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Motivation

Motivation

There are problems which cannot be appropriately described by
traditional complexity classes. Examples :

Web server goes offline; data packages’ rerouting

Data change in a database; efficient computation of new
queries

Image recognition after a small addition or subtraction of an
element

But what is the similarity between those problems?

Change!

Change → affects the problem state

Locality of Change → Auxiliary Data → Efficient Updates
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Approaches and Naturalness

Approaches

In general approaches for such dynamic problems utilize auxiliary
data i.e. some additional information besides input data to boost
the update process. Mainly there are two different approaches in
that direction :

Algorithmic an effort to design non-trivial algorithms that
need less resources (time, space, disk access etc) to
recompute desired results.

Declarative utilization of logical formalism to specify updates
of the auxiliary data. Hence, every data change is modeled
using a series of logical queries.
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Approaches and Naturalness

”Naturalness” in Complexity

Natural descriptive characterizations :

SPACE → # variables

PARALLEL TIME → quantifier depth

SEQ. TIME 1 → ?

In Dynamic Complexity naturalness is still unclear; however the
framework from Descriptive Complexity is being kept.

1probably unnatural stemming from the ”Von-Neumann bottleneck”
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Preliminaries

Descriptive Complexity Framework

As usual, a vocabulary τ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉 where:

Rai
i is a relation Ri with arity ai

cj is a constant

A structure with vocabulary τ looks like:

A = 〈|A|,RA1 , . . . ,RAr , cA1 , . . . , cAs 〉

Also, ∀i RAi ⊆ |A|ai and ∀cj ∈ τ ⇒ ∃cAj : cAj ∈ |A|
Finally, since STRUCT[τ ] = {B | B is a finite structure over τ}, a
problem P corresponds to a set S : S ⊆ STRUCT[τ ] for some τ .

Dynamic Complexity: A brief introduction 7 / 30



Introduction Dynamic Complexity Classes Epilogue

Preliminaries

Descriptive Complexity Framework

As usual, a vocabulary τ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉 where:

Rai
i is a relation Ri with arity ai

cj is a constant

A structure with vocabulary τ looks like:

A = 〈|A|,RA1 , . . . ,RAr , cA1 , . . . , cAs 〉

Also, ∀i RAi ⊆ |A|ai and ∀cj ∈ τ ⇒ ∃cAj : cAj ∈ |A|
Finally, since STRUCT[τ ] = {B | B is a finite structure over τ}, a
problem P corresponds to a set S : S ⊆ STRUCT[τ ] for some τ .

Dynamic Complexity: A brief introduction 7 / 30



Introduction Dynamic Complexity Classes Epilogue

Preliminaries

Descriptive Complexity Framework

As usual, a vocabulary τ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉 where:

Rai
i is a relation Ri with arity ai

cj is a constant

A structure with vocabulary τ looks like:

A = 〈|A|,RA1 , . . . ,RAr , cA1 , . . . , cAs 〉

Also, ∀i RAi ⊆ |A|ai and ∀cj ∈ τ ⇒ ∃cAj : cAj ∈ |A|

Finally, since STRUCT[τ ] = {B | B is a finite structure over τ}, a
problem P corresponds to a set S : S ⊆ STRUCT[τ ] for some τ .

Dynamic Complexity: A brief introduction 7 / 30



Introduction Dynamic Complexity Classes Epilogue

Preliminaries

Descriptive Complexity Framework

As usual, a vocabulary τ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉 where:

Rai
i is a relation Ri with arity ai

cj is a constant

A structure with vocabulary τ looks like:

A = 〈|A|,RA1 , . . . ,RAr , cA1 , . . . , cAs 〉

Also, ∀i RAi ⊆ |A|ai and ∀cj ∈ τ ⇒ ∃cAj : cAj ∈ |A|
Finally, since STRUCT[τ ] = {B | B is a finite structure over τ}, a
problem P corresponds to a set S : S ⊆ STRUCT[τ ] for some τ .

Dynamic Complexity: A brief introduction 7 / 30



Introduction Dynamic Complexity Classes Epilogue

Overview

1 Introduction

2 Dynamic Complexity Classes
Dyn-C
Dyn-FO
Problems in Dyn-FO
Dyn-PROP
Dynamic Reductions
Historical overview

3 Epilogue

Dynamic Complexity: A brief introduction 8 / 30



Introduction Dynamic Complexity Classes Epilogue

Dyn-C

Definition of Dyn-C

Definition (Dyn-C)

Let C be a complexity class, let σ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉,

let S ⊆ STRUCT[σ] and let2 :

Rn,σ = {ins(i , ā), del(i , ā), set(j , ā) s.t.

1 ≤ i ≤ r , ā ∈ {0, . . . , n − 1}ai , 1 ≤ j ≤ s}

Also let evaln,σ : R∗n,σ → STRUCT[σ] s.t. evaln,σ(∅) = An
0.

Then S ∈ Dyn-C ⇔ ∃T ⊆ STRUCT[τ ] : T ∈ C ∧ ∃fn, gn :
fn : R∗n,σ → STRUCT[τ ]; gn : STRUCT[τ ]×Rn,σ → STRUCT[τ ]

2we may also have an enhanced set of operations On,σ
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Dyn-C

Dyn-C cont’d

Functions fn, gn should satisfy the following properties :

gn, fn(∅) computable in complexity C (with respect to n)

∀r ∈ R∗n,σ [evaln,σ(r) ∈ S ⇔ fn(r) ∈ T ]

∀r ∈ R∗n,σ, s ∈ Rn,σ [fn(rs) = gn(fn(r), s)]

‖fn(r)‖ = ‖evaln,σ(r)O(1)‖

There are also some variants of Dyn-C :

Dyns -C if we forbid delete queries in Rn,σ

Dyn-C+ if we allow polynomial precomputation for fn(∅)
Note: Always only one r ∈ R∗

n,σ that affects a tuple is allowed (or a
constant number at most)
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Dyn-FO

Dyn-FO definition & a small example

Based on the previous definition of Dyn-C :

Definition (Dyn-FO)

Dyn-FO is the set of all boolean queries that can be maintained
using FO formulas after changes that affect a constant number of
tuples in the input.

Example (PARITY ∈ Dyn-FO)

PARITY query is true iff input string has an odd number of 1s.
Let σ = 〈M1〉 the vocabulary of PARITY, Aw the encoding of a
binary string w so that A |= M(i) iff w(i) = 1. Also we consider
τ = 〈M1, b〉 as vocabulary and T our FO problem as
T = {A ∈ STRUCT[τ ] | A |= b}; b is a boolean constant symbol
that acts as flag: it keeps track of the current parity.
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Dyn-FO

PARITY example cont’d

Example (PARITY ∈ Dyn-FO cont’d)

We initialize fn(∅) = 〈{0, 1, . . . , n − 1}, ∅, false〉, so that our data
structure is all 0s and constant b as false. Our objective is clear :
FO computation of gn(B, s) ∀s ∈ Rn,σ. So we have the following
FO formulas :

ins(a,M)
M ′ ≡ M(x) ∨ x = a
b′ ≡ (b ∧M(a)) ∨ (¬b ∧ ¬M(a))

del(a,M)
M ′ ≡ M(x) ∧ x 6= a
b′ ≡ (b ∧ ¬M(a)) ∨ (¬b ∧M(a))

Since those formulas are FO and work in constant time, we get
that PARITY ∈ Dyn-FO.

Note: it is known that PARITY /∈ FO!
Dynamic Complexity: A brief introduction 12 / 30
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Dyn-FO

PARITY: How it works?

Structure Request Data Structure
00000 00000 0

ins(1,S)

10000 10000 1
del(1,S)

00000 00000 0
ins(5,S)

00001 00001 1
ins(2,S)

01001 01001 0

On state i we have a query gn(Bi−1, ri ) where Bi−1 is the current
structure and ri ∈ Rn,σ a request.
So with input Bi−1 = 〈{0, 1, . . . , n − 1},M, b〉 the query produces
the updated structure Bi = 〈{0, 1, . . . , n − 1},M ′, b′〉 with the
formulas ins, del .
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Problems in Dyn-FO

REACH(acyclic)

The reachability problem in acyclic graphs aka REACH(acyclic)
refers to the existence of an s − t path in a directed acyclic graph
(presuming that the graph remains acyclic after each request)

Theorem (PI97)

REACH(acyclic) ∈ Dyn-FO

Basic idea: We need to evaluate boolean query
T = {B ∈ STRUCT[〈E 2,P2, s, t〉] | B |= P(s, t)} by updating the
path relation P and the edge relation E against every edge
insertion or deletion in the graph using FO updates.
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Problems in Dyn-FO

REACH(acyclic) cont’d

Proof.

We construct the following FO queries :
ins(E , a, b) :

P ′(x , y) ≡ P(x , y) ∨ (P(x , a) ∧ P(b, y))

del(E , a, b) :

P ′(x , y) ≡ P(x , y) ∧ [¬P(x , a) ∨ ¬P(b, y)∨
(∃u, v)(P(x , u) ∧ P(u, a) ∧ E (u, v) ∧ ¬P(v , a) ∧ P(v , y)∧

(v 6= b ∨ u 6= a))]

Since ins,del ∈ FO ⇒ REACH(acyclic) ∈ Dyn-FO.
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Problems in Dyn-FO

REACHu

The undirected reachability problem aka REACHu is not FO
expressible. But what about Dyn-FO?

Theorem (PI97)

REACHu ∈ Dyn-FO

Basic idea: We maintain a forest i.e. a collection of connected
components for the undirected graph using three relations :

E (x , y) edge relation

F (x , y) edge in forest relation

PV (x , y , u) x − y path via node u

We need to evaluate boolean query :

T = {A ∈ STRUCT[〈E 2,F 2,PV 3, s, t〉] | A |= PV (s, t, t)}

Dynamic Complexity: A brief introduction 17 / 30



Introduction Dynamic Complexity Classes Epilogue

Problems in Dyn-FO

REACHu

The undirected reachability problem aka REACHu is not FO
expressible. But what about Dyn-FO?

Theorem (PI97)

REACHu ∈ Dyn-FO

Basic idea: We maintain a forest i.e. a collection of connected
components for the undirected graph using three relations :

E (x , y) edge relation

F (x , y) edge in forest relation

PV (x , y , u) x − y path via node u

We need to evaluate boolean query :

T = {A ∈ STRUCT[〈E 2,F 2,PV 3, s, t〉] | A |= PV (s, t, t)}

Dynamic Complexity: A brief introduction 17 / 30



Introduction Dynamic Complexity Classes Epilogue

Problems in Dyn-FO

REACHu ∈ Dyn-FO

Proof.

For our convenience we also define the following relations :

Eq(x , y , a, b) ≡ (x = a ∧ y = b) ∨ (x = b ∧ y = a)

P(x , y) ≡ (x = y) ∨ PV (x , y , y)

We need to handle insertions and deletions in a ”FO way”.

ins(E , a, b) : E ′(x , y) ≡ E (x , y) ∨ Eq(x , y , a, b)

F ′(x , y) ≡ F (x , y) ∨ (Eq(x , y , a, b) ∧ ¬P(a, b))

PV ′(x , y , z) ≡ PV (x , y , z)∨
(∃u, v)[Eq(u, v , a, b) ∧ P(x , u) ∧ P(v , y)

∧ (PV (x , u, z) ∨ PV (v , y , z))]
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Introduction Dynamic Complexity Classes Epilogue

Problems in Dyn-FO

REACHu ∈ Dyn-FO

Proof.

For del(E , a, b) the trivial case is when ¬F (a, b), where we only
set E ′(a, b) = false.
Otherwise, we define :

T (x , y , z) ≡ PV (x , y , z) ∧ ¬(PV (x , y , a) ∧ P(x , y , b))

New(x , y) ≡ E (x , y) ∧ T (a, x , a) ∧ T (b, y , b)∧
(∀u, v)[(E (u, v) ∧ T (a, u, a)∧
T (b, v , b))→ (x < u ∨ (x = u ∧ y ≤ v))]
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Problems in Dyn-FO

REACHu ∈ Dyn-FO

Proof.

Finally we define E ′,F ′,PV ′ :

E ′(x , y) ≡ E (x , y) ∧ ¬Eq(x , y , a, b)

F ′(x , y) ≡ (F (x , y) ∧ ¬Eq(x , y , a, b)) ∨ New(x , y) ∨ New(y , x)

PV ′(x , y , z) ≡ T (x , y , z) ∨ [(∃u, v)(New(u, v) ∨ New(v , u))∧
T (x , u, x) ∧ T (y , v , y) ∧ (T (x , u, z) ∨ T (y , v , z))]
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Problems in Dyn-FO

Other known problems

From the introduction of Dyn-FO many problems have been
proven to be FO computable using an auxiliary FO structure :

REACHd ∈ Dyn-FO using FO reduction to REACHu

LCA ∈ Dyn-FO
LCA(a, x , y)⇔

P(a, x) ∧ P(a, y) ∧ (∀z)((P(z , x) ∧ P(z , y))→ P(z , a))

All regular languages are in Dyn-FO

Dynamic Complexity: A brief introduction 19 / 30
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Dyn-PROP

Dyn-PROP

Definition (Dyn-PROP)

Dyn-PROP is the set of all boolean queries that can be maintained
using quantifier-free FO formulas after changes that affect a
constant number of tuples in the input.

Example

Let G be a graph into which only edges’ insertions are allowed. It
is easy to see that using :

an auxiliary relation T which shall contain all node pairs that
are connected by a path in G

a FO update formula
KT
E (u, v , x , y) ≡ T (x , y) ∨ (T (x , u) ∧ T (v , y))

we verify the existence of an s − t path without quantifiers in FO.
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Dyn-PROP

Other problems in Dyn-PROP

The absence of quantifiers reduces the expressibility of the class.
However, Dyn-PROP contains problems that are not FO
computable :

PARITY ∈ Dyn-PROP
(if we recall the dynamic version of PARITY, we shall see that utilizes no quantifiers)

REACHd ∈ Dyn-PROP [Hes03b]

Regular languages are exactly those languages maintainable in
Dyn-PROP! [GMS12]
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Dynamic Reductions

What about reductions?

Reductions allow us to compare complexity classes and/or
problems. There are many types of reductions e.g. Turing, Karp,
Cook. We have also seen FO reductions i.e. a way of reducing
problems in the descriptive context.

It turns out that FO reductions are too powerful for Dynamic
Complexity, so they need to be restricted somehow.

Definition (bfo)

Bounded expansion,FO reductions aka bfo are FO reductions that :

each tuple/constant of the input structure affects constant
tuples/constants of the output

maps An
0 to a structure of bounded tuples

As usual if S is reducible to T via bfo, we write S ≤bfo T .
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Dynamic Reductions

bfo Reductions cont’d

In the previous definition we imposed a limitation on the initial
structure i.e. An

0. If we allow unbounded initial tuple expansion,
then we get bfo+, essentially a variant of bfo that allows
precomputation.

Example (REACHd ≤bfo REACHu)

Given a directed graph G we apply the following :

Remove edges leaving t

Remove edges from all other vertices so that they all have
outdegree 1

Mark remaining edges as undirected

and we call the produced graph G’ which is undirected.
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Dynamic Reductions

bfo example cont’d

Example (REACHd ≤bfo REACHu)

Express the previous steps using FO:

Id−u= λxy (φd−u, s, t) :

a(x , y) ≡ E (x , y) ∧ x 6= t ∧ (∀z)(E (x , z)→ z = y)

φd−u(x , y) ≡ a(x , y) ∨ a(y , x)

Now we have an s − t deterministic path in G iff there is an s − t
path in G’.

The reduction above is obviously FO; but it is also bfo! Why?

Each request ins or del in G, causes at most two edges to be
inserted or deleted.
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Historical overview
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Historical overview

About REACH

Among graph queries, REACH is probably the most studied query.

(1995) By the introduction of the Dynamic Complexity
Framework, it was known that REACHu,REACHd ∈ Dyn-FO

(2003) Hesse showed REACH ∈ Dyn-TC 0
(AC0 but with maj. gates)

(2015) Datta et al. showed that REACH ∈ Dyn-FO

(2018) extended for changes of size log n
log log n

(04/2020) extended for polylogarithmically sized changes for
REACHu,REACHd

Dynamic Complexity: A brief introduction 26 / 30



Introduction Dynamic Complexity Classes Epilogue

Overview
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Synopsis

Synopsis

Today we’ve seen :

Why static complexity fails to capture certain problems’
aspects?

The expansion of Descriptive Complexity framework to
capture dynamic problems

A general definition of Dyn-C
Representative examples of Dynamic Complexity classes

Known problems expressed with Dynamic Complexity

Historical overview of the area
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The end

The end

Fin

How many light bulbs does it take to change a light bulb?
One, if it knows its own Gödel number!
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