
Ladner’s theorem Density

Ladner’s Theorem, Sparse and Dense Languages

Vasiliki Velona

µ
∏

λ∀

November 2014

Ladner’s theorem Density

Ladner’s theorem

Part 1, Ladner’s Theorem

Ladner’s theorem Density

Ladner’s theorem

Part 1: Ladner’s theorem

(Ladner, 1975): If P 6= NP, then there is a language in P which is
neither in P or is NP complete

The second scenario is impossible.

Ladner’s theorem Density

Ladner’s theorem

Ladner’s theorem proof

Preliminaries

We can compute an enumeration of all polynomialy bounded
TMs (M1,M2,M3, ...) and all logarithmic space reductions
(R1,R2,R3, ...)

Why? One way is to use a polynomial ”clock” on every Mi

that will allow it to run for no more than |x |i steps for input x.
Similarly, we can do this for logarithmic space reductions.

Ladner’s theorem Density

Ladner’s theorem

Ladner’s theorem proof

The wanted language is described in terms of the machine K
that decides it:

L(K) = {x |x ∈ SAT and f (|x |) is even}

f (n) will be described later.

The demands for this language are the following:

1 ∀iL(K) 6= L(Mi) (out of P)

2 ∀i∃w : K (Ri (w)) 6= S(w) (out of NP-complete)

and we’ll prove that they’re met.

Ladner’s theorem Density

Ladner’s theorem

Ladner’s theorem proof

We want to check our conditions one after the other:
M1,R1,M2,R2, ...

Let F be the turing machine that computes f. For n = 1 F makes
two steps and outputs 2. For n ≥ 2 F proceeds this way:

1 Computes f (1), f (2), ... as many of them as it can for n steps.

2 If the last value of f thus computed was f (i) = k then

If k=2i we check our conditions for Mi versus K with inputs z,
ranging lexicografically over all Σ∗. (for n steps)
If a such z is found then f (n) = 2i + 1. Else f (n) = 2i

If k=2i+1 we check our conditions for K (Ri) versus S with
inputs z, ranging lexicografically over all Σ∗ (for n steps)
If we find such a z then f (n) = 2i . Else f (n) = 2i + 1

Ladner’s theorem Density

Ladner’s theorem

Ladner’s theorem proof

Comments on the construction

Obviously F is O(n) and thus K is in NP.

Reminder: K = {x |x ∈ SAT and f (|x |) is even}

The function f is a very slowly growing function: Suppose
that n(k) is the smallest number for which f (n) = k . Then
the smallest number for which f(n) has a chance at becoming

k+1 is at least n(k)2

2 (in fact it is even bigger). It follows that
f (n) = O(log log n)

This technique is often called ”lazy” diagonalization. It will be
more clear in the final arguments.

Ladner’s theorem Density

Ladner’s theorem

Ladner’s theorem proof

Final arguments

L(K) = {x |x ∈ SAT and f (|x |) is even}

Suppose first that L(K) ∈ P, and so is accepted by some
polynomial-time machine in our enumeration, let’s say Mi .
Then f(n)=2i for all n ≥ n0 for some n0 and thus L(K)
coincides with SAT on all but finitely many strings. But this
contradicts the assumptions P 6= NP and L(K) ∈ P

Suppose that L is NP-complete, and so there is a reduction,
let’s say Ri in our enumeration, from SAT to L(K).It follows
that f(n)=2i+1 for all n ≥ n0 for some n0. But then L(K) is a
finite language and this contradicts with the assumption that
L(K) is NP-complete.

End of proof

Ladner’s theorem Density

Ladner’s theorem

Problems conjured to be NP-intermediate

The language constructed in the proof is artificial. The question is
whether any “natural” decision problems are intermediate. Some
candidates:

1 GRAPH ISOMORPHISM: Given (simple, undirected) graphs
{G1} and {G2}, are they isomorphic?

2 FACTORING: Given natural numbers {m < n}, does {n} have
a prime factor greater than {m}?

3 DISCRETE LOGARITHM: Given natural numbers g , h, k < n,
does there exist {e ≤ k} such that {g e = h} modulo {n}?

4 CIRCUIT MINIMIZATION: Given a string {x ∈ {0, 1}n}
where {n = 2k} for some {k}, and {s > 0} (in binary), is
there a {k}-input Boolean circuit {C} of size at most {s}
such that for all {i}, {0 ≤ i < n}, {C (i) = xi}?

Ladner’s theorem Density

Density

Part 2, Dense and Sparse Languages

Ladner’s theorem Density

Density

Part II: Density

Let L ⊂ Σ∗ be a language. We define its density to be the
following:

densL(n) = |{x ∈ L : |x | ≤ n}|

Sparse languages are languages with polynomially bounded
density functions.
Dense languages are languages with superpolynomial densities.

Ladner’s theorem Density

Density

Density

Definition:We say that two languages K , L ∈ Σ∗are polynomially
isomorphic if there iis a function h from Σ∗ to itself such that:

h is a bijection

For each x ∈ Σ∗, x ∈ K if and only if h(x) ∈ L

Both h and its inverse h−1 are polynomial-time computable

Proposition: If K , L ⊂ Σ∗ are polynomially isomorphic, then
densK and densL are polynomially related.

Proof: All strings in K of length at most n are mapped by the
polynomial isomorphism into strings of L of length at most p1(n),
where p1 is the polynomial bound of the isomorphism. Since the
mapping must be one-to-one, densK (n) ≤ densL(p1(n)). Similarly,
densL(n) ≤ densK (p2(n)) where p2 is the polynomial bound of the
inverse isomoprhism.

Ladner’s theorem Density

Density

Sparse Language Facts

It known that there is a polynomial-time Turing reduction
from any language in P to a sparse language.

Fortune showed in 1979 that if any sparse language is
co-NP-complete, then P = NP.

Mahaney used this to show in 1982 that if any sparse
language is NP-complete, then P = NP.

Ladner’s theorem Density

Density

Unary Languages and the P 6= NP question

A familiar kind of sparse languages are the unary languages, the
subsets of {0}∗. Intrestingly, there is a direct argument that proves
the last for unary languages:

Suppose a unary language U ⊂ {0}∗ is NP-complete. Then
P=NP.

Proof: It suffices to show that SAT ∈ P if there exist a
reduction from SAT to U.

Given a boolean expression φ with n variables x1, x2, ... we
consider a partial truth assignment t ∈ {0, 1}j .
ti = 1 means xi = true and ti = 0 means xi = false.
φ[t] is the expression resulting from φ if we substitute the
truth assignements of t in φ. (omiting any false literals from a
clause, and omitting any clause with a true literal)

Ladner’s theorem Density

Density

Example

For t = 001

and φ = (x1 ∨ x2 ∨ ¬x1) ∧ (x5 ∨ x4 ∨ x3) ∧ (x5 ∨ x4)

we have φ[t] = (x5 ∨ x4)

It’s clear that if |t| = 5 then φ[t] is either true and has no clauses,
or false and has an empty clause.

Ladner’s theorem Density

Density

The algorithm

A resonable algorithm for SAT:

If |t| = n, then return ”yes” if φ[t] has no clauses, else
return ”no”
Otherwise return ”yes” if and only if either φ[t0] or φ[t1]
returns ”yes”

A better one:

If |t| = n, then return ”yes” if φ[t] has no clauses, else
return ”no”
Otherwise look up H(t) in the table; if a pair (H(t), v) is
found return v.
Otherwise return ”yes” if either φ[t0] or φ[t1] returns
”yes”; return no otherwise.
In either case, update the table by inserting (H(t), v)

Ladner’s theorem Density

Density

What about H?

We need a function H that

1 maintains satisfiability: if H(t) = H(t ′) for two partial truth
assignments t and t ′ then φ[t] and φ[t ′] must be both
satisfiable or both unsatisfiable.

2 has a small range, so that the table can be searched efficiently

The reduction R from SAT to U has these two properties. So we
can define H(t) = R(φ(t))

[All values of H(t) must be of length at most p(n), the polynomial
bound on R, when applied to an expression of n variables. But
since U is unary there are at most p(n) such values.]

Ladner’s theorem Density

Density

The Complexity of the algorithm

On each recursive call the algorithm takes at most p(n) time.
So, the total time is O(Mp(n)), where M is the total number
of the algorithm invocations.

Claim: We can pick a set T = {t1, t2, t3, ...} of invocations,
such that:

1 |T | ≥ M
2n

2 All invocations in T are recursive
3 None of the elements of T is a prefix of another element in T.

All the invocations in T are mapped to different H values.
But there are only p(n) such values. So M

2n ≤ p(n), and the
running time is O(np(n)2)

Ladner’s theorem Density

Density

Thank you!

	Ladner's theorem
	Ladner's theorem

	Density
	Density

