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Trakhtenbrot’s Theorem Second Order Logic and Fagin’s Theorem

Overview

We will prove two theorems:

Trakhtenbrot’s theorem: The set of finitely satisfiable
sentences is not recursive.
Corollary: The set of finitely valid sentences is not recursively
enumerable.

Fagin’s theorem: ∃SO captures NP (∃SO=NP)
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Introduction

Completeness theorem for FO:

A sentence Φ is valid iff it is provable in some formal system.

This implies that the set of all valid FO sentences is recursively
enumerable: We can have a TM try all possible proofs in
lexicographic order and report "yes" if one of them is a proof of the
given expression.

We will show that this completeness fails when only finite models
are allowed.
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Trakhtenbrot’s theorem

Definition

Given a vocabulary σ, a sentence Φ in that vocabulary is called
finitely satisfiable if there is a finite structure A ∈ STRUCT[σ] such
that A |= Φ
The sentence Φ is called finitely valid if A |= Φ for all finite
structures A ∈ STRUCT[σ].

Theorem (Trakhtenbrot)

For every relational vocabulary σ with at least one binary relation
symbol, it is undecidable whether a sentence Φ of vocabularty σ is
finitely satisfiable.
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Proof

Proof idea

For every Turing Machine M we construct a sentence ΦM of
vocabulary σ such that ΦM is finitely satisfiable iff M halts on the
empty input. The latter is well known to be undecidable.

Let M = (Q,Σ,∆, δ, q0,Qa,Qr ) be a deterministic Turing machine
with a one way infinite tape.

We can assume wlog that ∆ = {0, 1} where 0 represents the blank
symbol.

Danai Balla ALMA
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Proof

We define σ so that its structures represent computations of M

σ = {<,min,T0(·, ·),T1(·, ·) (Hq(·, ·))q∈Q}

Where

<: Linear order and min constant symbol for the minimal
element with respect to <

T0,T1: Tape predicates
Ti (p, t) indicates that position p at time t contains i , for
i = 0, 1

Hq: Head predicates
Hq(p, t) indicates that at time t, the machine is in state q and
its head is in position p

Danai Balla ALMA
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Proof

We define ΦM to be the conjunction of the following sentences

A sentence stating that < is a linear ordering and min is its
minimal element.

A sentence defining the initial configurations of M:
Hq0(min,min) ∧ ∀pT0(p,min)

A sentence stating that in every configuration of M, each cell
of the tape contains exactly on element of ∆:
∀p∀t(T0(p, t)↔ (¬T1(p, t))

Danai Balla ALMA
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Proof

A sentence stating that at any time the machine is exactly in
one state:

∀t∃!p

( ∨
q∈Q

Hq(p, t)

)
∧ ¬∃p∃t

( ∨
q,q′∈Q,q 6=q′

Hq(p, t) ∧ Hq′(p, t)

)
A set of sentences stating that Ti ’s and Hq’s respect the
transitions of M.
For example if δ(q, 0) = (q′, 1, l), this transition is represented
by the conjunction of

∀p∀t

 p 6= min
∧T0(p, t)
∧Hq(p, t)

→
 T1(p, t + 1)

∧Hq′(p − 1, t + 1)
∧∀p′(p 6= p′ → (

∧
i=0,1

Ti (p
′, t + 1)↔ Ti (p, t))


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Proof

and

∀p∀t

 p = min
∧T0(p, t)
∧Hq(p, t)

→
 T1(p, t + 1)

∧Hq′(p, t + 1)
∧∀p′(p 6= p′ → (

∧
i=0,1

Ti (p
′, t + 1)↔ Ti (p

′, t))


Finally a sentence stating that at some point M is in halting
state:
∃p∃t

∨
q∈Qa∪Qr

Hq(p, t)

M halts on the empty input iff ΦM has a finite model.
Since testing if M halts on the empty input is undecidable, then so
is finite satisfiability for ΦM

Danai Balla ALMA
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Corollary

Corollary

For any vocabulary containing at least one binary relation symbol,
the set of finitely valid sentences is not recursively enumerable.

Proof.

The set of finitely satisfiable sentences is recursively enumerable:
We can enumerate all pairs (A,Φ) where A is finite and output Φ
whenever A |= Φ. Assume that the set of finitely valid sentences is
r.e.,then since Φ is valid iff ¬Φ is not finitely satisfiable, we
conclude that the set of finitely satisfiable sentences is recrusive,
which contradicts Trakhtenbrot’s theorem.

Danai Balla ALMA



12/36

Trakhtenbrot’s Theorem Second Order Logic and Fagin’s Theorem

Contents

1 Trakhtenbrot’s Theorem

2 Second Order Logic and Fagin’s Theorem

Second Order Logic

Fagin’s Theorem

Results of Fagin’s Theorem

Danai Balla ALMA



13/36

Trakhtenbrot’s Theorem Second Order Logic and Fagin’s Theorem

Second Order Logic

Table of Contents

1 Trakhtenbrot’s Theorem

2 Second Order Logic and Fagin’s Theorem

Second Order Logic

Fagin’s Theorem

Results of Fagin’s Theorem

Danai Balla ALMA



14/36

Trakhtenbrot’s Theorem Second Order Logic and Fagin’s Theorem

Second Order Logic

Second Order Logic-Definition
Definition (Second Order Logic)

We assume that for every k > 0 there are infinitely many variables
X k

1 ,X
k
2 , . . . ranging over k-ary relations.

Given a vocabulary σ that consists of relation and constant
symbols, we define:

Terms: FO variables and constant symbols. x is the only free
variable of a term x and constant c has no free variables
Atomic formulae:

FO atomic formulae
X (t1, . . . , tk) where t1, . . . , tk are terms and X is a SO variable
of arity k . (ti ’s: free FO variables, X : free SO variable)

∧,∨,¬, quantification as in FO
If φ(~x ,Y , ~X ) is a formula, then ∀Yφ(~x ,Y , ~X ) and ∃φ(~x ,Y , ~X )
are formulae whose free variables are ~x (FO) and ~X (SO).

Danai Balla ALMA
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Second Order Logic

Semantics of SO

Definition (Semantics of SO logic)

For each formula φ(~x , ~X ) we define the notion of A |= φ(~b, ~B)
where ~b is a tuple of elements of A with the same length as ~x and
if ~x = (X1, . . . ,Xl), ~B = (B1, . . . ,Bl) with Bi ⊆ Aarity(Xi ).
For constructions that are different from those of FO:

If φ(~x , ~X ) is X (t1, . . . , tk), ti terms with free variables among
~x , then A |= φ(~b, ~B) iff (tA1 (~b), . . . , tAk (~b)) is in ~B .
If φ(~x , ~X ) is ∃Yψ(~x ,Y , ~X ) with Y k-ary then A |= φ(~b, ~B) if
for some C ⊆ Ak we have A |= ψ(~b,C , ~B)
If φ(~x , ~X ) is ∀Yψ(~x ,Y , ~X ) with Y k-ary then A |= φ(~b, ~B) if
for all C ⊆ Ak we have A |= ψ(~b,C , ~B)

Danai Balla ALMA
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Second Order Logic

Existential and Universal SO Logic

Definition

Existential SO logic or ∃SO is defined as the restriction of SO that
consists of the formulae of the form

∃X1 . . . ∃Xnφ

where φ does not have any second order quantification.
If the second order quantifier prefix consists only of universal
quantifiers, we speak of the universal SO logic or ∀SO

Danai Balla ALMA
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Second Order Logic

Examples in ∃SO

Example

Φ3-color ≡ (∃R1∃Y 1∃B1∀x((R(x) ∨ Y (x) ∨ B(x)) ∧ (∀y(E (x , y)→
¬(R(x) ∧ R(y)) ∧ ¬(Y (x) ∧ Y (y)) ∧ ¬(B(x) ∧ B(y)))
A graph G satisfies Φ3-color iff G is 3-colorable.

Example

ΦSAT ≡ (∃S)(∀x)(∃y)((P(x , y) ∧ S(y)) ∨ (N(x , y) ∧ ¬S(y)))

Danai Balla ALMA
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Fagin’s Theorem

A general definition

Definition

Let K be a complexity class, L a logic and C a class of finite
structures. We say that L captures K on C if the following hold:
1. The data complexity of L on C is K; that is, for every
L-sentence Φ, testing if A |= Φ is in K, provided A ∈ C.

2. For every property P of structures from C that can be tested
with complexity K, there is a sentence ΦP of L such that
A |= ΦP iff A has the property P, for every A ∈ C.

If C is the class of all finite structures, we say that L captures K.

Danai Balla ALMA
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Fagin’s Theorem

Fagin’s Theorem

Theorem (Fagin)

∃SO captures NP.

Proof:

Every ∃SO sentence Φ can be evaluated in NP: Suppose Φ is
∃S1 · · · ∃Snφ where φ is FO. Given A, the NTM guesses S1, . . . ,Sn
and checks if φ(S1, . . . ,Sn) holds. The latter can be done in
polynomial time in ||A|| plus the size of S1, . . . ,Sn and thus in
polynomial time in ||A||.

Danai Balla ALMA
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Fagin’s Theorem

Proof

Next, we show that every NP-property of finite structures can be
expressed in ∃SO.

Suppose we are given a property P of σ-structures that can be
tested on encodings of σ-structures by a nondeterministic
polynomial time TM M = (Q,Σ,∆, δ, q0,Qa,Qr ) with a one way
infinite tape that runs in time nk (and Q = {q0, . . . , qm−1})

We assume wlog that M visits the entire input, that Σ = {0, 1}
and ∆ extends Σ with the blank symbol "−".

The sentence describing acceptance by M on encodings of
structures from STRUCT[σ] will be of the form

∃L∃T0∃T1∃T2∃Hq0 · · · ∃Hqm−1Ψ

Danai Balla ALMA
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Fagin’s Theorem

Proof

Ψ is a sentence of vocabulary σ ∪ {T0,T1,T2} ∪ {Hq|q ∈ Q}, L is
binary, other symbols are of arity 2k , and

L is a linear order of the universe

M runs in time nk and visits at most nk cells so we can model
positions on the tape and time as k-tuples ~p, ~t

T0,T1,T2: Tape predicates
Ti (~p, ~t) indicates that position ~p at time ~t contains i , for
i = 0, 1 and for i = 2 contains the blank symbol

Hq: Head predicates
Hq(~p, ~t) indicates that at time ~t the machine is in state q and
its head is in position ~p.

Danai Balla ALMA
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Fagin’s Theorem

Proof

We define Ψ as the conjunction of the following sentences:

The sentence stating that L defines a linear ordering

The sentence stating that

In every configuration of M each cell of the tape contains
exactly one element of ∆

At any time the machine is in exactly one state

At some time M enters a state from Qa

(Same as in the proof of Trakhtenbrot’s theorem)

Danai Balla ALMA
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Fagin’s Theorem

Proof

Sentences stating that Ti ’s and Hq’s respect the transitions of
M:
For every a ∈ ∆ and for every q ∈ Q we have a sentence∨

(q′,b,move)∈δ(q,a)

α(q,a,q′,b,move)

where move ∈ {l , r} and α(q,a,q′,b,move) describing the
transition in which upon reading a in state q the machine
writes b, makes move move and enters state q′ (written same
as in Trakhtenbrot’s theorem).
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Fagin’s Theorem

Proof

The sentence stating that at time 0 the tape contains the
encoding of the structure followed by blanks:

Suppose we have formulae ι(~p) and ξ(~p) of vocabulary σ ∪ L
such that A |= ι(~p) iff the ~p-th position of enc(A) is 1 and
A |= ξ(~p) iff ~p exceeds the length of enc(A) (will be defined
in a bit).

Then the sentence is

∀~p∀~t
(
¬∃~u(~u <k ~t)→

[
(ι(~p)↔ T1(~t, ~p))
∧(ξ(~p)↔ T2(~t, ~p))

])

Danai Balla ALMA
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Fagin’s Theorem

Proof

For the case of σ = {E} with E binary (to simplify the notation):

Assume that the universe is {0, . . . , n− 1} where (i , j) ∈ L iff i < j .

The graph is encoded by the string 0n1 · s where s is a string of
length n2 s.t it has 1 in position un + v for 0 ≤ u, v ≤ n − 1 iff
(u, v) ∈ E and ~p represents the position p1n

k−1 + · · ·+ pk−1n + pk

Then ι(~p) is equivalent to the disjunction of
k∑

i=1
pin

k−1 = n and

∃u ≤ (n − 1)∃v ≤ (n − 1)

(
(n + 1) + un + v =

k∑
i=1

pin
k−1 ∧ E (u, v)

)
ξ(~p) says that ~p, considered as a number, exceeds the length of
enc(A).

Danai Balla ALMA
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Results of Fagin’s Theorem

Corollary
Corollary (Cook)

SAT is NP-complete

Proof.

Let P be a problem (a class of σ-structures) in NP. By Fagin’s
theorem, there is an ∃SO sentence Φ ≡ ∃S1 . . . ∃Snφ s.t. A is in P
iff A |= Φ. Let X = {Si (~a) | i = 1, . . . , n, ~a ∈ Aarity(Si )}. We
construct a propositional formula αAφ from φ by:

Replacing each ∃xψ(x , ·) by
∨

a∈A ψ(a, ·)
Replacing each ∀xψ(x , ·) by

∧
a∈A ψ(a, ·)

Replacing each R(~a) for R ∈ σ by its truth value in A
In αAφ the variables are of the form Si (~a) (they come from X ).
A |= Φ iff αAφ is satisfiable and αAφ can be constructed by a
deterministic logspace machine.

Danai Balla ALMA
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Results of Fagin’s Theorem

Proposition

3-SAT is NP-complete via first order reductions.

Proof.

Let A ∈ STRUCT[〈P2, n2〉] be an instance of SAT with n = ||A||.
Each clause c of A is replaced by 2n clauses as follows:
([x1]c ∨ d1) ∧ (d1 ∨ [x2]c ∨ d2) ∧ (d2 ∨ [x3]c ∨ d3) ∧ · · ·
∧(dn∨ [x1]c∨dn+1)∧(dn+1∨ [x2]c∨dn+2)∧· · ·∧(d2n−1∨ [xn]c) = c ′

Where xi ’s are the instance literals, di ’s are new variables and [l ]c

means the literal l if it occurs in c and false otherwise.
c is satisfiable iff c ′ is satisfiable and c ′ is definable in a first order
way from c .

Danai Balla ALMA
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Results of Fagin’s Theorem

Proposition

3-color is NP-complete via first order reductions

Proof.

We will
show that 3-SAT≤fo3-COLOR.
A instance of 3-SAT,
||A|| = n. We construct graph
f (A) s.t. f (A) 3-colorable
iff A ∈3-SAT (see figure)
In the figure,
G1 encodes clause x1 ∨ x2 ∨ x3

Danai Balla ALMA
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Results of Fagin’s Theorem

Separating Complexity Classes

Since coNP consists of the problems whose complements are in NP,
and the negation of an ∃SO sentence is an ∀SO sentence, we obtain

Corollary

∀SO captures coNP

If we have two complexity classes K1 and K2 captured by logics L1
and L2, we could prove that K1 6= K2 by showing that some
problem definable in L1 is inexpressible in L2 or vice versa.

Separating ∀SO from ∃SO (over finite structures) would resolve the
"PTIME vs NP" problem:

∀SO 6= ∃SO⇒ NP 6= coNP⇒ PTIME 6= NP

Danai Balla ALMA
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Results of Fagin’s Theorem

Fagin’s Theorem and the Polynomial Hierarchy (1/3)

Levels of PH: ΣP
1 =NP, Σp

k+1 = NPΣp
k and Πp

k the set of
complements of problems from Σp

k

Σ1
k the class of SO sentences of the form

(∃ · · · ∃)(∀ · · · ∀)(∃ · · · ∃) · · ·φ

with k quantifier blocks.
Π1
k defined the same way but the first block of quantifiers is

universal.
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Results of Fagin’s Theorem

Fagin’s Theorem and the Polynomial Hierarchy (2/3)

Corollary

For each k ≥ 1
(a) Σ1

k captures Σp
k and

(b) Π1
k captures Πp

k
In particular, SO captures the polynomial hierarchy.

Inductive argument for (a) (sketch)
Base: Fagin’s theorem
Consider a problem in Σp

k+1. By Fagin’s theorem, there exists an
∃SO sentence Φ corresponding to the NP machine with additional
pedicates expressing Σp

k properties and these properties are
expressed by hypothesis by a Σk

1 formula. We push the second
order quantifiers outwards and we have a Σk+1

1 formula.

Danai Balla ALMA
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Results of Fagin’s Theorem

Fagin’s Theorem and the Polynomial Hierarchy (3/3)

The extra quantifier alternation arises when the predicates for Σp
k

are negated:
Suppose we have a formula ∃ · · · ∃φ(P) where P is expressed by
∃ · · · ∃ψ with ψ FO and P may occure negatively. Then puttings
the resulting formula in the prenex form we have a formula of the
form (∃ · · · ∃)(∀ · · · ∀).
For example ∃ · · · ∃¬(∃ · · · ∃ψ) is equivalent to ∃ · · · ∃∀ · · · ∀¬ψ.

Danai Balla ALMA
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Thank you

:)
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