Ladner’'s Theorem, Sparse and Dense Languages

Vasiliki Velona
pITAv

November 2014

Ladner’s theorem
©0000000

Ladner’s theorem

Part 1, Ladner's Theorem

Ladner’s theorem
0@000000

Ladner’s theorem

Part 1: Ladner’'s theorem

(Ladner, 1975): If P # NP, then there is a language in P which is
neither in P or is NP complete

NP NP

NP-complete
NP-complete

P=NP

(=NP-complete)

(a) (b) (c)

The second scenario is impossible.

Ladner’s theorem
[e]e] Yololelele]

Ladner’s theorem

Ladner’s theorem proof

Preliminaries

@ We can compute an enumeration of all polynomialy bounded

TMs (M1, My, M3, ...) and all logarithmic space reductions
(R1, R2, Rs, ...)

@ Why? One way is to use a polynomial "clock” on every M;
that will allow it to run for no more than x|’ steps for input x.
Similarly, we can do this for logarithmic space reductions.

Ladner’s theorem
[ee]eY Tolelele]

Ladner’s theorem

Ladner’s theorem proof

@ The wanted language is described in terms of the machine K
that decides it:

L(K) = {x|x € SAT and f(|x|) is even}

f(n) will be described later.

@ The demands for this language are the following:

Q ViL(K) # L(M;) (out of P)
Q@ Vidw : K(Ri(w)) # S(w) (out of NP-complete)

and we'll prove that they're met.

Ladner’s theorem
0000®000

Ladner’s theorem

Ladner’s theorem proof

We want to check our conditions one after the other:
M17 Rla M27 R27

Let F be the turing machine that computes f. For n =1 F makes
two steps and outputs 2. For n > 2 F proceeds this way:

@ Computes f(1),f(2),... as many of them as it can for n steps.
@ |If the last value of f thus computed was f(i) = k then

o If k=2i we check our conditions for M; versus K with inputs z,
ranging lexicografically over all *. (for n steps)
If a such z is found then f(n) = 2/ + 1. Else f(n) = 2j

o If k=2i+1 we check our conditions for K(R;) versus S with
inputs z, ranging lexicografically over all X* (for n steps)
If we find such a z then f(n) = 2i. Else f(n) =2i+1

Ladner’s theorem
00000®00

Ladner’s theorem

Ladner’s theorem proof

Comments on the construction

@ Obviously F is O(n) and thus K is in NP.
Reminder: K = {x|x € SAT and f(|x]) is even}

@ The function f is a very slowly growing function: Suppose
that n(k) is the smallest number for which f(n) = k. Then
the smallest number for which f(n) has a chance at becoming

k+1 is at least %k)z (in fact it is even bigger). It follows that
f(n) = O(log log n)

@ This technique is often called "lazy” diagonalization. It will be
more clear in the final arguments.

Ladner’s theorem
000000e0

Ladner’s theorem

Ladner’s theorem proof

Final arguments
L(K) = {x|x € SAT and f(|x|) is even}

@ Suppose first that L(K) € P, and so is accepted by some
polynomial-time machine in our enumeration, let's say M;.
Then f(n)=2i for all n > ng for some ng and thus L(K)
coincides with SAT on all but finitely many strings. But this
contradicts the assumptions P # NP and L(K) € P

@ Suppose that L is NP-complete, and so there is a reduction,
let's say R; in our enumeration, from SAT to L(K).It follows
that f(n)=2i+1 for all n > ng for some ng. But then L(K) is a
finite language and this contradicts with the assumption that
L(K) is NP-complete.

@ End of proof

Ladner’s theorem

0000000e

Ladner’s theorem

Problems conjured to be NP-intermediate

The language constructed in the proof is artificial. The question is
whether any “natural” decision problems are intermediate. Some

candidates:

@ GRAPH ISOMORPHISM: Given (simple, undirected) graphs
{G1} and { Gy}, are they isomorphic?

@ FACTORING: Given natural numbers {m < n}, does {n} have
a prime factor greater than {m}?

© DISCRETE LOGARITHM: Given natural numbers g, h, k < n,
does there exist {e < k} such that {g® = h} modulo {n}?

© CIRCUIT MINIMIZATION: Given a string {x € {0,1}"}

where {n = 2} for some {k}, and {s > 0} (in binary), is
there a {k}-input Boolean circuit {C} of size at most {s}
such that for all {i}, {0 <i < n}, {C(i) = x;}?

Density
©000000000

Density

Part 2, Dense and Sparse Languages

Density
0@00000000

Density

Part Il: Density

Let L C £* be a language. We define its density to be the
following:
dens;(n) = |{x € L: |x| < n}|

Sparse languages are languages with polynomially bounded
density functions.
Dense languages are languages with superpolynomial densities.

Density
00®0000000

Density

Density

Definition:We say that two languages K, L € ¥*are polynomially
isomorphic if there iis a function h from X* to itself such that:

@ h is a bijection
e For each x € ¥*, x € K if and only if h(x) € L

@ Both h and its inverse h_1 are polynomial-time computable

Proposition: If K, L C X* are polynomially isomorphic, then
densyk and dens; are polynomially related.

Proof: All strings in K of length at most n are mapped by the
polynomial isomorphism into strings of L of length at most p1(n),
where p; is the polynomial bound of the isomorphism. Since the
mapping must be one-to-one, densk(n) < dens;(p1(n)). Similarly,
dens; (n) < densk(p2(n)) where py is the polynomial bound of the
inverse isomoprhism.

Density
[ee]eY Jolelelelele)

Density

Sparse Language Facts

@ It known that there is a polynomial-time Turing reduction
from any language in P to a sparse language.

@ Fortune showed in 1979 that if any sparse language is
co-NP-complete, then P = NP.

@ Mahaney used this to show in 1982 that if any sparse
language is NP-complete, then P = NP.

Density
0000®00000

Density

Unary Languages and the P # NP question

A familiar kind of sparse languages are the unary languages, the
subsets of {0}*. Intrestingly, there is a direct argument that proves
the last for unary languages:

@ Suppose a unary language U C {0}* is NP-complete. Then
P=NP.

Proof: It suffices to show that SAT € P if there exist a
reduction from SAT to U.

e Given a boolean expression ¢ with n variables xi, x2, ... we
consider a partial truth assignment t € {0, 1}

o t; =1 means x; = true and t; = 0 means x; = false.

o ¢[t] is the expression resulting from ¢ if we substitute the
truth assignements of t in ¢. (omiting any false literals from a
clause, and omitting any clause with a true literal)

Density
00000@0000

Density

Example

For t = 001
and ¢ = (x1 Vxo V=x1) A (x5 VxaVx3)A(xs V xa)

we have ¢[t] = (x5 V xa)

It's clear that if [t| =5 then ¢[t] is either true and has no clauses,
or false and has an empty clause.

Density
000000e000

Density

The algorithm

A resonable algorithm for SAT:

o If |t| = n, then return "yes” if ¢[t] has no clauses, else
return "no”
Otherwise return "yes” if and only if either ¢[t0] or ¢[t1]
returns " yes”

A better one:

o If [t| = n, then return "yes” if ¢[t] has no clauses, else
return "no”
Otherwise look up H(t) in the table; if a pair (H(t), v) is
found return v.
Otherwise return "yes” if either ¢[t0] or ¢[t1] returns
”yes”; return no otherwise.
In either case, update the table by inserting (H(t), v)

Density
0000000800
Density

What about H?

We need a function H that

@ maintains satisfiability: if H(t) = H(t') for two partial truth
assignments t and t’ then ¢[t] and ¢[t'] must be both
satisfiable or both unsatisfiable.

@ has a small range, so that the table can be searched efficiently

The reduction R from SAT to U has these two properties. So we
can define H(t) = R(¢(t))

[All values of H(t) must be of length at most p(n), the polynomial
bound on R, when applied to an expression of n variables. But
since U is unary there are at most p(n) such values.]

Density
0000000080

Density

The Complexity of the algorithm

@ On each recursive call the algorithm takes at most p(n) time.
So, the total time is O(Mp(n)), where M is the total number
of the algorithm invocations.

e Claim: We can pick a set T = {ty, t, t3, ...} of invocations,
such that:

Q7| >4
@ All invocations in T are recursive
© None of the elements of T is a prefix of another element in T.

@ All the invocations in T are mapped to different H values.
But there are only p(n) such values. So & < p(n), and the
running time is O(np(n)?)

Density
000000000e

Density

Thank you!

	Ladner's theorem
	Ladner's theorem

	Density
	Density

