a fraction α of the players are cooperative. (G, c_e, r, α)
- A Stackelberg strategy assigns cooperative players to paths.
 - They induce a congestion $s = \{s_e\}_{e \in E}$
- A new game is "created": $(G, c'_e, (1 \alpha)r)$
 - Where $c_e'(x) = c_e(x+s_e)$

In the "new" game

- Selfish players choose paths (as usual), and Nash flows are considered as the possible outcomes of the game (as usual).
- On Equilibrium, selfish players induce a congestion $\sigma = {\sigma_e}_{e \in E}$

• The Price of Anarchy is
$$PoA = \frac{C(\sigma + s)}{OPT}$$

The Central Questions

- Given a Stackelberg routing instance, we can ask:
 - Among all Stackelberg strategies, can we characterize and/or compute the strategy inducing the Stackelberg equilibrium - i.e., the eq. of minimum total latency?
 - What is the worst-case ratio between the total latency of the Stackelberg eq. and that of the optimal assignment of users to paths?

Finding best strategy: NP-hard

Reduction from $\frac{1}{3}$ - $\frac{2}{3}$ Partition problem: Given *n* positive integers a_1, \ldots, a_n is there an $S \subseteq \{1, \ldots, n\}$ satisfying: $\sum_{i \in S} a_i = \frac{1}{3} \sum_{i=1}^n a_i$

Given an instance of $\frac{1}{3}$ - $\frac{2}{3}$ Partition create an instance of stackelberg routing:

- A network G with n+1 parallel links
- Demand: $2\sum_{i=1}^{n}a_i=2A$
- ¹/₄ of the players are followers
- Cost functions: $c_i(x) = \frac{x}{a_i} + 4, i \le n \text{ and } c_{n+1}(x) = \frac{x}{A}$

"yes" instance \Leftrightarrow there exist a strategy with average cost = $\frac{35}{4}A$

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge

In Nash Flow players are routed:

- 4 to middle edge
- 2 to lower edge

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge

In Nash Flow players are routed:

- 4 to middle edge
- 2 to lower edge

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge

LLF controlling $\frac{1}{4}$ players, e.g. $1\frac{1}{2}$ units, routes:

1¹/₂ to upper edge

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge

LLF controlling $\frac{1}{4}$ players, e.g. $1\frac{1}{2}$ units, routes:

1½ to upper edge

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge

LLF controlling ½ players, e.g. 3 units, routes:

3 to upper edge

- Largest Latency First (LLF):
 - Compute an optimal configuration
 - Assign coordinated players to optimal paths of largest latency

6 units to be routed.

Opt routes:

- 3 to upper edge
- 2 to middle edge
- 1 to lower edge
- LLF controlling ½ players, e.g. 3 units, routes:
 - 3 to upper edge

LLF in parallel links

Let α be the fraction of the cooperative players.

- **Theorem 1**: In parallel links LLF induces an $PoA_{LLF} \leq \frac{1}{\alpha}$ assignment of cost no more than $1/\alpha$ times the OPT:
- Proof by induction: When LLF saturates a link we can restrict to the instance that has:
- this link deleted and
- fraction of players the "remainders" of the previous instance.
- Some problems:
 - LLF may fail to saturate any link. No problem: Let m be the "heaviest" link.
 If L is the cost of selfish players and x* is the optimal assignment, it is

 $OPT \ge x^* c_m(x_m^*) \ge \alpha L = \alpha C(s + \sigma)$

 When a link gets saturated selfish users could use it. No problem: There is an induced equilibrium that doesn't use it.

Networks with Unbounded PoA

Theorem: Let M > 0 and $\alpha \in (0, 1)$. There is an instance (G, c_e, r, α) such that for any Stackelberg strategy inducing *s*, it is: $C(s + \sigma) \ge M \cdot OPT$

The demands are: $r_0 = \frac{1-\alpha}{2}$ and $r_i = \frac{1+\alpha}{2k}, i \ge 1$ (total flow=1)

Cost functions: B=1, C=0 and A is $c_{\epsilon}(x) = \begin{cases} 0, & \text{if } x \le r_0; \\ 1 - \frac{r_0 + r_1 - x}{(1 - \epsilon)r_1}, & \text{if } x \ge r_0 + 2\epsilon r_1. \end{cases}$

LLF in parallel links

Let o_e denote the optimal congestion

i) $C(s+\sigma) = \sum (s_e + \sigma_e)c_e(s_e + \sigma_e) \le \rho \cdot OPT$

Lemma:

ii) $\sum \sigma_e c_e(s_e + \sigma_e) \le \rho \cdot \sum (o_e - s_e) c_e(o_e)$

The proof follows from the variational inequality, similar to the "classic" result.

LLF in parallel links

Let o_e denote the optimal congestion

Lemma: i)
$$C(s + \sigma) = \sum (s_e + \sigma_e) c_e(s_e + \sigma_e) \le \rho \cdot OPT$$

ii)
$$\sum \sigma_e c_e(s_e + \sigma_e) \le \rho \cdot \sum (o_e - s_e) c_e(o_e)$$

The proof follows from the variational inequality, similar to the "classic" result.

Theorem 2:
$$PoA_{LLF} \leq \alpha + (1 - \alpha) \cdot \rho$$

Proof: $OPT = \overbrace{\sum s_e c_e(o_e)}^{A} + \overbrace{\sum (o_e - s_e) c_e(o_e)}^{B}$ and $\frac{A}{B} \geq \frac{\alpha}{1 - \alpha}$.
It is $C(s + \sigma) = \sum s_e c_e(s_e + \sigma_e) + \sum \sigma_e c_e(s_e + \sigma_e) \leq A + \rho \cdot B$

This is maximized for $\frac{A}{B}=\frac{\alpha}{1-\alpha}$ with maximum value $\alpha+(1-\alpha)\cdot\rho$

благодаря 谢谢 (or 謝謝) धन्यवाद (or তোমাকে ধন্যবাদ or ਤੁਹਾਡਾ ਧੰਨਵਾਦ ਹੈ) با تشکر از شما Ευχαριστώ

(also to Haris Angelidakis)

< E > < E > ...

Ξ.

5900