Ladner's Theorem, Sparse and Dense Languages

Vasiliki Velona

$$
\mu \Pi \lambda \forall
$$

November 2014

Part 1, Ladner's Theorem

Ladner's theorem

Part 1: Ladner's theorem

(Ladner, 1975): If $P \neq N P$, then there is a language in P which is neither in P or is NP complete

(a)

(b)

(c)

The second scenario is impossible.

Ladner's theorem

Ladner's theorem proof

Preliminaries

- We can compute an enumeration of all polynomialy bounded TMs ($M_{1}, M_{2}, M_{3}, \ldots$) and all logarithmic space reductions $\left(R_{1}, R_{2}, R_{3}, \ldots\right)$
- Why? One way is to use a polynomial "clock" on every M_{i} that will allow it to run for no more than $|x|^{i}$ steps for input x. Similarly, we can do this for logarithmic space reductions.

Ladner's theorem proof

- The wanted language is described in terms of the machine K that decides it:
$L(K)=\{x \mid x \in S A T$ and $f(|x|)$ is even $\}$
$f(n)$ will be described later.
- The demands for this language are the following:
(1) $\forall i L(K) \neq L\left(M_{i}\right)$
(out of P)
(2) $\forall i \exists w: K\left(R_{i}(w)\right) \neq S(w)$
(out of NP-complete)
and we'll prove that they're met.

Ladner's theorem proof

We want to check our conditions one after the other:
$M_{1}, R_{1}, M_{2}, R_{2}, \ldots$

Let F be the turing machine that computes f . For $n=1 \mathrm{~F}$ makes two steps and outputs 2 . For $n \geq 2 \mathrm{~F}$ proceeds this way:
(1) Computes $f(1), f(2), \ldots$ as many of them as it can for n steps.
(2) If the last value of f thus computed was $f(i)=k$ then

- If $\mathrm{k}=2 \mathrm{i}$ we check our conditions for M_{i} versus K with inputs z , ranging lexicografically over all Σ^{*}. (for n steps) If a such z is found then $f(n)=2 i+1$. Else $f(n)=2 i$
- If $\mathrm{k}=2 \mathrm{i}+1$ we check our conditions for $K\left(R_{i}\right)$ versus S with inputs z , ranging lexicografically over all Σ^{*} (for n steps) If we find such a z then $f(n)=2 i$. Else $f(n)=2 i+1$

Ladner's theorem proof

Comments on the construction

- Obviously F is $\mathcal{O}(n)$ and thus K is in NP.

Reminder: $\quad K=\{x \mid x \in S A T$ and $f(|x|)$ is even $\}$

- The function f is a very slowly growing function: Suppose that $\mathrm{n}(\mathrm{k})$ is the smallest number for which $f(n)=k$. Then the smallest number for which $f(n)$ has a chance at becoming $\mathrm{k}+1$ is at least $\frac{n(k)^{2}}{2}$ (in fact it is even bigger). It follows that $f(n)=\mathcal{O}(\log \log n)$
- This technique is often called "lazy" diagonalization. It will be more clear in the final arguments.

Ladner's theorem proof

Final arguments

$$
L(K)=\{x \mid x \in S A T \text { and } f(|x|) \text { is even }\}
$$

- Suppose first that $L(K) \in P$, and so is accepted by some polynomial-time machine in our enumeration, let's say M_{i}. Then $\mathrm{f}(\mathrm{n})=2 \mathrm{i}$ for all $n \geq n_{0}$ for some n_{0} and thus $L(K)$ coincides with SAT on all but finitely many strings. But this contradicts the assumptions $P \neq N P$ and $L(K) \in P$
- Suppose that L is NP-complete, and so there is a reduction, let's say R_{i} in our enumeration, from SAT to $\mathrm{L}(\mathrm{K})$. It follows that $f(n)=2 i+1$ for all $n \geq n_{0}$ for some n_{0}. But then $L(K)$ is a finite language and this contradicts with the assumption that $\mathrm{L}(\mathrm{K})$ is NP-complete.
- End of proof

Problems conjured to be NP-intermediate

The language constructed in the proof is artificial. The question is whether any "natural" decision problems are intermediate. Some candidates:
(1) GRAPH ISOMORPHISM: Given (simple, undirected) graphs $\left\{G_{1}\right\}$ and $\left\{G_{2}\right\}$, are they isomorphic?
(2) FACTORING: Given natural numbers $\{m<n\}$, does $\{n\}$ have a prime factor greater than $\{m\}$?
(3) DISCRETE LOGARITHM: Given natural numbers $g, h, k<n$, does there exist $\{e \leq k\}$ such that $\left\{g^{e}=h\right\}$ modulo $\{n\}$?
(1) CIRCUIT MINIMIZATION: Given a string $\left\{x \in\{0,1\}^{n}\right\}$ where $\left\{n=2^{k}\right\}$ for some $\{k\}$, and $\{s>0\}$ (in binary), is there a $\{k\}$-input Boolean circuit $\{C\}$ of size at most $\{s\}$ such that for all $\{i\},\{0 \leq i<n\},\left\{C(i)=x_{i}\right\}$?

Part 2, Dense and Sparse Languages

Part II: Density

Let $L \subset \Sigma^{*}$ be a language. We define its density to be the following:

$$
\operatorname{dens}_{L}(n)=|\{x \in L:|x| \leq n\}|
$$

Sparse languages are languages with polynomially bounded density functions.
Dense languages are languages with superpolynomial densities.

Density

Definition:We say that two languages $K, L \in \sum^{*}$ are polynomially isomorphic if there iis a function h from Σ^{*} to itself such that:

- h is a bijection
- For each $x \in \Sigma^{*}, x \in K$ if and only if $h(x) \in L$
- Both h and its inverse h_{-1} are polynomial-time computable

Proposition: If $K, L \subset \Sigma^{*}$ are polynomially isomorphic, then dens $_{K}$ and dens $_{L}$ are polynomially related.

Proof: All strings in K of length at most n are mapped by the polynomial isomorphism into strings of L of length at most $p_{1}(n)$, where p_{1} is the polynomial bound of the isomorphism. Since the mapping must be one-to-one, $\operatorname{dens}_{K}(n) \leq \operatorname{dens}_{L}\left(p_{1}(n)\right)$. Similarly, $\operatorname{dens}_{L}(n) \leq \operatorname{dens}_{K}\left(p_{2}(n)\right)$ where p_{2} is the polynomial bound of the inverse isomoprhism.

Sparse Language Facts

- It known that there is a polynomial-time Turing reduction from any language in P to a sparse language.
- Fortune showed in 1979 that if any sparse language is co-NP-complete, then $\mathrm{P}=\mathrm{NP}$.
- Mahaney used this to show in 1982 that if any sparse language is NP-complete, then $\mathrm{P}=\mathrm{NP}$.

Unary Languages and the $P \neq N P$ question

A familiar kind of sparse languages are the unary languages, the subsets of $\{0\}^{*}$. Intrestingly, there is a direct argument that proves the last for unary languages:

- Suppose a unary language $U \subset\{0\}^{*}$ is NP-complete. Then $P=N P$.

Proof: It suffices to show that $S A T \in P$ if there exist a reduction from SAT to U.

- Given a boolean expression ϕ with n variables x_{1}, x_{2}, \ldots we consider a partial truth assignment $t \in\{0,1\}^{j}$.
- $t_{i}=1$ means $x_{i}=$ true and $t_{i}=0$ means $x_{i}=$ false.
- $\phi[t]$ is the expression resulting from ϕ if we substitute the truth assignements of t in ϕ. (omiting any false literals from a clause, and omitting any clause with a true literal)

Example

For $t=001$
and $\phi=\left(x_{1} \vee x_{2} \vee \neg x_{1}\right) \wedge\left(x_{5} \vee x_{4} \vee x_{3}\right) \wedge\left(x_{5} \vee x_{4}\right)$
we have $\phi[t]=\left(x_{5} \vee x_{4}\right)$

It's clear that if $|t|=5$ then $\phi[t]$ is either true and has no clauses, or false and has an empty clause.

The algorithm

A resonable algorithm for SAT:

- If $|t|=n$, then return "yes" if $\phi[t]$ has no clauses, else return "no"
Otherwise return "yes" if and only if either $\phi[t 0]$ or $\phi[t 1]$ returns "yes"

A better one:

- If $|t|=n$, then return "yes" if $\phi[t]$ has no clauses, else return "no"
Otherwise look up $H(t)$ in the table; if a pair $(H(t), v)$ is found return v .
Otherwise return "yes" if either $\phi[t 0]$ or $\phi[t 1]$ returns "yes"; return no otherwise.
In either case, update the table by inserting $(H(t), v)$

What about H?

We need a function H that
(1) maintains satisfiability: if $H(t)=H\left(t^{\prime}\right)$ for two partial truth assignments t and t^{\prime} then $\phi[t]$ and $\phi\left[t^{\prime}\right]$ must be both satisfiable or both unsatisfiable.
(2) has a small range, so that the table can be searched efficiently

The reduction R from $S A T$ to U has these two properties. So we can define $H(t)=R(\phi(t))$
[All values of $H(t)$ must be of length at most $\mathrm{p}(\mathrm{n})$, the polynomial bound on R , when applied to an expression of n variables. But since U is unary there are at most $p(n)$ such values.]

The Complexity of the algorithm

- On each recursive call the algorithm takes at most $\mathrm{p}(\mathrm{n})$ time. So, the total time is $\mathcal{O}(M p(n))$, where M is the total number of the algorithm invocations.
- Claim: We can pick a set $T=\left\{t_{1}, t_{2}, t_{3}, \ldots\right\}$ of invocations, such that:
(1) $|T| \geq \frac{M}{2 n}$
(2) All invocations in T are recursive
(3) None of the elements of T is a prefix of another element in T .
- All the invocations in T are mapped to different H values. But there are only $p(n)$ such values. So $\frac{M}{2 n} \leq p(n)$, and the running time is $\mathcal{O}\left(n p(n)^{2}\right)$

Thank you!

