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Selfish Routing

Selfish users traveling on a network
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Selfish routing

Selfish users traveling on a network

Graph G = (V,E),
Vertices si, ti ∈ V,
Edge functions ℓe(x)
Demands that consists of infinite infinitesimally small selfish players.

Users minimize their cost: ℓp(x) :=
∑

e∈p ℓe(x)
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Optimal and Equilibrium Flows

Social cost of flow x
SC(x) =

∑

p
xpℓp(x) =

∑

e
xeℓe(xe)

Optimal flow, x∗
minimizes the social cost:

x∗ = arg min
x flow

{SC(x)}

Equilibrium flow, f
For any commodity all positive flow paths have minimum costs. Property:

f = arg min
x flow

{
Φ(x) :=

∑

e∈E

∫ xe

0
ℓe(x) dx

}
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Optimal vs Equilibrium Flow

SC(x) =
∑

e xeℓe(xe) vs Φ(x) =
∑

e∈E
∫ xe
0 ℓe(x) dx

Feasible region:
∑

p∈Pi

xp = di, commod.

xe =
∑

p∈P
xp, edges

∑

e∈δ−(u)

xe =
∑

e∈δ+(u)

xe, nodes

xsi ∈ δ−(si), xti ∈ δ+(ti)

Variational Inequality→ PoA bound

∑

e
feℓe(fe) ≤

∑

e
x∗eℓe(fe) =

∑

e
x∗eℓe(x∗e) +

∑

e
x∗e(ℓe(fe) − ℓe(x∗e))

≤
∑

e
x∗eℓe(x∗e) + β(L)

∑

e
feℓe(fe) ⇒ PoA(L) ≤ 1

1 − β(L)
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The Power of Tolls

Introducing tolls on edges:

Each user now minimizes ℓp(x) +
∑

e∈p te
Users' equilibrium minimizes

x(t) = arg min
y flow

{
Φt(y) :=

∑

e∈E

∫ ye

0
(ℓe(y) + te) dy

}

Marginal tolls, i.e. t̂e := x∗eℓ′e(x∗e), are optimal:

x∗ = x(̂t) = arg min
y flow

{∑

e∈E

∫ ye

0
(ℓe(y) + t̂e) dy

}
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Uniqueness of Tolls?
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Uniqueness of Tolls?

Goal: Minimize the payments while inducing the optimal flow at NE.

min
∑

e∈E
x∗ete

νu − νv + te = −ℓe(x∗e) ∀e = (u, v) : x∗e > 0
νu − νv + te ≥ −ℓe(x∗e), ∀e = (u, v) : x∗e = 0

t ≥ 0
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Tolls for Heterogeneous Users

Introducing tolls on edges:

User of sensitivity ai minimizes ℓp(x) + ai
∑

e∈p te
( or 1

ai
ℓp(x) +

∑
e∈p te )

Users' equilibrium minimizes ⁇⁇
Marginal tolls are no more optimal (in general)
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A Magic LP
Let g be a flow to be enforced.

(feasible) g is minimal if inequality 1 is tight (for all e)
g is enforceable if there are tolls to enforce it on equilibrium.

g minimal iff g enforceable

"⇒": fe = ge and f i
p > 0 ⇒ zi = aicp(g) +

∑
e∈p te

"⇐": There are tolls for which g is Nash, thus
g i

p > 0 ⇒ zi := aicp(g) +
∑

e∈p te
⇒ g and (z,t) complementary
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A Detail and Generalizations

Is optimal g minimal⁇

If not, reduce ge's up to right before losing feasibility: C(g∗) ≤ C(g)

Generalizations:
g can minimize any non-decreasing function, not only the Social Cost
player specific latencies
proves existence of tolls for continuous heterogeneity
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Other Toll Directions

Tolls affect the Social Cost
Upper bounds on the tolls
Use tolls on the minimum number of edges
Profit maximizers operate tolls

Existence of equilibria?
Optimality?

And of course atomic players‼
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Braess Paradox and Network Design

Problem: route traffic in a network of selfish non-cooperative players.
Motivation: simple examples show that Nash equilibria can be
inefficient (Price of Anarchy).
Question: which subnetwork will exhibit the best performance when
used selfishly?
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Braess's Paradox

s t

v

w

l(x) = 1

l(x) = xl(x) = 1

l(x) = 0

l(x) = x

r = 1

1

0

L = 1 + 0 + 1 = 2

s t

v

w

l(x) = 1

l(x) = xl(x) = 1

l(x) = x

r = 1

1
2

1
2

L = 1
2

+ 1 = 3
2
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Formalizing our Problem

Problem
Given an instance (G, r, l), find a subgraph H of G that minimizes L(H, r, l).
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Properties of Nash Flows

Lemma
For every instance (G, r, l), L(G, r, l) is a non-decreasing function of r.

Lemma
Let f be a flow feasible for (G, r, l). For a vertex v in G, let d(v) denote the
length, with respect to edge lengths {le(fe)}e∈E of a shortest s− v path in G.
Then f is at Nash equilibrium iff

d(w) − d(v) ≤ le(fe)

for all edges e = (v,w), with equality holding whenever fe > 0.

Lemma
If f is a flow at NE for (G, r, l), then C(f) = r · L(G, r, l).
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Linear Latency Functions

We consider latency functions of the form le(x) = aex+ be, ae, be ≥ 0. We
then call the problem the LINEAR LATENCY NETWORK DESIGN. It is
known that the price of anarchy in such networks is at most 4

3 .

Trivial Algorithm
Given an instance (G, r, l), build the whole network G.

Lemma (Roughgarden - Tardos)
Let f∗ and f be feasible and Nash flows, respectively, for an instance (G, r, l)
with linear latency functions. Then,

C(f) ≤ 4

3
· C(f∗).
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Upper Bound of Trivial Algorithm

Corollary

The trivial algorithm is a 4
3 -approximation algorithm for LINEAR LATENCY

NETWORK DESIGN.

Απόδειξη.
Let H be the subgraph that minimizes L(H, r, l), and f and f∗ be the
flows at NE for (G, r, l) and (H, r, l).
C(f) = r · L(G, r, l) and C(f∗) = r · L(H, r, l).
f∗ feasible for (G, r, l), thus C(f) ≤ 4

3C(f∗).
Hence, L(G, r, l) ≤ 4

3L(H, r, l).
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Optimality of the Trivial Algorithm (1 / 3)

Theorem
For every ϵ > 0, there is no

(
4
3 − ϵ

)
-approximation algorithm for LINEAR

LATENCY NETWORK DESIGN, assuming P ̸= NP.

We will use a reduction from the 2 DIRECTED DISJOINT PATHS (2DDP)
problem: given a directed graph G = (V,E) and distinct vertices
s1, s2, t1, t2 ∈ V, are there si − ti paths Pi for i = 1, 2, such that P1 and P2

are vertex-disjoint?
2DDP is NP-complete.
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Optimality of the Trivial Algorithm (2 / 3)

Απόδειξη.

t

s1

s2

t1

s

t2

G

1

1

x

x

(G′, 1, l)

le(x) = 0

If algorithm returns a subgraph H with L(H, 1, l) < 2, then "yes"
instance of 2DDP, else "no".
If "yes" instance, let P1 and P2 be vertext disjoint s1 − t1 and s2 − t2
paths. Obtain H by deleting all other edges. Observe now that
L(H, 1, l) = 3

2 (1/2 routed in s1 → t1 → t and 1/2 in s2 → t2 → t). So,
ALG ≤

(
4
3 − ϵ

)
· 3

2 < 2.
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Optimality of the Trivial Algorithm (3 / 3)

Proof (continued).
We will prove that if "no" instance, then L(H, 1, l) ≥ 2 for all subgraphs
of G′, and so ALG ≥ 2.
Split subgraphs of G′ in 3 groups: (i) those with an s2 − t1 path, (ii)
those with an s1 − t2 path and (iii) those with an si − ti path for exactly
one i ∈ {1, 2}.
In all cases, routing flow in such a path gives NE and L(H) = 2.
Thus, ALG ≥ OPT ≥ 2, and so we solve 2DDP.
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Interpretation of Results

Efficiently detecting Braess's Paradox in networks with linear latency
functions is impossible (i.e. NP-hard). This holds even in the most
severe cases, where PoA = 4

3 .
However, by restricting our linear latency functions only to strictly
increasing ones, we can get positive results!
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Towards some Positive Results

For instances with strictly increasing linear latencies, the optimal flow is
unique and can be efficiently computed.

Definition
An instance (G, r, l) is called paradox-free if for every subgraph H of G,
L(H, r, l) ≥ L(G, r, l). An instance (G, r, l) is called paradox-ridden if there is
a subgraph H of G, such that
L(H, r, l) = L∗(G, r, l) = L(G, r, l)/PoA(G, r, l) ≤ L(G, r, l).

Note: In a paradox-free instance PoA cannot be improved by edge removal.

Lemma
An instance (G, r, l) with G = (V,E) is paradox-ridden iff there is an optimal
flow f∗ that is a Nash flow on the subgraph G∗(V,E∗), where
E∗ = {e ∈ E : f∗e > 0}.
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Detecting Paradox-Ridden Networks

Theorem (Fotakis, Kaporis, Spirakis)
Given an instance (G, r, l) with strictly increasing linear latencies, one can
decide in polynomial time whether the instance is paradox-ridden or not.

Απόδειξη.
We can efficiently compute the unique optimal flow f∗.
We then compute the length d(v) of a shortest s− v path wrt edge
lengths {le(f∗e)}e∈E∗ for all v ∈ V.
f∗ Nash flow⇔ ∀(u, v) ∈ E∗, d(v) = d(u) + l(u,v)(f∗(u,v)).
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Towards a Positive Result for Arbitrary Linear Latencies

As already stated, we cannot decide whether an instance with arbitrary
linear latencies is paradox-ridden or not.
However, we can reach sufficient conditions under which we can
answer the above question.
Let (G, r, l) be an instance with le(x) = ae(x) + be and
Ec = {e ∈ E : ae = 0}. Let Ei = E \ Ec and let O be the set of optimal
flows.

Note: All optimal flows assign the same traffic to the edges with strictly
increasing latencies, and can differ only on edges with constant latencies.
This motivates the following LP formulation, given a fixed optimal flow o.
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An LP formulation

(LP):
min

∑

e∈Ec

febe, s.t. :

∑

u:(v,u)∈Ei

o(v,u) +
∑

u:(v,u)∈Ec

f(v,u) =
∑

u:(u,v)∈Ei

o(u,v) +
∑

u:(u,v)∈Ec

f(u,v)

∀v ∈ V \ {s, t},
∑

u:(s,u)∈Ei

o(s,u) +
∑

u:(s,u)∈Ec

f(s,u) = r,

∑

u:(u,t)∈Ei

o(u,t) +
∑

u:(u,t)∈Ec

f(u,t) = r,

fe ≥ 0 ∀e ∈ Ec.
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Notes on the LP

An optimal solution to (LP) corresponds to a feasible flow for (G, r, l)
that agrees with o on all edges in Ei and allocates traffic to the edges in
Ec so that the total latency is minimized.
Optimal solutions to (LP)↔ 1 − 1 Optimal flows in O.
Given an optimal flow o, the problem of checking if there is a o ∈ O
that is a Nash flow on Go reduces to the problem of generating all
optimal solutions of (LP) and checking whether some of them can be
translated into a Nash flow on the corresponding subnetwork.
This can be performed in polynomial time if (LP)'s optimal solution is
unique.
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A Positive Result for Arbitrary Linear Latencies (1 / 2)

Theorem
Given an instance (G, r, l) with arbitrary linear latencies where the
corresponding (LP) has a unique optimal solution, one can decide in polynomial
time whether the instance is paradox-ridden or not.

Note: In fact, it suffices to generate all optimal basic feasible solutions, as the
(LP) allocates traffic to constant latency edges. Observe that if a feasible flow
f is a Nash flow, then any solution f′ with {e : f′e > 0} ⊆ {e : fe > 0} is a
Nash flow, too.
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A Positive Result for Arbitrary Linear Latencies (2 / 2)

Theorem
Given an instance (G, r, l) with arbitrary linear latencies where the
corresponding (LP) has a polynomial number of basic feasible solutions, one
can decide in polynomial time whether the instance is paradox-ridden or not.

Note: The above class includes instances with a constant number of constant
latency edges.
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Finding Near-Optimal Subnetworks

In general, finding optimal subnetworks in paradox-ridden instances is
NP-hard.
However, we can reach a subexponential-time approximation scheme
on networks with polynomially many paths, each of polylogarithmic
length.
For this purpose, we need to turn our attention to "sparse" flows and
ε-Nash flows.

Definition (ε-Nash flow)
For some ε > 0, a flow f is an ε-Nash flow if for every path P and P′ with
fP > 0, lP(f) ≤ lP′(f) + ε.
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Making a Flow "Sparse" (1 / 3)

Lemma (Fotakis, Kaporis, Spirakis)
Let (G, 1, l) be an instance on a graph G = (V,E), and let f be any feasible
flow. For any ε > 0, there exists a feasible flow f̃ that assigns positive traffic to
at most ⌊log(2m)/(2ε2)⌋ + 1 paths, such that |̃fe − fe| ≤ ε, ∀e ∈ E.

Απόδειξη.
Let µ = |P|, and we index the s− t paths by integers in [µ].
Flow f can be seen as a probability distribution on P .
We prove that if we select k > log(2m)/(2ε2) paths uniformly at
random with replacement according to f, and assign to each path j a
flow equal to the number of times j is selected divided by k, we obtain a
flow that is an ε-approximation to f with positive probability.
(Probabilistic Method)
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Making a Flow "Sparse" (2 / 3)

Proof (continued).
Fix ε and let k = ⌊log(2m)/(2ε2)⌋ + 1.
Define random variables P1, ...Pk ∈ [µ], i.i.d., such that P[Pi = j] = fj.
For each path j ∈ [µ], Fj = |{i ∈ [k] : Pi = j}| / k. Note that E[Fj] = fj.
For each edge e and random variable Pi, define the independent
indicator variables Fe,i = 1 if e in path Pi, otherwise 0.
Let Fe = 1

k
∑k

i=1 Fe,i. Observe that Fe =
∑

j:e∈j Fj and E[Fe] = fe.
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Making a Flow "Sparse" (3 / 3)

Proof (continued).
Note that

∑µ
j=1 Fj = 1. Thus, F1, ..., Fµ define a feasible flow that

assignes positive traffic to at most k paths and "agrees" with f on
expectation.
By the Chernoff-Hoeffding bound we get that for every edge e

P[|Fe − fe| > ε] ≤ 2e−2ε2k < 1/m

Thus, by union bound, P[∃e : |Fe − fe| > ε] < m(1/m) = 1.
So, there is positive probability that the flow (F1, ...,Fµ) satisfies
|Fe − fe| ≤ ε, ∀e ∈ E. Thus, there exists a flow f̃ with the properties of
(F1, ..., Fµ).
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Finding a Near-Optimal Subnetwork

Theorem
Let (G(V,E), 1, {aex+ be}e∈E) be an instance, α = maxe∈E{ae}, and let HB

be the best subnetwork of G. For some constants d1, d2 > 0, let |P| ≤ md1 and
|P| ≤ logd2 m, for all P ∈ P . Then, for any ε > 0, we can compute in time
mO(d1α2 log2d2+1(2m)/ε2) a flow f̃ that is an ε-Nash flow on Gf̃ and satisfies
lP(̃f) ≤ L(HB, 1, {aex+ be}e∈E(HB)) + ε/2, for all paths P ∈ Gf̃.
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Another "Sparse" Flow

Theorem (Barman: approximate version of Caratheodory's Theorem)

Let X be a set of vectors X = {x1, . . . , xn} ⊂ Rd and ϵ > 0.
For every µ ∈ conv(X) and 2 ≤ p ≤ inf there exist an O(pγ2

ϵ2
) uniform vector

µ′ ∈ conv(X) such that ||µ − µ′||p ≤ ϵ, where γ = maxx∈X ||x||p.

How to apply:
Let X be the set of different paths described by an "edge"vector:
path containing e1, e2 and e6 out of 7 edges corresponds to
(1, 1, 0, 0, 0, 1, 0).
Any flow can be seen as a convex combination of the xi's and vice versa.

There are |X|O( pγ2

ϵ2
) different O(pγ2

ϵ2
) uniform vectors.

Enumerate, evaluate and keep the one of lowest cost
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General Latency Functions

We will now consider general (continuous, non-decreasing) latency
functions (we call this problem the GENERAL LATENCY NETWORK
DESIGN).
We will see that the trivial algorithm is still the best thing we can do.
However, the approximation factor gets worse.
In order to prove the above, we will need new techniques, as in
networks with general latency functions, a Nash flow can be arbitrarily
more costly than other feasible flows.
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The Trivial Algorithm for GENERAL LATENCY
NETWORK DESIGN

Theorem
The trivial algorithm is a ⌊n/2⌋-approximation algorithm for GENERAL
LATENCY NETWORK DESIGN.

f Nash flow, o best subnetwork's Nash flow
A = {e : oe ≥ fe} and B = {e : oe < fe}

For the cost of f:
Cf

k+Bf
k ≤ Cf

k−1 + Af
k

Cf
k + Af

k+1 ≤ ∑
i Af

i −
∑

i Bf
i

L(f) ≤ Cf
m + Af

m+1 ≤∑
i Af

i ≤
∑

i Ao
i ≤ n

2L(o)

Algorithmic Game Theory '20 Improving Selfish Routing



Tightness of the ⌊n/2⌋ bound: the Bk Braess Graph

s t

v1

vk

v2

wk

w1

w2

wk′

A

A

A

A

B

B

B

B

v3 B

C

C

C

C

C

C

C

C

A: lke(x) = 0

B: lke(x) = 1

C: l(wi,t)∨(s,vk−i+1)(k/(k + 1)) = 0

l(wi,t)∨(s,vk−i+1)(1) = i
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Tightness of the ⌊n/2⌋ bound (1 / 2)

Theorem
For every integer n ≥ 2, there is an instance (G, r, l) in which G has n vertices
and a subgraph H with

L(G, r, l) =

⌊
n
2

⌋
· L(H, r, l).

Απόδειξη.
Assume that n ≥ 4 is even (otherwise, add an isolated vertex).
So, n = 2k+ 2 and we consider the instance (Bk, k, lk).
NE for (Bk, k, lk): 1 unit on each path s→ vi → wi → t, and
L(Bk, k, lk) = k+ 1.
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Tightness of the ⌊n/2⌋ bound (2 / 2)

Proof (continued).
We now remove all A-type edges and obtain H.
Routing k/(k+ 1) units on paths s→ v1 → t, s→ wk → t and
{s→ vi → wi−1 → t}(i=2,...,k), we get a NE with L(H, k, lk) = 1.
Thus, L(G)/L(H) = k+ 1 = n/2.
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Hardness of approximation for GENERAL LATENCY
NETWORK DESIGN

Theorem (Roughgarden)
For every ϵ > 0, there is no (⌊n/2⌋ − ϵ)-approximation algorithm for
GENERAL LATENCY NETWORK DESIGN, assuming P ̸= NP.

Proof is based on a reduction from the NP-complete problem PARTITION.
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How often does Braess's paradox occur?

Is Braess's paradox often in practical networks or is it just a theoretical
curiosity?

Braess Paradox in real life
Stuttgart Germany - In 1969 a newly constructed road worsened traffic.
Traffic improved when the road was closed.
New York City - Earth Day 1990 Traffic improved when 42nd St was
closed
Seoul, Korea - A 6 lane road that was perpetually jammed was closed
and removed, traffic improved.

Valiant and Roughgarden: occurs in many networks by utilizing random
graph models.
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The model

Probability distribution oven graphs and edge latency functions.
Graph G distributed according to the standard Erdös-Renyi G(n, p)
model. For a fixed n ≥ 2, each edge is present independently with
probability p. We assume that p = Ω(n−1/2+ϵ) for some ϵ > 0.
Source s and destination t are chosen randomly or arbitrarily. (we
assume that there is no edge (s, t)).
Linear latency functions l(x) = ax+ b, a, b ≥ 0:

1 Independent coefficients model: two fixed distributions A and B, and each
edge is independently given a latency function l(x) = ax+ b, where a
and b are drawn independently from A and B, respectively.

2 1/x model: each edge present in the graph (independently) has the
latency function l(x) = x with probability q and l(x) = 1 with probability
1 − q.
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Main results

Theorem (Independent coefficients model)
Let A and B be reasonable distributions. There is a constant p = p(A, B) > 1
such that, with high probability, a random network (G, l) admits a choice of
traffic rate r such that the Braess ration of the instance (G, r, l) is at least p.

Theorem (The 1/x model)
There is a traffic rate R = R(n, p, q) such that, with high probability as
n→ ∞, the Braess ratio of a random n-node network from G(n, p, q) with
traffic rate R is at least

4 − 3pq
3 − 2pq .
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Braess Paradox Everywhere!
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Stackelberg Routing

� In (classic) selfish routing all players act selfishly. 

� In Stackelberg routing there exist players willing to cooperate
for social welfare (a fraction of the total players).
� Both Selfish and Cooperative players are present.

� Leader determines the paths of the coordinated players.

� Selfish players (followers) minimize their own cost.

� Nash Equilibria are considered as the possible 
outcomes of the game.

� A Stackelberg Strategy is an algorithm that allocates paths to
coordinated players so as to lead selfish players to a good Nash
Equilibrium.
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Slightly more formal

� We will consider single commodity networks. 

� An instance in such networks:

� Assume that a fraction α of the 
players are cooperative.

� A Stackelberg strategy assigns cooperative players to paths.
� They induce a congestion 

� A new game is “created”:
� Where  

(G, ce, r)

s = {se}e∈E

(G, ce, r,α)

(G, c0e, (1− α)r)
c0e(x) = ce(x+ se)



In the “new” game

� Selfish players choose paths (as usual), and Nash flows are 
considered as the possible outcomes of the game (as usual).

� On Equilibrium, selfish players induce a congestion

� The Price of Anarchy is                    

σ = {σe}e∈E

PoA =
C(σ + s)

OPT



The Central Questions
� Given a Stackelberg routing instance, we can ask:

� Among all Stackelberg strategies, can we characterize 
and/or compute the strategy inducing the Stackelberg 
equilibrium - i.e., the eq. of minimum total latency?

� What is the worst-case ratio between the total latency of 
the Stackelberg eq. and that of the optimal assignment of 
users to paths? 



Finding best strategy: NP-hard 
Reduction from                        problem:

Given n positive integers                  is there an    

satisfying:

Given an instance of                         create an instance of stackelberg routing:
� A network G with n+1 parallel links

� Demand:

� ¼ of the players are followers 

� Cost functions:

1
3 -
2
3 Partition

a1, . . . , an S ⊆ {1, . . . , n}
X

i∈S
ai =

1

3

nX

i=1

ai

2
Pn

i=1 ai = 2A

ci(x) =
x
ai
+ 4, i ≤ n and cn+1(x) = x

A

1
3 -
2
3 Partition

�yes� instance ⇔ there exist a strategy with average cost= 35
4 A



LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency



LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency
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LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency

Opt routes: 
� 3 to upper edge
� 2 to middle edge
� 1 to lower edge

6 units to be routed.
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LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency

Nash Flow
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4
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Flow=4

Opt routes: 
� 3 to upper edge
� 2 to middle edge
� 1 to lower edge

6 units to be routed.

In Nash Flow players are routed: 
� 4  to middle edge
� 2 to lower edge
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LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency

Nash Flow

s t
2x

4
x

Flow=4

Opt routes: 
� 3 to upper edge
� 2 to middle edge
� 1 to lower edge

6 units to be routed.

In Nash Flow players are routed: 
� 4  to middle edge
� 2 to lower edge
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Flow = 1

Flow =34
x Flow =2

Flow=2

PoA =
4
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LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency

Opt routes: 
� 3 to upper edge
� 2 to middle edge
� 1 to lower edge

6 units to be routed.
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LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency

Nash Flow

s t
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Flow =1½4
x

Flow=3

Opt routes: 
� 3 to upper edge
� 2 to middle edge
� 1 to lower edge

6 units to be routed.

LLF controlling ¼ players, 
e.g. 1½ units, routes: 
� 1½ to upper edge
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LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency

Nash Flow

s t
2x

Flow =1½4
x

Flow=3

Opt routes: 
� 3 to upper edge
� 2 to middle edge
� 1 to lower edge

6 units to be routed.

LLF controlling ¼ players, 
e.g. 1½ units, routes: 
� 1½ to upper edge

s t
2x

Flow = 1

Flow =34
x Flow =2

Flow=1½

PoA =
18, 75

18



LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency
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6 units to be routed.



LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency
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Flow =2
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LLF Strategy
� Largest Latency First (LLF):

� Compute an optimal configuration
� Assign coordinated players to optimal paths of largest latency

s t
2x

Flow = 1

Flow =34
xOpt routes: 

� 3 to upper edge
� 2 to middle edge
� 1 to lower edge

6 units to be routed.

LLF controlling ½ players, 
e.g. 3 units, routes: 
� 3 to upper edge

Flow =2

s t
2x

Flow =34
x

Flow=2

Nash Flow
Flow=1

PoA = 1



LLF in parallel links
Let α be the fraction of the cooperative players.

Theorem 1: In parallel links LLF induces an 
assignment of cost no more than 1/α times the OPT:

Proof by induction: When LLF saturates a link we can restrict to the 
instance that has:

� this link deleted and

� fraction of players the “remainders” of the previous instance. 

Some problems:  
� LLF may fail to saturate any link. No problem: Let m be the “heaviest” link. 

I f L is the cost of selfish players and x*  is the optimal assignment, it is

� When a link gets saturated selfish users could use it. No problem: There is 
an induced equilibrium that doesn’t use it.

PoALLF ≤
1

α

OPT ≥ x∗cm(x∗m) ≥ αL = αC(s+ σ)



Networks with Unbounded PoA
Theorem: Let             and                . There is an instance

such that for any Stackelberg strategy inducing s, it is:

Proof: The network is the following

The demands are:                                              (total flow=1)

Cost functions: B=1, C=0 and A is   

M > 0 α ∈ (0, 1)
(G, ce, r,α)

C(s+ σ) ≥M ·OPT

r0 =
1−α
2 and ri =

1+α
2k , i ≥ 1



Let oe denote the optimal congestion

Lemma:

The proof follows from the variational inequality, similar to the 
“classic” result.

LLF in parallel links

i) C(s+ σ) =
P
(se + σe)ce(se + σe) ≤ ρ ·OPT

ii)
P
σece(se + σe) ≤ ρ ·

P
(oe − se)ce(oe)



Let oe denote the optimal congestion

Lemma:

The proof follows from the variational inequality, similar to the 
“classic” result.

Theorem 2:

Proof:                                                 and      .

I t is

This is maximized for                 with maximum value

i) C(s+ σ) =
P
(se + σe)ce(se + σe) ≤ ρ ·OPT

ii)
P
σece(se + σe) ≤ ρ ·

P
(oe − se)ce(oe)

PoALLF ≤ α + (1− α) · ρ

OPT =

Az

LLF in parallel links

}| {X
sece(oe)+

Bz }| {X
(oe − se)ce(oe) A

B ≥ α
1−α

C(s+ σ) =
P
sece(se + σe) +

P
σece(se + σe) ≤ A+ ρ ·B

A
B =

α
1−α α+ (1− α) · ρ



(also to Haris Angelidakis)

Algorithmic Game Theory '20 Improving Selfish Routing


