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Part 1: Ladner’s theorem

(Ladner, 1975): If P 6= NP, then there is a language in P which is
neither in P or is NP complete

The second scenario is impossible.
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Ladner’s theorem proof

Preliminaries

We can compute an enumeration of all polynomialy bounded
TMs (M1,M2,M3, ...) and all logarithmic space reductions
(R1,R2,R3, ...)

Why? One way is to use a polynomial ”clock” on every Mi

that will allow it to run for no more than |x |i steps for input x.
Similarly, we can do this for logarithmic space reductions.
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Ladner’s theorem proof

The wanted language is described in terms of the machine K
that decides it:

L(K ) = {x |x ∈ SAT and f (|x |) is even}

f (n) will be described later.

The demands for this language are the following:

1 ∀iL(K ) 6= L(Mi ) (out of P)

2 ∀i∃w : K (Ri (w)) 6= S(w) (out of NP-complete)

and we’ll prove that they’re met.
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We want to check our conditions one after the other:
M1,R1,M2,R2, ...

Let F be the turing machine that computes f. For n = 1 F makes
two steps and outputs 2. For n ≥ 2 F proceeds this way:

1 Computes f (1), f (2), ... as many of them as it can for n steps.

2 If the last value of f thus computed was f (i) = k then

If k=2i we check our conditions for Mi versus K with inputs z,
ranging lexicografically over all Σ∗. (for n steps)
If a such z is found then f (n) = 2i + 1. Else f (n) = 2i

If k=2i+1 we check our conditions for K (Ri ) versus S with
inputs z, ranging lexicografically over all Σ∗ (for n steps)
If we find such a z then f (n) = 2i . Else f (n) = 2i + 1
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Comments on the construction

Obviously F is O(n) and thus K is in NP.

Reminder: K = {x |x ∈ SAT and f (|x |) is even}

The function f is a very slowly growing function: Suppose
that n(k) is the smallest number for which f (n) = k . Then
the smallest number for which f(n) has a chance at becoming

k+1 is at least n(k)2

2 (in fact it is even bigger). It follows that
f (n) = O(log log n)

This technique is often called ”lazy” diagonalization. It will be
more clear in the final arguments.
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Final arguments

L(K ) = {x |x ∈ SAT and f (|x |) is even}

Suppose first that L(K ) ∈ P, and so is accepted by some
polynomial-time machine in our enumeration, let’s say Mi .
Then f(n)=2i for all n ≥ n0 for some n0 and thus L(K)
coincides with SAT on all but finitely many strings. But this
contradicts the assumptions P 6= NP and L(K ) ∈ P

Suppose that L is NP-complete, and so there is a reduction,
let’s say Ri in our enumeration, from SAT to L(K).It follows
that f(n)=2i+1 for all n ≥ n0 for some n0. But then L(K) is a
finite language and this contradicts with the assumption that
L(K) is NP-complete.

End of proof
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Problems conjured to be NP-intermediate

The language constructed in the proof is artificial. The question is
whether any “natural” decision problems are intermediate. Some
candidates:

1 GRAPH ISOMORPHISM: Given (simple, undirected) graphs
{G1} and {G2}, are they isomorphic?

2 FACTORING: Given natural numbers {m < n}, does {n} have
a prime factor greater than {m}?

3 DISCRETE LOGARITHM: Given natural numbers g , h, k < n,
does there exist {e ≤ k} such that {g e = h} modulo {n}?

4 CIRCUIT MINIMIZATION: Given a string {x ∈ {0, 1}n}
where {n = 2k} for some {k}, and {s > 0} (in binary), is
there a {k}-input Boolean circuit {C} of size at most {s}
such that for all {i}, {0 ≤ i < n}, {C (i) = xi}?
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Part 2, Dense and Sparse Languages
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Part II: Density

Let L ⊂ Σ∗ be a language. We define its density to be the
following:

densL(n) = |{x ∈ L : |x | ≤ n}|

Sparse languages are languages with polynomially bounded
density functions.
Dense languages are languages with superpolynomial densities.
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Definition:We say that two languages K , L ∈ Σ∗are polynomially
isomorphic if there iis a function h from Σ∗ to itself such that:

h is a bijection

For each x ∈ Σ∗, x ∈ K if and only if h(x) ∈ L

Both h and its inverse h−1 are polynomial-time computable

Proposition: If K , L ⊂ Σ∗ are polynomially isomorphic, then
densK and densL are polynomially related.

Proof: All strings in K of length at most n are mapped by the
polynomial isomorphism into strings of L of length at most p1(n),
where p1 is the polynomial bound of the isomorphism. Since the
mapping must be one-to-one, densK (n) ≤ densL(p1(n)). Similarly,
densL(n) ≤ densK (p2(n)) where p2 is the polynomial bound of the
inverse isomoprhism.
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Sparse Language Facts

It known that there is a polynomial-time Turing reduction
from any language in P to a sparse language.

Fortune showed in 1979 that if any sparse language is
co-NP-complete, then P = NP.

Mahaney used this to show in 1982 that if any sparse
language is NP-complete, then P = NP.
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Unary Languages and the P 6= NP question

A familiar kind of sparse languages are the unary languages, the
subsets of {0}∗. Intrestingly, there is a direct argument that proves
the last for unary languages:

Suppose a unary language U ⊂ {0}∗ is NP-complete. Then
P=NP.

Proof: It suffices to show that SAT ∈ P if there exist a
reduction from SAT to U.

Given a boolean expression φ with n variables x1, x2, ... we
consider a partial truth assignment t ∈ {0, 1}j .
ti = 1 means xi = true and ti = 0 means xi = false.
φ[t] is the expression resulting from φ if we substitute the
truth assignements of t in φ. (omiting any false literals from a
clause, and omitting any clause with a true literal)
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Example

For t = 001

and φ = (x1 ∨ x2 ∨ ¬x1) ∧ (x5 ∨ x4 ∨ x3) ∧ (x5 ∨ x4)

we have φ[t] = (x5 ∨ x4)

It’s clear that if |t| = 5 then φ[t] is either true and has no clauses,
or false and has an empty clause.
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The algorithm

A resonable algorithm for SAT:

If |t| = n, then return ”yes” if φ[t] has no clauses, else
return ”no”
Otherwise return ”yes” if and only if either φ[t0] or φ[t1]
returns ”yes”

A better one:

If |t| = n, then return ”yes” if φ[t] has no clauses, else
return ”no”
Otherwise look up H(t) in the table; if a pair (H(t), v) is
found return v.
Otherwise return ”yes” if either φ[t0] or φ[t1] returns
”yes”; return no otherwise.
In either case, update the table by inserting (H(t), v)
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What about H?

We need a function H that

1 maintains satisfiability: if H(t) = H(t ′) for two partial truth
assignments t and t ′ then φ[t] and φ[t ′] must be both
satisfiable or both unsatisfiable.

2 has a small range, so that the table can be searched efficiently

The reduction R from SAT to U has these two properties. So we
can define H(t) = R(φ(t))

[All values of H(t) must be of length at most p(n), the polynomial
bound on R, when applied to an expression of n variables. But
since U is unary there are at most p(n) such values.]
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The Complexity of the algorithm

On each recursive call the algorithm takes at most p(n) time.
So, the total time is O(Mp(n)), where M is the total number
of the algorithm invocations.

Claim: We can pick a set T = {t1, t2, t3, ...} of invocations,
such that:

1 |T | ≥ M
2n

2 All invocations in T are recursive
3 None of the elements of T is a prefix of another element in T.

All the invocations in T are mapped to different H values.
But there are only p(n) such values. So M

2n ≤ p(n), and the
running time is O(np(n)2)
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Thank you!
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