
Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MSO logic & Automata

Elli Anastasiadi

Descriptive Complexity 2020 - ALMA

June 9, 2020

1 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Outline

1 Intro

2 Graphs, Strings and Regular Languages

3 Tree Automata

4 Complexity

2 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

We’ll get there when we get there.

What is Second Order Logic?

Definition

Second order Logic = FO + variables ranging over predicates (and
quantification over them)

Semantics

= semantics of FO and second order variables are all the functions
(or sets) of the appropriate sort. Once the domain of the first
order variables is set, the second order elements are defined too.

Expressive Power A lot.

We have formal sentences which say ”the
domain is finite” or ”the domain is of countable cardinality.” (finite
= every surjective function from the domain to itself is injective.)

3 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

We’ll get there when we get there.

What is Second Order Logic?

Definition

Second order Logic = FO + variables ranging over predicates (and
quantification over them)

Semantics

= semantics of FO and second order variables are all the functions
(or sets) of the appropriate sort. Once the domain of the first
order variables is set, the second order elements are defined too.

Expressive Power A lot. We have formal sentences which say ”the
domain is finite” or ”the domain is of countable cardinality.” (finite
= every surjective function from the domain to itself is injective.)

3 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Normalization Rules

Every SO formula can be written as a sequence of first- and
second-order quantifiers, followed by a quantifier-free formula (This
can be done by following the normalization procedure of first order
logic).
Aaaaaand!

∃x Q φ(x , ·)↔ ∃X Q ∃x (X (x) ∧ φ(x , ·))) (1)

∀x Q φ(x , ·)↔ ∀X Q(∃!x X (x)→ ∀x(X (x)→ φ(x , ·))) (2)

Repeat.

We are making sure that the formula looks like:
[SO quantifications],[FO quantifications],[Quantifier free formula].
It will come in handy later.

4 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Normalization Rules

Every SO formula can be written as a sequence of first- and
second-order quantifiers, followed by a quantifier-free formula (This
can be done by following the normalization procedure of first order
logic).
Aaaaaand!

∃x Q φ(x , ·)↔ ∃X Q ∃x (X (x) ∧ φ(x , ·))) (1)

∀x Q φ(x , ·)↔ ∀X Q(∃!x X (x)→ ∀x(X (x)→ φ(x , ·))) (2)

Repeat.
We are making sure that the formula looks like:
[SO quantifications],[FO quantifications],[Quantifier free formula].
It will come in handy later.

4 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Descriptive Complexity (Lets not forget what this course is
called)

NP is the set of languages definable by existential,
second-order formulas (Fagin’s theorem < 3 , 1974).

co − NP universal, second-order formulas.

PH second-order formulas.

PSPACE second-order formulas with an added transitive
closure operator.

EXPTIME second-order formulas with an added least fixed
point operator.

Bonus (Today, with us! Specifically for MSO!!!1!).

5 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Monadic - Finally!

Definition

MSO = SO but only second order variables of arity 1 .

Easy right? Normalization still applies. (Rules 1 and 2 only added
SO variables of arrity 1 ;).)
Now the vocabulary of the model might actually play a role on the
expressiveness (it is giving us indirect access to predicates of larger
arrity).

6 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Games

Definition

MSO game Spoiler and duplicator, on two structures A and B of
the same vocabulary σ. The game has two different (not really)
kinds of moves:

Point move: This is the same move as in the
Ehrenfeucht-Fraisse game for FO: the spoiler chooses a
structure, A or B, and an element of that structure; the
duplicator responds with an element in the other structure.

Set move: The spoiler chooses a structure, A or B, and a
subset of that structure. The duplicator responds with a
subset of the other structure.

Up-Down its almost like FO.

7 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

More games

A k round game gives the expressibility class of MSO properties of
quantifier rank [k].

Theorem (Proposition 7.9 - Libkin)

A property P of σ-structures is expressible in MSO iff there is a
number k such that for every two σ-structures A, B, if A has the
property P and B does not, then the spoiler wins the k-round
MSO game on A and B.

Proof.

No. (we have seen many similar proofs and there are way more
interesting -and harder ones < 3- later!)

8 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

More games

A k round game gives the expressibility class of MSO properties of
quantifier rank [k].

Theorem (Proposition 7.9 - Libkin)

A property P of σ-structures is expressible in MSO iff there is a
number k such that for every two σ-structures A, B, if A has the
property P and B does not, then the spoiler wins the k-round
MSO game on A and B.

Proof.

No. (we have seen many similar proofs and there are way more
interesting -and harder ones < 3- later!)

8 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Properties

For σ = ∅, EVEN is not expressible in MSO.

proof?

For σ = {<} (a linear ordering), EVEN is expressible in MSO.

proof!

9 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Outline

1 Intro

2 Graphs, Strings and Regular Languages

3 Tree Automata

4 Complexity

10 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Graphs

σ = {V ,E}

Graph connectivity is expressible in ∀MSO, but is not
expressible in ∃MSO. (+ positive part of the proof - non
connectivity is in ∃MSO, by identifying the non connected
components.)

For undirected graphs without loops, (s, t)-reachability is
expressible in ∃MSO. (+ construction via ∃X where X is the
path.)

Reachability for directed graphs is not expressible in ∃MSO.

11 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Strings

σ = {<,Pa,Pb, . . .Pg} :one predicate for each symbol in the
alphabet of the strings.

The linear ordering puts the elements on a line.

the symbol predicates tell us when an element is of the type
of the predicate.

Example

Example: aaabcba is encoded as:
{{1, 2, 3, 4, 5, 6, 7}, <,Pa,Pb,Pc} where Pa = {1, 2, 3, 7},
Pb = {4, 6}, Pc = {5}.

W.L.O.G. σ = {<,Pa,Pb}

12 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

More strings!

Theorem (Büchi - 1960)

A language L is definable in MSO (over strings) iff it is regular.

Proof: L is regular ⇒ L is expressible in MSO.

Start from the DFA of L.
Φ := ∃X0 . . . ∃Xm−1φpart ∧ φstart ∧ φtrans ∧ φaccept

L is expressible in MSO ⇒ L is regular.

Make all rank-k types (what is a type Elli?) over the vocabulary of
strings(finitely many) = states in the automaton. Transition
function: update current type based on symbol. Initial state: type
of empty sting formulas. Final states:types compatible with the
original formula.

Disclaimer: This is a very short version of the proof in the book.

13 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

More strings!

Theorem (Büchi - 1960)

A language L is definable in MSO (over strings) iff it is regular.

Proof: L is regular ⇒ L is expressible in MSO.

Start from the DFA of L.
Φ := ∃X0 . . . ∃Xm−1φpart ∧ φstart ∧ φtrans ∧ φaccept

L is expressible in MSO ⇒ L is regular.

Make all rank-k types (what is a type Elli?) over the vocabulary of
strings(finitely many) = states in the automaton. Transition
function: update current type based on symbol. Initial state: type
of empty sting formulas. Final states:types compatible with the
original formula.

Disclaimer: This is a very short version of the proof in the book.
13 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MORE STRINGS!!

Note that via the previous proof: ∃MSO = MSO (over strings).
Corollary: Hamiltonian 6∈ MSO (Over Graphs!)

This was quite cool right? Let’s do it again! This time for FO.

Star free languages

Star- free = Regular - Kleene star (Duh)
But we still have complement (s)

(Basically automata without loops backwards)

Example (Star free languages)

(
∑
a∈Σ

a)∗ = ε, a∗b∗ = ε · b · a · ε

Theorem

Star Free Languages = FO on strings BREAK

14 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MORE STRINGS!!

Note that via the previous proof: ∃MSO = MSO (over strings).
Corollary: Hamiltonian 6∈ MSO (Over Graphs!)
This was quite cool right? Let’s do it again! This time for FO.

Star free languages

Star- free = Regular - Kleene star (Duh)
But we still have complement (s)

(Basically automata without loops backwards)

Example (Star free languages)

(
∑
a∈Σ

a)∗ = ε, a∗b∗ = ε · b · a · ε

Theorem

Star Free Languages = FO on strings BREAK

14 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MORE STRINGS!!

Note that via the previous proof: ∃MSO = MSO (over strings).
Corollary: Hamiltonian 6∈ MSO (Over Graphs!)
This was quite cool right? Let’s do it again! This time for FO.

Star free languages

Star- free = Regular - Kleene star (Duh)
But we still have complement (s)

(Basically automata without loops backwards)

Example (Star free languages)

(
∑
a∈Σ

a)∗ = ε,

a∗b∗ = ε · b · a · ε

Theorem

Star Free Languages = FO on strings BREAK

14 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MORE STRINGS!!

Note that via the previous proof: ∃MSO = MSO (over strings).
Corollary: Hamiltonian 6∈ MSO (Over Graphs!)
This was quite cool right? Let’s do it again! This time for FO.

Star free languages

Star- free = Regular - Kleene star (Duh)
But we still have complement (s)

(Basically automata without loops backwards)

Example (Star free languages)

(
∑
a∈Σ

a)∗ = ε, a∗b∗ =

ε · b · a · ε

Theorem

Star Free Languages = FO on strings BREAK

14 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MORE STRINGS!!

Note that via the previous proof: ∃MSO = MSO (over strings).
Corollary: Hamiltonian 6∈ MSO (Over Graphs!)
This was quite cool right? Let’s do it again! This time for FO.

Star free languages

Star- free = Regular - Kleene star (Duh)
But we still have complement (s)

(Basically automata without loops backwards)

Example (Star free languages)

(
∑
a∈Σ

a)∗ = ε, a∗b∗ = ε · b · a · ε

Theorem

Star Free Languages = FO on strings BREAK

14 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MORE STRINGS!!

Note that via the previous proof: ∃MSO = MSO (over strings).
Corollary: Hamiltonian 6∈ MSO (Over Graphs!)
This was quite cool right? Let’s do it again! This time for FO.

Star free languages

Star- free = Regular - Kleene star (Duh)
But we still have complement (s)

(Basically automata without loops backwards)

Example (Star free languages)

(
∑
a∈Σ

a)∗ = ε, a∗b∗ = ε · b · a · ε

Theorem

Star Free Languages = FO on strings

BREAK

14 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MORE STRINGS!!

Note that via the previous proof: ∃MSO = MSO (over strings).
Corollary: Hamiltonian 6∈ MSO (Over Graphs!)
This was quite cool right? Let’s do it again! This time for FO.

Star free languages

Star- free = Regular - Kleene star (Duh)
But we still have complement (s)

(Basically automata without loops backwards)

Example (Star free languages)

(
∑
a∈Σ

a)∗ = ε, a∗b∗ = ε · b · a · ε

Theorem

Star Free Languages = FO on strings BREAK
14 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Outline

1 Intro

2 Graphs, Strings and Regular Languages

3 Tree Automata

4 Complexity

15 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Formally

Automata that read trees.

Many variations (Deterministic/Not, Bottom-UP/Top-Down,
Ranked/Unranked)

We will see Ranked Non-Deterministic Bottom-Up (equal
to all except deterministic Top-Down)

Distinctive difference is that the transition function takes
tuples of states and gives one state (going up on the tree).

I’ll explain the rest in the example.

16 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Example

L = Binary trees with 2 total ”b” labels.

17 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Regular Tree Languages

Tree models: MT = {D, <,Pa, a∈Σ, succ1, succ2}
D is a subset of {0, 1}∗ that is prefix closed and if s ∈ D then
either both s.0, s.1 are in D or none of them.
< is a partial ordering and the rest of the predicates are doing their
obvious jobs.

Theorem

A set of trees is definable in MSO iff is regular (has a tree
automaton).

Corollary

MSO over trees = ∃MSO over trees.
Non-deterministic tree automata = Deterministic tree automata.

Ranked and Unranked tree automata are equivalent.

18 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Outline

1 Intro

2 Graphs, Strings and Regular Languages

3 Tree Automata

4 Complexity

19 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MSO is quite slow in general

Theorem

For each level Σp
i or Πp

i of the polynomial hierarchy, there exists a
problem complete for that level which is expressible in MSO. :’(

Proof sketch: Start from the QBF problem (PSPACE -complete).
Take a formula φ restricted to i blocks of quantifier alterations
(with the propositional part being in 3-CNF form).
Define as i + 1 unary predicates the variables occurring in each
block (model predicates).
Transform φ to φ′ where instead of satisfying the clauses we have
to satisfy one of the 4 predicates that enumerate the ways that 3
variables can occur in a clause ((x , y , z), (x , y ,¬z), etc):

∃X1 ⊆ E1∀X2 ⊆ E2∃X3 ⊆ E3...φ
′ .

φ′ is in MSO φ is SAT iff φ′ is.

20 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

MSO is quite slow in general

Theorem

For each level Σp
i or Πp

i of the polynomial hierarchy, there exists a
problem complete for that level which is expressible in MSO. :’(

Proof sketch: Start from the QBF problem (PSPACE -complete).
Take a formula φ restricted to i blocks of quantifier alterations
(with the propositional part being in 3-CNF form).
Define as i + 1 unary predicates the variables occurring in each
block (model predicates).
Transform φ to φ′ where instead of satisfying the clauses we have
to satisfy one of the 4 predicates that enumerate the ways that 3
variables can occur in a clause ((x , y , z), (x , y ,¬z), etc):

∃X1 ⊆ E1∀X2 ⊆ E2∃X3 ⊆ E3...φ
′ .

φ′ is in MSO φ is SAT iff φ′ is.
20 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

So what did we do all of this for?

Corollary (7.36)

Over strings and trees (ranked and unranked), evaluating MSO
sentences is fixed-parameter linear. In particular, over strings and
trees, the data complexity of MSO is linear.

Proof: Just make the automaton and run it (time for making the
automaton is not counted in the complexity)

21 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Thats not good enough!

Theorem (Courcelle)

Let C be a class of structures of bounded treewidth. Then
evaluating MSO sentences over C is fixed-parameter linear. In
particular, the data complexity of MSO over C is linear.

Proof: Bounded treewidth = Enumerate all graphs of treewidth k.
Modify the formula by adding existential quantification over them
to find a model that satisfies the original formula.

22 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Thats not good enough!

Theorem (Courcelle)

Let C be a class of structures of bounded treewidth. Then
evaluating MSO sentences over C is fixed-parameter linear. In
particular, the data complexity of MSO over C is linear.

Proof: Bounded treewidth = Enumerate all graphs of treewidth k.
Modify the formula by adding existential quantification over them
to find a model that satisfies the original formula.

22 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

Questions?

23 / 24

Intro Graphs, Strings and Regular Languages Tree Automata Complexity

References & cool links

Elements of Finite Model Theory ch. 7
Leonid Libkin

Barry Cooper prize 2020 to Bruno Courcelle
For the theorem we just proved!

A Finite Model Theorem for the Propositional µ-Calculus
A nice paper i would like us to look at

Elli Anastasiadi
elli19@ru.is

24 / 24

https://www.acie.eu/2020/06/03/2020-s-barry-cooper-prize-awarded-to-bruno-courcelle/
https://www.cs.cornell.edu/~kozen/Papers/finitemodel.pdf

	Intro
	Graphs, Strings and Regular Languages
	Tree Automata
	Complexity

