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Preliminaries (1/2)

Definition (L∞ω)

The logic L∞ω is defined as an extension of FO with infinitary
connectives

∨
and

∧
:

if ϕi ’s are formulae, for i ∈ I , where I is not necessarily finite, and
the free variables of all the ϕi ’s are among ~x , then∨

i∈I ϕi and
∧

i∈I ϕi

are formulae.
Their free variables are those variables in ~x that occur freely in one
of the ϕi ’s.
The semantics is as expected.
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Preliminaries (2/2)

Proposition

Let C be a class of finite structures closed under isomorphism.
Then there is an L∞ω sentence ΦC such that A ∈ C iff A |= ΦC .

Proof.

We know that for every finite structure B there is an FO sentence
ΦB such that A |= ΦB iff A ∼= B.Hence we take ΦC to be∨

B∈C ΦB.

Descriptive Complexity: Finite Variable Logics 5 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Preliminaries (2/2)

Proposition

Let C be a class of finite structures closed under isomorphism.
Then there is an L∞ω sentence ΦC such that A ∈ C iff A |= ΦC .

Proof.

We know that for every finite structure B there is an FO sentence
ΦB such that A |= ΦB iff A ∼= B.Hence we take ΦC to be∨

B∈C ΦB.

Descriptive Complexity: Finite Variable Logics 5 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Motivation

So, since it defines every property of finite structures, L∞ω is too
powerful to be of interest in finite model theory...

(Keep in mind that, from the construction of the above sentence
(ΦC), to define arbitrary classes of finite structures in L∞ω, one
needs, in general, infinitely many variables.)
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From infinite to finite (1/4)

Let ϕn(x , y), n ≥ 1, be FO formulae stating that there is a path
from x to y of length n.

Then, we could express the transitive closure query in L∞ω by∨
n≥1

ϕn(x , y).
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From infinite to finite (2/4)

Definition of ϕn’s (1st idea)

ϕn(x , y) ≡ ∃x1...∃xn−1(E (x , x1) ∧ ... ∧ E (xn−1, y)) , n > 1
ϕ1(x , y) ≡ E (x , y)

Definition of ϕn’s (2nd idea: Inductively)

ϕ1(x , y) ≡ E (x , y)
ϕn+1(x , y) ≡ ∃zn(E (x , zn) ∧ ϕn(zn, y))

Either definition together with
∨

n≥1 ϕn(x , y) use infinitely many
variables and we saw that the logic L∞ω is useless in the context
of finite model theory.
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From infinite to finite (3/4)

Definition of ϕn’s (3nd idea: Three variables are enough!)

ϕ1(x , y) ≡ E (x , y)
...
ϕn+1(x , y) ≡ ∃z(E (x , z) ∧ ∃x(z = x ∧ ϕn(x , y)))

Now, each formula ϕn uses only three variables!

To define ϕn+1(x , y), we need to say that there is a z such that
E (x , z) holds and ϕn(z , y) holds. But with three variables we only
know how to say that ϕn(x , y) holds.

Problem solved with careful reuse of x , y , z!
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From infinite to finite (4/4)

With the above formulae, the transitive closure can still be
defined by ∨

n≥1

ϕn(x , y).

BUT: Now, the resulting formula only uses three variables!

Recall that in the proof of the proposition we saw, we needed
(in general) infinitely many variables. We will see that an
infinitary logic in which the number of variables is finite is
useful in finite model theory.

Descriptive Complexity: Finite Variable Logics 10 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

From infinite to finite (4/4)

With the above formulae, the transitive closure can still be
defined by ∨

n≥1

ϕn(x , y).

BUT: Now, the resulting formula only uses three variables!

Recall that in the proof of the proposition we saw, we needed
(in general) infinitely many variables. We will see that an
infinitary logic in which the number of variables is finite is
useful in finite model theory.

Descriptive Complexity: Finite Variable Logics 10 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

From infinite to finite (4/4)

With the above formulae, the transitive closure can still be
defined by ∨

n≥1

ϕn(x , y).

BUT: Now, the resulting formula only uses three variables!

Recall that in the proof of the proposition we saw, we needed
(in general) infinitely many variables. We will see that an
infinitary logic in which the number of variables is finite is
useful in finite model theory.

Descriptive Complexity: Finite Variable Logics 10 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Definition of finite variable logics

Definition (Finite variable logics)

The class of FO formulae that use at most k distinct variables will
be denoted by FOk . The class of L∞ω formulae that use at most
k variables will be denoted by Lk∞ω. We define the finite variable
infinitary logic by

Lω∞ω =
⋃
k∈N
Lk∞ω.

That is, Lω∞ω has formulae of L∞ω that only use finitely many
variables.

Descriptive Complexity: Finite Variable Logics 11 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Quantifier rank

Definition (Quantifier rank of Lω∞ω formulae)

The quantifier rank qr(·) of Lω∞ω formulae is defined as for FO for
Boolean connectives and quantifiers; for infinitary connectives, we
define

qr(
∨
i

ϕi ) = qr(
∧
i

ϕi ) = sup
i

qr(ϕi ).
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Cardinalities (1/2)

We consider linear orderings (the vocabulary contains only binary
relation < ). We define the formulae:

ψ1(x) ≡ (x = x)
...
ψn+1(x) ≡ ∃y((x > y) ∧ ∃x(y = x ∧ ψn(x)))

The above formulae are in L2
∞ω .

When is the formula ψn(a) true in a linear order L?
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Cardinalities (2/2)

Thus, for each n we have a sentence Ψn ≡ ∃xψn(x) that is true in
L iff |L| ≥ n.

Arbitrary cardinalities of linear orerings can be tested in L2
∞ω

For an arbitrary subset C of N, the sentence∨
n∈C

(Ψn ∧ ¬Ψn+1)

is true in L iff |L| ∈ C .
(Notice that the above is an L2

∞ω sentence.)
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Queries over ordered finite σ-strustures

Proposition

Every query over ordered finite σ-structures is expressible in Lω∞ω.

Proof’s keys:

We use the L2
∞ω formulae ψi ’s that we defined in the previous

example.

Since ψi ’s are in L2
∞ω, we know that for each n we have an

L2
∞ω formula ψ=n(x) which holds iff x is the nth element in

the ordering.

For simplicity, we consider ordered graphs. The basic idea is
that for each graph we define an L3

∞ω formula that
characterizes it. By infinitary disjunctions of these formulae
we are able to characterize any class of ordered graphs.
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Introduction

We ’ve seen that the formula ϕtc of transitive closure induces
an operator Fϕtc . This can be generalized:

Every FO formula ϕ(R, ~x) gives rise to an operator Fϕ, in the
same way that we ’ve seen in the transitive closure example.

(The idea is that the operator applied to a set X gives us the
elements that satisfie the formula when R is interpreted as X .)

We computed the least fixed point of the monotone operator
Fϕtc in stages, where we computed F r

ϕtc
(∅) for r = 1, 2, ....

In general, for such an operator, we can define F 0
ϕ(∅) ≡ ∅

and formulae ϕi ’s
so that ∀n , F n

ϕ(∅) gives us the elements that satisfie ϕn.

The new thing is that we will define these formulae with
finitely many variables!

Descriptive Complexity: Finite Variable Logics 18 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Introduction

We ’ve seen that the formula ϕtc of transitive closure induces
an operator Fϕtc . This can be generalized:

Every FO formula ϕ(R, ~x) gives rise to an operator Fϕ, in the
same way that we ’ve seen in the transitive closure example.

(The idea is that the operator applied to a set X gives us the
elements that satisfie the formula when R is interpreted as X .)

We computed the least fixed point of the monotone operator
Fϕtc in stages, where we computed F r

ϕtc
(∅) for r = 1, 2, ....

In general, for such an operator, we can define F 0
ϕ(∅) ≡ ∅

and formulae ϕi ’s
so that ∀n , F n

ϕ(∅) gives us the elements that satisfie ϕn.

The new thing is that we will define these formulae with
finitely many variables!

Descriptive Complexity: Finite Variable Logics 18 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Introduction

We ’ve seen that the formula ϕtc of transitive closure induces
an operator Fϕtc . This can be generalized:

Every FO formula ϕ(R, ~x) gives rise to an operator Fϕ, in the
same way that we ’ve seen in the transitive closure example.

(The idea is that the operator applied to a set X gives us the
elements that satisfie the formula when R is interpreted as X .)

We computed the least fixed point of the monotone operator
Fϕtc in stages, where we computed F r

ϕtc
(∅) for r = 1, 2, ....

In general, for such an operator, we can define F 0
ϕ(∅) ≡ ∅

and formulae ϕi ’s
so that ∀n , F n

ϕ(∅) gives us the elements that satisfie ϕn.

The new thing is that we will define these formulae with
finitely many variables!

Descriptive Complexity: Finite Variable Logics 18 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Introduction

We ’ve seen that the formula ϕtc of transitive closure induces
an operator Fϕtc . This can be generalized:

Every FO formula ϕ(R, ~x) gives rise to an operator Fϕ, in the
same way that we ’ve seen in the transitive closure example.

(The idea is that the operator applied to a set X gives us the
elements that satisfie the formula when R is interpreted as X .)

We computed the least fixed point of the monotone operator
Fϕtc in stages, where we computed F r

ϕtc
(∅) for r = 1, 2, ....

In general, for such an operator, we can define F 0
ϕ(∅) ≡ ∅

and formulae ϕi ’s
so that ∀n , F n

ϕ(∅) gives us the elements that satisfie ϕn.

The new thing is that we will define these formulae with
finitely many variables!

Descriptive Complexity: Finite Variable Logics 18 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Introduction

We ’ve seen that the formula ϕtc of transitive closure induces
an operator Fϕtc . This can be generalized:

Every FO formula ϕ(R, ~x) gives rise to an operator Fϕ, in the
same way that we ’ve seen in the transitive closure example.

(The idea is that the operator applied to a set X gives us the
elements that satisfie the formula when R is interpreted as X .)

We computed the least fixed point of the monotone operator
Fϕtc in stages, where we computed F r

ϕtc
(∅) for r = 1, 2, ....

In general, for such an operator, we can define F 0
ϕ(∅) ≡ ∅

and formulae ϕi ’s
so that ∀n , F n

ϕ(∅) gives us the elements that satisfie ϕn.

The new thing is that we will define these formulae with
finitely many variables!

Descriptive Complexity: Finite Variable Logics 18 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Defining ϕi ’s

Suppose that an FO formula ϕ(R, ~x) defines a monotone operator.

Assume that ϕ in addition to ~x = (x1, ..., xk), uses variables
z1, ..., zl .

We introduce additional variables ~y = (y1, ..., yk) and define
ϕ0(~x) ≡ ¬(x1 = x1), i.e. false, and then inductively ϕn+1(~x) as
ϕ(R, ~x) in which every occurence of R(u1, ..., uk), where u1, ..., uk
are variables among ~x and ~z , is replaced by

∃~y((~y = ~u) ∧ (∃~x((~x = ~y) ∧ ϕn(~x)))).

Note: ~x = ~y is an abbreviation for (x1 = y1) ∧ ... ∧ (xk = yk).
Important: We at most doubled the variables of the FO formula ϕ!

Descriptive Complexity: Finite Variable Logics 19 / 37
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Example (1/2)

Let’s see the above in the transitive closure example:

ϕtc(R, x1, x2) = E (x1, x2) ∨ ∃z1(E (x1, z1) ∧ R(z1, x2)),
so

~x = (x1, x2)
~z = z1

~y = (y1, y2) and
~u = (u1, u2) = (z1, x2).

ϕ0
tc(x1, x2) ≡ ¬(x1 = x1) ≡ false

ϕ1
tc(x1, x2) ≡ E (x1, x2) ∨ ∃z1(E (x1, z1) ∧ ∃~y((y1 = z1) ∧ (y2 =

x2) ∧ (∃x((~x = ~y) ∧ ϕ0
tc(x1, x2)))))

which gives us
ϕ1
tc(x1, x2) ≡ E (x1, x2).
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Example (2/2)

One can test that:

ϕ2
tc(x1, x2) ≡ E (x1, x2) ∨ ∃z1(E (x1, z1) ∧ E (z1, x2))

etc

The trick is the same: We carefully reused variables and achieved
to only use (x1, x2) as input in the definition of the ϕi

tc ’s.
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Conclusion

We achieved defining ϕi ’s so that for any structure A:

F i
ϕ(∅) = {~x | A |= ϕi (~x)}

We at most doubled the variables of ϕ in order to define every
ϕi .

From a theorem that we’ve seen in Inductive Definitions, if Fϕ is a
monotone operator, then for any (finite) structure A the least fixed
point exists and it is equal to F r

ϕ(∅) for some r ∈ N. Therefore:

For some r ∈ N, ϕr (~x) tests the least fixed point of the
operator Fϕ and for this r , it holds that

ϕr (~x) =
∨
n

ϕn(~x).
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Finally, we are there!

Theorem

LFP ⊆ Lω∞ω

Proof.

We proved that if ϕ is an FO sentence that uses m variables, then
lfpR,~xϕ is expressible in L2m

∞ω.
If we have a complex fixed point formula (e.g., involving nested
fixed points), we can then apply the construction inductively, using
the same substitution, since ϕn need not be an FO formula, and
we can have infinitary connectives. Again, we at most double the
number of variables, which completes the proof of the theorem.
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Introduction

Ehrenfeucht-Fräıssé-style games:

A,B∈ STRUCT[σ] (i.e. finite)

fixed set of pairs of pebbles: {(p1
A, p

1
B), ..., (pkA, p

k
B)}

the number of rounds is not necessarily finite (but we can
determine who wins)
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Description of one round

Spoiler chooses structure (w.l.o.g. A) and pebble-pair, assume
i .

Spoiler places piA on an element of A. (If it is already placed
on an element of A, he decides either to leave it there or to
place it on another element of A.)

Dublicator responds by placing piB on an element of B.

After each round, F ⊆ A× B contains exactly the
pebble-pairs that have been placed until that moment.
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Winning strategy

Notation:

PGn
k (A,B) is the k-pebble game that continues for n rounds.

PG∞k (A,B) is the k-pebble game that continues forever.

Winning strategy

Dublicator has a winning strategy in PG n
k (A,B) iff he can ensure

that after each round j ≤ n, F is a graph of a partial isomorphism.
In this case, we write

A ≡∞ω
k,n B.

Dublicator has a winning strategy in PG∞
k (A,B) iff he can ensure

that after every round F is a graph of a partial isomorphism. In this
case we write

A ≡∞ω
k B.
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2-pebble game example (1/5)

1st round (spoiler chooses A and 1):

p1
A

p1
B
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2-pebble game example (2/5)

2nd round (spoiler chooses A and 2):

p1
A p2

A

p1
B p2

B
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2-pebble game example (3/5)

3rd round (spoiler chooses A and 1):

p2
A p1

A

p2
B p1

B
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2-pebble game example (4/5)

4th round (spoiler chooses A and 2):

p1
A p2

A

p1
B p2

B

Descriptive Complexity: Finite Variable Logics 31 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

2-pebble game example (5/5)

5th round (spoiler chooses A and 1 and wins the game!):

p2
A p1

A

p1
B p2

B
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Characterization

Theorem

1 Two structures A,B∈ STRUCT[σ] agree on all sentences of
Lk∞ω of quantifier rank up to n iff

A ≡∞ω
k,n B.

2 Two structures A,B∈ STRUCT[σ] agree on all sentences of
Lk∞ω iff

A ≡∞ω
k B.

(The proof is very similar to the proof of the Ehrenfeucht-Fräıssé
theorem.)

Descriptive Complexity: Finite Variable Logics 33 / 37



Defining finite variable logics Examples of expressibility in Lω
∞ω LFP ⊆ Lω

∞ω Characterization by Pebble Games

Characterization

Theorem

1 Two structures A,B∈ STRUCT[σ] agree on all sentences of
Lk∞ω of quantifier rank up to n iff

A ≡∞ω
k,n B.

2 Two structures A,B∈ STRUCT[σ] agree on all sentences of
Lk∞ω iff

A ≡∞ω
k B.

(The proof is very similar to the proof of the Ehrenfeucht-Fräıssé
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An application example

The query EVEN is not expressible in Lω∞ω.

Assume, to the contrary, that EVEN is expressed by a
sentence Φ ∈ Lk∞ω and choose two structures A and B of
cardinallities k and k + 1, respectively, that are only sets. It’s
easy to see that A ≡∞ω

k B and hence, from the previous
theorem, we get A |= Φ iff B |= Φ, which leads us to
contradiction.
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Not for now...

Theorem (Abiteboul-Vianu)

PTIME = PSPACE iff LFP = PFP
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The End!

The more I think about
language, the more it amazes
me that people ever
understand each other

Kurt Gödel
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