Ladner's Theorem, Sparse and Dense Languages

Vasiliki Velona

 $\mu \prod \lambda \forall$

November 2014

Ladner's theorem	Density
●0000000	000000000
Ladner's theorem	

Part 1, Ladner's Theorem

Ladner's theorem

Density 0000000000

Part 1: Ladner's theorem

(Ladner, 1975): If $P \neq NP$, then there is a language in P which is neither in P or is NP complete

The second scenario is impossible.

Ladner's theorem proof

Preliminaries

- We can compute an enumeration of all polynomialy bounded TMs ($M_1, M_2, M_3, ...$) and all logarithmic space reductions ($R_1, R_2, R_3, ...$)
- Why? One way is to use a polynomial "clock" on every M_i that will allow it to run for no more than |x|ⁱ steps for input x. Similarly, we can do this for logarithmic space reductions.

Density 0000000000

Ladner's theorem proof

• The wanted language is described in terms of the machine K that decides it:

$$L(K) = \{x | x \in SAT \text{ and } f(|x|) \text{ is even}\}$$

f(n) will be described later.

- The demands for this language are the following:
- $\forall i L(K) \neq L(M_i)$ (out of P) • $\forall i \exists w : K(R_i(w)) \neq S(w)$ (out of NP-complete)

and we'll prove that they're met.

Ladner's theorem proof

We want to check our conditions one after the other: $M_1, R_1, M_2, R_2, ...$

Let F be the turing machine that computes f. For n = 1 F makes two steps and outputs 2. For $n \ge 2$ F proceeds this way:

- Computes $f(1), f(2), \dots$ as many of them as it can for n steps.
- **2** If the last value of f thus computed was f(i) = k then
 - If k=2i we check our conditions for M_i versus K with inputs z, ranging lexicografically over all Σ*. (for n steps)
 If a such z is found then f(n) = 2i + 1. Else f(n) = 2i
 - If k=2i+1 we check our conditions for K(R_i) versus S with inputs z, ranging lexicografically over all Σ* (for n steps) If we find such a z then f(n) = 2i. Else f(n) = 2i + 1

Ladner's theorem proof

Comments on the construction

- Obviously F is O(n) and thus K is in NP.
 Reminder: K = {x|x ∈ SAT and f(|x|) is even}
- The function f is a very slowly growing function: Suppose that n(k) is the smallest number for which f(n) = k. Then the smallest number for which f(n) has a chance at becoming k+1 is at least $\frac{n(k)^2}{2}$ (in fact it is even bigger). It follows that $f(n) = O(\log \log n)$
- This technique is often called "lazy" diagonalization. It will be more clear in the final arguments.

Ladner's theorem proof

Final arguments

 $L(K) = \{x | x \in SAT \text{ and } f(|x|) \text{ is even}\}$

- Suppose first that L(K) ∈ P, and so is accepted by some polynomial-time machine in our enumeration, let's say M_i. Then f(n)=2i for all n ≥ n₀ for some n₀ and thus L(K) coincides with SAT on all but finitely many strings. But this contradicts the assumptions P ≠ NP and L(K) ∈ P
- Suppose that L is NP-complete, and so there is a reduction, let's say R_i in our enumeration, from SAT to L(K). It follows that f(n)=2i+1 for all $n \ge n_0$ for some n_0 . But then L(K) is a finite language and this contradicts with the assumption that L(K) is NP-complete.
- End of proof

Problems conjured to be NP-intermediate

The language constructed in the proof is artificial. The question is whether any "natural" decision problems are intermediate. Some candidates:

- GRAPH ISOMORPHISM: Given (simple, undirected) graphs {G₁} and {G₂}, are they isomorphic?
- FACTORING: Given natural numbers {m < n}, does {n} have a prime factor greater than {m}?
- OISCRETE LOGARITHM: Given natural numbers g, h, k < n, does there exist {e ≤ k} such that {g^e = h} modulo {n}?
- CIRCUIT MINIMIZATION: Given a string {x ∈ {0,1}ⁿ} where {n = 2^k} for some {k}, and {s > 0} (in binary), is there a {k}-input Boolean circuit {C} of size at most {s} such that for all {i}, {0 ≤ i < n}, {C(i) = x_i}?

Part 2, Dense and Sparse Languages

Let $L \subset \Sigma^*$ be a language. We define its density to be the following:

 $dens_L(n) = |\{x \in L : |x| \le n\}|$

Sparse languages are languages with polynomially bounded density functions.

Dense languages are languages with superpolynomial densities.

Density

Definition: We say that two languages $K, L \in \Sigma^*$ are polynomially isomorphic if there iis a function h from Σ^* to itself such that:

- h is a bijection
- For each $x \in \Sigma^*$, $x \in K$ if and only if $h(x) \in L$
- Both h and its inverse h_{-1} are polynomial-time computable

Proposition: If $K, L \subset \Sigma^*$ are polynomially isomorphic, then *dens*_K and *dens*_L are polynomially related.

Proof: All strings in K of length at most n are mapped by the polynomial isomorphism into strings of L of length at most $p_1(n)$, where p_1 is the polynomial bound of the isomorphism. Since the mapping must be one-to-one, $dens_K(n) \leq dens_L(p_1(n))$. Similarly, $dens_L(n) \leq dens_K(p_2(n))$ where p_2 is the polynomial bound of the inverse isomoprhism.

Sparse Language Facts

- It known that there is a polynomial-time Turing reduction from any language in P to a sparse language.
- Fortune showed in 1979 that if any sparse language is co-NP-complete, then P = NP.
- Mahaney used this to show in 1982 that if any sparse language is NP-complete, then P = NP.

Unary Languages and the $P \neq NP$ question

A familiar kind of sparse languages are the unary languages, the subsets of $\{0\}^*$. Intrestingly, there is a direct argument that proves the last for unary languages:

• Suppose a unary language $U \subset \{0\}^*$ is NP-complete. Then P=NP.

Proof: It suffices to show that $SAT \in P$ if there exist a reduction from SAT to U.

- Given a boolean expression ϕ with n variables $x_1, x_2, ...$ we consider a partial truth assignment $t \in \{0, 1\}^j$.
- $t_i = 1$ means $x_i = true$ and $t_i = 0$ means $x_i = false$.
- $\phi[t]$ is the expression resulting from ϕ if we substitute the truth assignements of t in ϕ . (omiting any **false** literals from a clause, and omitting any clause with a **true** literal)

Example

For
$$t = 001$$

and $\phi = (x_1 \lor x_2 \lor \neg x_1) \land (x_5 \lor x_4 \lor x_3) \land (x_5 \lor x_4)$
we have $\phi[t] = (x_5 \lor x_4)$

It's clear that if |t| = 5 then $\phi[t]$ is either **true** and has no clauses, or **false** and has an empty clause.

The algorithm

A resonable algorithm for SAT:

- If |t| = n, then return "yes" if φ[t] has no clauses, else return "no"
 Otherwise return "yes" if and only if either φ[t0] or φ[t1] returns "yes"
- A better one:
 - If |t| = n, then return "yes" if φ[t] has no clauses, else return "no"
 Otherwise look up H(t) in the table; if a pair (H(t), v) is found return v.
 Otherwise return "yes" if either φ[t0] or φ[t1] returns "yes"; return no otherwise.
 In either case, update the table by inserting (H(t), v)

What about H?

We need a function H that

- maintains satisfiability: if H(t) = H(t') for two partial truth assignments t and t' then $\phi[t]$ and $\phi[t']$ must be both satisfiable or both unsatisfiable.
- a has a small range, so that the table can be searched efficiently

The reduction R from SAT to U has these two properties. So we can define $H(t) = R(\phi(t))$

[All values of H(t) must be of length at most p(n), the polynomial bound on R, when applied to an expression of n variables. But since U is unary there are at most p(n) such values.]

The Complexity of the algorithm

- On each recursive call the algorithm takes at most p(n) time.
 So, the total time is O(Mp(n)), where M is the total number of the algorithm invocations.
- Claim: We can pick a set $T = \{t_1, t_2, t_3, ...\}$ of invocations, such that:

$$|T| \geq \frac{M}{2n}$$

- 2 All invocations in T are recursive
- Solution None of the elements of T is a prefix of another element in T.
- All the invocations in T are mapped to different H values. But there are only p(n) such values. So $\frac{M}{2n} \le p(n)$, and the running time is $\mathcal{O}(np(n)^2)$

Thank you!