Dynamic Complexity: A brief introduction

Nikolaos Nikolopoulos

Overview

- 1 Introduction
 - Motivation
 - Approaches and Naturalness
 - Preliminaries
- 2 Dynamic Complexity Classes
 - Dyn-C
 - Dyn-FO
 - Problems in Dyn-FO
 - Dyn-PROP
 - Dynamic Reductions
 - Historical overview
- 3 Epilogue
 - Synopsis
 - References
 - The end

Overview

1 Introduction

- Motivation
- Approaches and Naturalness
- Preliminaries
- 2 Dynamic Complexity Classes

3 Epilogue

Motivation

There are problems which cannot be appropriately described by traditional complexity classes. Examples :

- Web server goes offline; data packages' rerouting
- Data change in a database; efficient computation of new queries
- Image recognition after a small addition or subtraction of an element

But what is the similarity between those problems?

Motivation

There are problems which cannot be appropriately described by traditional complexity classes. Examples :

- Web server goes offline; data packages' rerouting
- Data change in a database; efficient computation of new queries
- Image recognition after a small addition or subtraction of an element

But what is the similarity between those problems? Change!

 $\mathsf{Change} \to \mathsf{affects} \text{ the problem state}$

Locality of Change \rightarrow Auxiliary Data \rightarrow Efficient Updates

Approaches

In general approaches for such dynamic problems utilize *auxiliary data* i.e. some additional information besides input data to boost the update process. Mainly there are two different approaches in that direction :

- Algorithmic an effort to design non-trivial algorithms that need less resources (time, space, disk access etc) to recompute desired results.
- Declarative utilization of logical formalism to specify updates of the auxiliary data. Hence, every data change is modeled using a series of logical queries.

"Naturalness" in Complexity

Natural descriptive characterizations :

- SPACE \rightarrow # variables
- PARALLEL TIME \rightarrow quantifier depth
- SEQ. TIME¹ \rightarrow ?

¹probably unnatural stemming from the "Von-Neumann bottleneck"

"Naturalness" in Complexity

Natural descriptive characterizations :

- SPACE \rightarrow # variables
- PARALLEL TIME \rightarrow quantifier depth
- SEQ. TIME¹ \rightarrow ?

In Dynamic Complexity naturalness is still unclear; however the framework from Descriptive Complexity is being kept.

 $^{^1 {\}rm probably}$ unnatural stemming from the "Von-Neumann bottleneck"

As usual, a vocabulary $\tau = \langle R_1^{a_1}, \dots, R_r^{a_r}, c_1, \dots, c_s \rangle$ where:

As usual, a vocabulary $\tau = \langle R_1^{a_1}, \dots, R_r^{a_r}, c_1, \dots, c_s \rangle$ where:

- $R_i^{a_i}$ is a relation R_i with arity a_i
- c_i is a constant

As usual, a vocabulary $\tau = \langle R_1^{a_1}, \dots, R_r^{a_r}, c_1, \dots, c_s \rangle$ where:

- $R_i^{a_i}$ is a relation R_i with arity a_i
- c_j is a constant

A structure with vocabulary τ looks like:

$$\mathcal{A} = \langle |\mathcal{A}|, R_1^{\mathcal{A}}, \dots, R_r^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots, c_s^{\mathcal{A}} \rangle$$

Also,
$$\forall i \ R_i^{\mathcal{A}} \subseteq |\mathcal{A}|^{a_i}$$
 and $\forall c_j \in \tau \Rightarrow \exists c_j^{\mathcal{A}} : c_j^{\mathcal{A}} \in |\mathcal{A}|$

As usual, a vocabulary $\tau = \langle R_1^{a_1}, \dots, R_r^{a_r}, c_1, \dots, c_s \rangle$ where:

- $R_i^{a_i}$ is a relation R_i with arity a_i
- c_j is a constant

A structure with vocabulary τ looks like:

$$\mathcal{A} = \langle |\mathcal{A}|, R_1^{\mathcal{A}}, \dots, R_r^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots, c_s^{\mathcal{A}} \rangle$$

Also, $\forall i \ R_i^{\mathcal{A}} \subseteq |\mathcal{A}|^{a_i}$ and $\forall c_j \in \tau \Rightarrow \exists c_j^{\mathcal{A}} : c_j^{\mathcal{A}} \in |\mathcal{A}|$ Finally, since STRUCT $[\tau] = \{\mathcal{B} \mid \mathcal{B} \text{ is a finite structure over } \tau\}$, a problem P corresponds to a set $S : S \subseteq \text{STRUCT}[\tau]$ for some τ .

Overview

1 Introduction

2 Dynamic Complexity Classes

- Dyn-C
- Dyn-FO
- Problems in Dyn-FO
- Dyn-PROP
- Dynamic Reductions
- Historical overview

3 Epilogue

Definition of Dyn-C

Definition (Dyn-C)

Let C be a complexity class, let $\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$, let $S \subseteq \text{STRUCT}[\sigma]$ and let²:

$$\mathcal{R}_{n,\sigma} = \{ ins(i, \bar{a}), del(i, \bar{a}), set(j, \bar{a}) \ s.t. \ 1 \leq i \leq r, \bar{a} \in \{0, \dots, n-1\}^{a_i}, 1 \leq j \leq s \}$$

Also let $eval_{n,\sigma} : \mathcal{R}^*_{n,\sigma} \to \mathsf{STRUCT}[\sigma] \ s.t. \ eval_{n,\sigma}(\emptyset) = \mathcal{A}^n_0.$

Then $S \in Dyn-C \Leftrightarrow \exists T \subseteq \mathsf{STRUCT}[\tau] : T \in C \land \exists f_n, g_n :$ $f_n : \mathcal{R}^*_{n,\sigma} \to \mathsf{STRUCT}[\tau]; g_n : \mathsf{STRUCT}[\tau] \times \mathcal{R}_{n,\sigma} \to \mathsf{STRUCT}[\tau]$

 $^{^2 {\}rm we}$ may also have an enhanced set of operations ${\cal O}_{n,\sigma}$

Dyn-C cont'd

Functions f_n, g_n should satisfy the following properties :

• $g_n, f_n(\emptyset)$ computable in complexity C (with respect to n)

$$\forall r \in \mathcal{R}^*_{n,\sigma} \left[eval_{n,\sigma}(r) \in S \Leftrightarrow f_n(r) \in T \right]$$

$$\forall r \in \mathcal{R}_{n,\sigma}^*, s \in \mathcal{R}_{n,\sigma} \left[f_n(rs) = g_n(f_n(r), s) \right]$$

•
$$||f_n(r)|| = ||eval_{n,\sigma}(r)^{\mathcal{O}(1)}||$$

Dyn-C cont'd

Functions f_n, g_n should satisfy the following properties :

• $g_n, f_n(\emptyset)$ computable in complexity C (with respect to n)

$$\forall r \in \mathcal{R}^*_{n,\sigma} \left[eval_{n,\sigma}(r) \in S \Leftrightarrow f_n(r) \in T \right]$$

$$\forall r \in \mathcal{R}_{n,\sigma}^*, s \in \mathcal{R}_{n,\sigma} \left[f_n(rs) = g_n(f_n(r),s) \right]$$

$$||f_n(r)|| = ||eval_{n,\sigma}(r)^{\mathcal{O}(1)}||$$

There are also some variants of Dyn-C :

- Dyn_s -C if we forbid delete queries in $\mathcal{R}_{n,\sigma}$
- $Dyn-C^+$ if we allow polynomial precomputation for $f_n(\emptyset)$

Note: Always only one $r \in \mathcal{R}^*_{n,\sigma}$ that affects a tuple is allowed (or a constant number at most)

Dyn-FO definition & a small example

Based on the previous definition of Dyn-C :

Definition (*Dyn-FO*)

Dyn-FO is the set of all boolean queries that can be maintained using *FO* formulas after changes that affect a constant number of tuples in the input.

Example (PARITY \in *Dyn-FO*)

PARITY query is true iff input string has an odd number of 1s. Let $\sigma = \langle M^1 \rangle$ the vocabulary of PARITY, \mathcal{A}_w the encoding of a binary string w so that $\mathcal{A} \models \mathcal{M}(i)$ iff w(i) = 1. Also we consider $\tau = \langle M^1, b \rangle$ as vocabulary and T our *FO* problem as $T = \{\mathcal{A} \in \mathsf{STRUCT}[\tau] \mid \mathcal{A} \models b\}$; b is a boolean constant symbol that acts as flag: it keeps track of the current parity.

PARITY example cont'd

Example (PARITY \in *Dyn-FO* cont'd)

We initialize $f_n(\emptyset) = \langle \{0, 1, \dots, n-1\}, \emptyset, false \rangle$, so that our data structure is all 0s and constant b as false. Our objective is clear : *FO* computation of $g_n(\mathcal{B}, s) \forall s \in R_{n,\sigma}$. So we have the following *FO* formulas :

$$\begin{array}{l} \operatorname{ins}(a,M) & \begin{array}{l} M' \equiv M(x) \lor x = a \\ b' \equiv (b \land M(a)) \lor (\neg b \land \neg M(a)) \\ \end{array} \\ \operatorname{del}(a,M) & \begin{array}{l} M' \equiv M(x) \land x \neq a \\ b' \equiv (b \land \neg M(a)) \lor (\neg b \land M(a)) \end{array}$$

Since those formulas are *FO* and work in constant time, we get that PARITY \in *Dyn-FO*.

Note: it is known that PARITY \notin *FO*!

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
	-	

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		00000 0

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		00000 0
	ins(5,S)	

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		00000 0
	ins(5,S)	
00001		

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		00000 0
	ins(5,S)	
00001		00001 1

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		00000 0
	ins(5,S)	
00001		00001 1
	ins(2,S)	

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		00000 0
	ins(5,S)	
00001		00001 1
	ins(2,S)	
01001		

Structure	Request	Data Structure
00000		00000 0
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		00000 0
	ins(5,S)	
00001		00001 1
	ins(2,S)	
01001		01001 0

Structure	Request	Data Structure
00000		0 00000
	ins(1,S)	
10000		10000 1
	del(1,S)	
00000		0 00000
	ins(5,S)	
00001		00001 1
	ins(2,S)	
01001		01001 0

On state *i* we have a query $g_n(\mathcal{B}_{i-1}, r_i)$ where \mathcal{B}_{i-1} is the current structure and $r_i \in \mathcal{R}_{n,\sigma}$ a request. So with input $\mathcal{B}_{i-1} = \langle \{0, 1, \dots, n-1\}, M, b \rangle$ the query produces the updated structure $\mathcal{B}_i = \langle \{0, 1, \dots, n-1\}, M', b' \rangle$ with the formulas *ins*, *del*.

REACH(acyclic)

The reachability problem in acyclic graphs aka REACH(*acyclic*) refers to the existence of an s - t path in a directed acyclic graph (presuming that the graph remains acyclic after each request)

Theorem (PI97)

 $\mathsf{REACH}(\mathit{acyclic}) \in \mathit{Dyn}-\mathit{FO}$

Basic idea: We need to evaluate boolean query $\mathcal{T} = \{\mathcal{B} \in \mathsf{STRUCT}[\langle E^2, P^2, s, t \rangle] \mid \mathcal{B} \models P(s, t)\}$ by updating the path relation \mathcal{P} and the edge relation E against every edge insertion or deletion in the graph using *FO* updates.

REACH(*acyclic*) cont'd

Proof.

We construct the following *FO* queries : ins(E, a, b) :

$$\mathsf{P}'(x,y) \equiv \mathsf{P}(x,y) \lor (\mathsf{P}(x,a) \land \mathsf{P}(b,y))$$

del(*E*, *a*, *b*) :

$$P'(x,y) \equiv P(x,y) \land [\neg P(x,a) \lor \neg P(b,y) \lor (\exists u,v)(P(x,u) \land P(u,a) \land E(u,v) \land \neg P(v,a) \land P(v,y) \land (v \neq b \lor u \neq a))]$$

Since **ins,del** \in FO \Rightarrow REACH(*acyclic*) \in Dyn-FO.

REACH(acyclic) : How it works?

REACH(acyclic) : How it works?

REACH_u

The undirected reachability problem aka $REACH_u$ is not *FO* expressible. But what about *Dyn-FO*?

Theorem (PI97)

$\mathsf{REACH}_u \in \textit{Dyn-FO}$

Basic idea: We maintain a forest i.e. a collection of connected components for the undirected graph using three relations :

- E(x, y) edge relation
- F(x, y) edge in forest relation
- PV(x, y, u) x y path via node u

REACH_u

The undirected reachability problem aka $REACH_u$ is not *FO* expressible. But what about *Dyn-FO*?

Theorem (PI97)

$\mathsf{REACH}_u \in Dyn-FO$

Basic idea: We maintain a forest i.e. a collection of connected components for the undirected graph using three relations :

- E(x, y) edge relation
- F(x, y) edge in forest relation
- PV(x, y, u) x y path via node u

We need to evaluate boolean query :

 $\mathcal{T} = \{\mathcal{A} \in \mathsf{STRUCT}[\langle E^2, F^2, PV^3, s, t \rangle] \mid \mathcal{A} \models PV(s, t, t)\}$

$\mathsf{REACH}_u \in Dyn-FO$

Proof.

For our convenience we also define the following relations :

$$Eq(x, y, a, b) \equiv (x = a \land y = b) \lor (x = b \land y = a)$$
$$P(x, y) \equiv (x = y) \lor PV(x, y, y)$$

We need to handle insertions and deletions in a "FO way".

$$ins(E, a, b) : E'(x, y) \equiv E(x, y) \lor Eq(x, y, a, b)$$

$$F'(x, y) \equiv F(x, y) \lor (Eq(x, y, a, b) \land \neg P(a, b))$$

$$PV'(x, y, z) \equiv PV(x, y, z) \lor$$

$$(\exists u, v) [Eq(u, v, a, b) \land P(x, u) \land P(v, y)$$

$$\land (PV(x, u, z) \lor PV(v, y, z))]$$

$\mathsf{REACH}_u \in Dyn-FO$

Proof.

For del(E, a, b) the trivial case is when $\neg F(a, b)$, where we only set E'(a, b) = false. Otherwise, we define :

$$T(x, y, z) \equiv PV(x, y, z) \land \neg (PV(x, y, a) \land P(x, y, b))$$

$$New(x, y) \equiv E(x, y) \land T(a, x, a) \land T(b, y, b) \land$$

$$(\forall u, v)[(E(u, v) \land T(a, u, a) \land$$

$$T(b, v, b)) \rightarrow (x < u \lor (x = u \land y \le v))]$$

$\mathsf{REACH}_u \in Dyn\text{-}FO$

Proof.

Finally we define E', F', PV':

$$E'(x, y) \equiv E(x, y) \land \neg Eq(x, y, a, b)$$

$$F'(x, y) \equiv (F(x, y) \land \neg Eq(x, y, a, b)) \lor New(x, y) \lor New(y, x)$$

$$PV'(x, y, z) \equiv T(x, y, z) \lor [(\exists u, v)(New(u, v) \lor New(v, u)) \land$$

$$T(x, u, x) \land T(y, v, y) \land (T(x, u, z) \lor T(y, v, z))]$$

Other known problems

From the introduction of *Dyn-FO* many problems have been proven to be *FO* computable using an auxiliary *FO* structure :

- REACH_d ∈ Dyn-FO using FO reduction to REACH_u
- $LCA \in Dyn-FO$

 $LCA(a, x, y) \Leftrightarrow$

 $P(a,x) \land P(a,y) \land (\forall z)((P(z,x) \land P(z,y)) \rightarrow P(z,a))$

• All regular languages are in *Dyn-FO*

Dyn-PROP

Definition (Dyn-PROP)

Dyn-PROP is the set of all boolean queries that can be maintained using *quantifier-free FO* formulas after changes that affect a constant number of tuples in the input.

Dyn-PROP

Definition (Dyn-PROP)

Dyn-PROP is the set of all boolean queries that can be maintained using *quantifier-free FO* formulas after changes that affect a constant number of tuples in the input.

Example

Let G be a graph into which only edges' insertions are allowed. It is easy to see that using :

- an auxiliary relation T which shall contain all node pairs that are connected by a path in G
- a FO update formula $K_E^T(u, v, x, y) \equiv T(x, y) \lor (T(x, u) \land T(v, y))$

we verify the existence of an s - t path without quantifiers in FO.

Other problems in Dyn-PROP

The absence of quantifiers reduces the expressibility of the class. However, *Dyn-PROP* contains problems that are not *FO* computable :

• PARITY \in Dyn-PROP

(if we recall the dynamic version of PARITY, we shall see that utilizes no quantifiers)

- $\mathsf{REACH}_d \in Dyn\text{-}PROP$ [Hes03b]
- Regular languages are exactly those languages maintainable in Dyn-PROP! [GMS12]

What about reductions?

Reductions allow us to compare complexity classes and/or problems. There are many types of reductions e.g. *Turing, Karp, Cook*. We have also seen *FO* reductions i.e. a way of reducing problems in the descriptive context.

What about reductions?

Reductions allow us to compare complexity classes and/or problems. There are many types of reductions e.g. *Turing, Karp, Cook*. We have also seen *FO* reductions i.e. a way of reducing problems in the descriptive context.

It turns out that *FO* reductions are too powerful for Dynamic Complexity, so they need to be restricted somehow.

What about reductions?

Reductions allow us to compare complexity classes and/or problems. There are many types of reductions e.g. *Turing, Karp, Cook*. We have also seen *FO* reductions i.e. a way of reducing problems in the descriptive context.

It turns out that *FO* reductions are too powerful for Dynamic Complexity, so they need to be restricted somehow.

Definition (bfo)

Bounded expansion, FO reductions aka bfo are FO reductions that :

- each tuple/constant of the input structure affects constant tuples/constants of the output
- maps \mathcal{A}_0^n to a structure of bounded tuples

As usual if S is reducible to T via bfo, we write $S \leq_{bfo} T$.

bfo Reductions cont'd

In the previous definition we imposed a limitation on the initial structure i.e. \mathcal{A}_0^n . If we allow *unbounded* initial tuple expansion, then we get bfo^+ , essentially a variant of bfo that allows *precomputation*.

bfo Reductions cont'd

In the previous definition we imposed a limitation on the initial structure i.e. \mathcal{A}_0^n . If we allow *unbounded* initial tuple expansion, then we get bfo^+ , essentially a variant of bfo that allows *precomputation*.

Example (REACH_d \leq_{bfo} REACH_u)

Given a directed graph G we apply the following :

- Remove edges leaving t
- Remove edges from all other vertices so that they all have outdegree 1
- Mark remaining edges as undirected

and we call the produced graph G' which is undirected.

bfo example cont'd

Example (REACH_d \leq_{bfo} REACH_u)

Express the previous steps using FO:

$$I_{d-u} = \lambda_{xy}(\phi_{d-u}, s, t) :$$

$$a(x, y) \equiv E(x, y) \land x \neq t \land (\forall z)(E(x, z) \rightarrow z = y)$$

$$\phi_{d-u}(x, y) \equiv a(x, y) \lor a(y, x)$$

Now we have an s - t deterministic path in G iff there is an s - t path in G'.

The reduction above is obviously FO; but it is also bfo! Why?

bfo example cont'd

Example (REACH_d \leq_{bfo} REACH_u)

Express the previous steps using FO:

$$I_{d-u} = \lambda_{xy}(\phi_{d-u}, s, t) :$$

$$a(x, y) \equiv E(x, y) \land x \neq t \land (\forall z)(E(x, z) \rightarrow z = y)$$

$$\phi_{d-u}(x, y) \equiv a(x, y) \lor a(y, x)$$

Now we have an s - t deterministic path in G iff there is an s - t path in G'.

The reduction above is obviously *FO*; but it is also *bfo*! Why? Each request **ins** or **del** in G, causes at most two edges to be inserted or deleted.

Introduction 00000 Historical overview

Historical overview

About REACH

Among graph queries, REACH is probably the most studied query.

- (1995) By the introduction of the Dynamic Complexity Framework, it was known that $REACH_u$, $REACH_d \in Dyn-FO$
- (2003) Hesse showed REACH \in Dyn-TC⁰ (AC⁰ but with maj. gates)
- (2015) Datta et al. showed that REACH \in *Dyn-FO*
- (2018) extended for changes of size $\frac{\log n}{\log \log n}$
- (04/2020) extended for polylogarithmically sized changes for REACH_u,REACH_d

Overview

1 Introduction

2 Dynamic Complexity Classes

3 Epilogue

- Synopsis
- References
- The end

Synopsis

Today we've seen :

- Why static complexity fails to capture certain problems' aspects?
- The expansion of Descriptive Complexity framework to capture dynamic problems
- A general definition of *Dyn-C*
- Representative examples of Dynamic Complexity classes
- Known problems expressed with Dynamic Complexity
- Historical overview of the area

References

- Immerman, Neil. "Descriptive complexity" (1999) : 221-234
- Patnaik, Sushant & Immerman, Neil. "Dyn-FO: A Parallel Dynamic Complexity Class" (1997)
- Zeume, Thomas. "An Update on Dynamic Complexity Theory" (2018)

The end

Fin

How many light bulbs does it take to change a light bulb? One, if it knows its own Gödel number!