Descriptive complexity for counting classes

Descriptive Complexity
ALMA Spring 2020

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

© The class #P

© Descriptive Complexity for NP and #P

© Logical hierarchy in #P

@ Descriptive complexity for #P in terms of Weighted Logics
© Robust counting classes with easy decision

@ Classification of counting problems with respect to approximability

BISe g el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

The class #P

A function f : {0,1}* — N is in #P if there exists a polynomial p : N — N
and a polynomial-time Turing Machine M such that for every x € {0,1}*:

f(x) = Hy € {0,1}PD - M(x,y) = 1}

For a nondeterministic polynomial-time Turing Machine M, we define the
function accpy(x) : {0,1}* — N as follows:

accp(x) = # accepting paths of M on input x

Then #P is the class:

#P = {accy | M is a PNTM }

BIsSe el el S e e el e EESES Descriptive Complexity ALMA Spring 2020

Counting vs Decision

@ Every decision problem in NP has a counting version in #P For
example, HamiltonCycle € NP and #HamiltonCycle € #P

o FP C #P C FPSPACE
o NP C p#Pl]
o If FP = #P, then P = NP
Toda's Theorem
PH C p#P[] J

BISed el el ST el e EESES Descriptive Complexity ALMA Spring 2020

Reductions between functions

@ Cook (poly-time Turing)
f<hg: feFP&

e Karp / parsimonious (poly-time many one)

f <P g: 3he FP, Vx f(x) = g(h(x))

@ #SAT is #P-complete under parsimonious reductions.

@ #PerfectMatching is # P-complete under Turing reductions.

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

@ A #P-complete problem under parsimonious reductions

@ has an NP-complete decision version, e.g. SAT is NP-complete,
© cannot be aprroximated efficiently unless RP = NP.

@ There are #P-complete problem under Turing reductions that

@ have a decision in P, e.g. PerfectMatcing is in P,
@ admit an FPRAS, e.g. #DNF.

BISe el el S e e el e EESES Descriptive Complexity ALMA Spring 2020

Definition of an FPRAS

Definition

A fully polynomial randomised approximation scheme (FPRAS) for a
function f : ¥* — N is a probabilistic TM that takes as input an instance
x of f, e >0and 0 < <1, and produces as output an integer random

variable Y satisfying the condition

Pr((1—e)f(x) <Y <(1+¢e)f(x)) >1-4.

It also runs in time poly(|x|,1/e).

@ For a self-reducible counting problem,
randomized approximation poly-time algorithm within a polynomial factor = FPRAS

BISe el el S e e el e EESES Descriptive Complexity ALMA Spring 2020

#PE and TotP

For a counting function f : {0,1}* — N we define the related language
L = {x|f(x) > 0}. Then,

H#PE = {f | f € #P and L; € P}

For a nondeterministic polynomial-time Turing Machine M, we define the
function toty(x) : {0,1}* — N as follows:

totp(x) = # paths of M on input x — 1
Then TotP is the class:

TotP = {totpy| M is a PNTM }

@ TotP is the Karp-closure of all self-reducible #PE functions.

BISed el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

For any #A € #P, there exists:

@ a randomized polynomial-time (in |x| and 1/¢) algorithm, which using
an NP-oracle, approximates #A within ratio (1 + ¢).

@ a deterministic polynomial-time (in |x| and 1/¢) algorithm, which
using an ¥5-oracle, approximates #A within ratio (1 + ¢).

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

Our interests today

@ Descriptive Complexity for counting

@ How can descriptive complexity contribute to the classification of
counting problems with respect to their approximability?

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

Fagin's Theorem (reminder)

Theorem (Fagin)

35S0 captures NP: A language L is NP computable iff it is definable by
an existential second-order sentence, i.e. iff there is a sentence ¢(T) with
predicate symbols from T U ¢ such that

AL e AREITHT)

where A is an ordered finite structure over the vocabulary o.

Corollary (Cook)
SAT is NP-complete

BIsSed e el el S T el e EESES Descriptive Complexity ALMA Spring 2020

@ 3COL: A graph can be encoded by a finite structure
A= {(x1,...,xn), E?} and
Uscor = (IRM)(IBY)(3GH)(Vx) [(R(x) V B(x) V G(x)) A

(%) (E(x,y) = ~(R()AR()) A=(B(x)AB()) A=(G(x) A G(y)))]
@ SAT: A boolean formula in conjunctive normal form can be encoded

by a finite structure A = {(v1, ..., Vp, C1, ..., Cm), C1, P?, N?} and
Ysar = (3SY)(Ve)(3v)[C(c) = (P(c,v) AS(v)) V (N(c,v)A=S(v))]

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

@ Let o be a vocabulary containing a relation symbol <.

@ Let f be a counting function with finite structures A over o, as
instances.

o Let T={Ty,..,T,} and z={z,...,zn} be sequences of predicate
symbols and first-order variables respectively.

A counting function belongs to #FO iff there is a first-order formula with
predicate symbols from T U o and free first-order variables from z such that

fl(A)={<T,z>: AE ¢(T,2)}|

BISe el el ST e el e EESES Descriptive Complexity ALMA Spring 2020

@ Let o be a vocabulary containing a relation symbol <.

@ Let f be a counting function with finite structures A over o, as
instances.

o Let T={Ty,..,T,} and z={z,...,zn} be sequences of predicate
symbols and first-order variables respectively.

A counting function belongs to #FO iff there is a first-order formula with
predicate symbols from T U o and free first-order variables from z such that

f(A) =< T,z>: AE=¢(T,2z)}|

o If the formula ¢ in the above definition is a X; (I, resp.), i € N, then
we obtain the subclasses #¥; (#I1; resp.), i € N, of #FO.

BISe el el ST e el e EESES Descriptive Complexity ALMA Spring 2020

Saluja, Sabrahmanyama and Thakur (1995)

Theorem

The class #P coincides with the class #FO.
In fact, #[, captures #FO.

Proof. #FO C #P: The NP machine guesses a tuple < T,z > and
verifies in polynomial time that A = ¢(T, z).

#P C #FO: For an f € #P, the decision version Ly € NP. By Fagin's
Theorem, A € L¢ iff A= 3T¢(T). The formula ¢ is such that every
accepting computation of the NP machine on input A corresponds to a
unique value of T that satisfies ¢(T). So, the number of accepting paths
is equal to [{< T >: AE¢(T)}.

Furthermore, from the proof of Fagin's Theorem, ¢ is a Iy first-order
formula. O

BIsSe el el S T e el e EECES Descriptive Complexity ALMA Spring 2020

e #DNF: A DNF formula can be encoded by a finite structure
A={(v1,..., Vp, d1, ..., dm), D*, P?, N?} and
Foonr(A) = [{T: A = EIdVv(D(d)/\(P(d, v) = T(v))A(N(d, v) — ﬁT(v))) 3.
Hence #DNF € #Y,.

BISe e el el ST e el e EESES Descriptive Complexity ALMA Spring 2020

e #DNF: A DNF formula can be encoded by a finite structure
A={(v1,..., Vp, d1, ..., dm), D*, P?, N?} and
Foonr(A) = [{T: A = EIdVv(D(d)/\(P(d, v) = T(v))A(N(d, v) — ﬁT(v)))}|.
Hence #DNF € #%Y,.

@ #3CNF: A boolean formula in conjunctive normal form with three
literals per clause can be encoded by a finite structure
A={(v1,..,), G, C3, C3, C3} and
fraenr(A) = {T - A (Vx)(¥)(Vxs) [(Golxa, xo, x3) = (T (xa) A T(x) A
T(X3))) A (Cl(xl,xz,X3) = (=T (x) A T(x)A T(X3))) A (Cz(xl,X2,X3) —
(=TGa) AT (x) A T(X3))) A (C3(X1, x2,x3) = (T (1) A=T(x) A —\T(X3))):| H-
Hence #3CNF € #T11;.

BISe e el el ST e el e EESES Descriptive Complexity ALMA Spring 2020

e #DNF: A DNF formula can be encoded by a finite structure
A={(v1,..., Vp, d1, ..., dm), D*, P?, N?} and
Foonr(A) = [{T: A = EIdVv(D(d)/\(P(d, v) = T(v))A(N(d, v) — ﬁT(v)))}|.
Hence #DNF € #%Y,.

@ #3CNF: A boolean formula in conjunctive normal form with three
literals per clause can be encoded by a finite structure
A={(v1,..,), G, C3, C3, C3} and
fraenr(A) = {T - A (Vx)(¥)(Vxs) [(Golxa, xo, x3) = (T (xa) A T(x) A
T(X3))) A (Cl(xl,xz,X3) = (=T (x) A T(x)A T(X3))) A (Cg(xl,X2,X3) —
(=TGa) AT (x) A T(X3))) A (C3(X1, x2,x3) = (T (1) A=T(x) A —\T(X3)))] H-
Hence #3CNF € #T11;.

@ #SAT: A boolean formula in conjunctive normal form can be
encoded by a finite structure A = {(v1, ..., Vs, C1, ..., Cm), C1, P?, N2}
and
fusar(A) = {T: A= (Vc)(ﬂv)[C(c) — (P(c, V)A T(v))\/(N(c, v)/\—\T(v))]}|.
Hence #SAT € #I1,.

BIsSe e el el S e e el e EESES Descriptive Complexity ALMA Spring 2020

Hierarchy in #FO

Proposition 1:

#1T,
<
#Eo=#IT, #Z,C #1T,= #P.

Sus,

N

Proposition 2:
#Xo = #Mo C #X1 C #MM1 C #3p C #M2 = #FO

Proof. #Y 1 C #I1;:

Let f € #X1 with f(A) = |{< T, z>: A= 3IxyP(x,z,T)}|.

Instead of counting the tuples < T,z >, we count the tuples

< T,(z,x*) > where x* is the lexicographically smallest x such that

A= 1(x,z,T). Let 6(x,x*) be the quantifier-free formula which expresses
that x* is lexicographically smaller than x under <. Then,

f(A) = [{<T,(z,x") >: AEY(X",2,T) A (V%) (¥(x,2, T) = 0(x,x*)) }|
R Descrintive complexity for counting classes. R VLG

The second part of the proof includes the following:
o #3DNF € #¥1 \ #X,
o #3CNF € #IM; \ #X,
e #DNF € #¥, \ #IM;
e #HamiltonCycle € #I, \ #X,

The above classes are not closed under parsimonious reductions.
For example, #3CNF € #I1;, but #HamiltonCycle & #T1;.

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

o Every counting function in #X is computable in deterministic
polynomial time.

@ Every counting function in #X¥; has an FPRAS.

@ Every #X; function is reducible to a restricted version of #DNF under

a reducibility which preserves approximability.
@ #DNF has an FPRAS.

BIsSe el el ST e el e EESES Descriptive Complexity ALMA Spring 2020

@ Poly-time product reduction

f <prg: 3, hy € FP,Vx f(x) = g(hi(x)) - h2(|x])

Definition

For any k € N, #k - logDNF is the problem of counting the satisfying
assignments for a DNF formula with at most k - logn literals in each
disjunct, where n is the number of variables in the formula.

Proposition
For every counting function f € #¥; there is a positive constant k such
that f <, #k - logDNF.

BIsSe el el ST el e EECES Descriptive Complexity ALMA Spring 2020

Proof. f(A) =|{< T,z>: AE 3yy(y,z, T}|, where ¢ is in DNF, y has arity p, z has
arity mand T; has arity a;, 1 <i<r.

e For every zi € A™, we write Jy v (y, zi, T} as a disjunct \/Jlillp U(yj, zi, T}

BISe i el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

Proof. f(A) =|{< T,z>: AE 3yy(y,z, T}|, where ¢ is in DNF, y has arity p, z has
arity mand T; has arity a;, 1 <i<r.

e For every zi € A™, we write Jy v (y, zi, T} as a disjunct leill" U(yj, zi, T}

e We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain '(z;, T).

BISe i el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

Proof. f(A) =|{< T,z>: AE 3yy(y,z, T}|, where ¢ is in DNF, y has arity p, z has
arity mand T; has arity a;, 1 <i<r.

e For every zi € A™, we write Jy v (y, zi, T} as a disjunct leill" U(yj, zi, T}

o We replace every subformula that is satisfied by .4 by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain '(z;, T).

e The formula ¢’(z;, T) is a propositional formula in DNF with variables of the form
Ti(wi), wi € A%, 1<i<r.

BISe i el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

Proof. f(A)=|{< T,z>: A 3yy(y,z, T}|, where ¢ is in DNF, y has arity p, z has
arity mand T; has arity a;, 1 <i<r.

m . . |AlP
e For every z; € A™, we write Jyi(y, zi, T} as a disjunct \/j:1 U(yj, zi, T}
e We replace every subformula that is satisfied by .A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain '(z;, T).
e The formula 1)'(z;, T) is a propositional formula in DNF with variables of the form
Ti(wi), wi € A%, 1<i<r.
e We introduce / new variables xi, ..., x;, where | = log(]A|™). The binary representation
s of an integer between 0 and 2/ — 1 can be encoded by the conjunction x(s) of these
variables in which x; appears negated iff the i" bit of s is 0.

BISe i el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

Proof. f(A) =|{< T,z>: AE 3yy(y,z, T}|, where ¢ is in DNF, y has arity p, z has
arity mand T; has arity a;, 1 <i<r.

m . . |AlP
e For every z; € A™, we write Jyi(y, zi, T} as a disjunct \/j:1 (yj,zi, T}
e We replace every subformula that is satisfied by .A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain '(z;, T).
e The formula 1)'(z;, T) is a propositional formula in DNF with variables of the form
Ti(wi), wi € A%, 1<i<r.
e We introduce / new variables xi, ..., x;, where | = log(]A|™). The binary representation
s of an integer between 0 and 2/ — 1 can be encoded by the conjunction x(s) of these
variables in which x; appears negated iff the i" bit of s is 0.

o We define
6.4 = [0/ (20, T) AX(O)] V [¢#(21, T) Ax(L)] V o V [/ (zjam—1, T) A X(JA]" = 1))

BISe el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

Proof. f(A) =|{< T,z>: AE 3yy(y,z, T}|, where ¢ is in DNF, y has arity p, z has
arity mand T; has arity a;, 1 <i<r.

m . . |AlP
e For every z; € A™, we write Jyi(y, zi, T} as a disjunct \/J.:1 (yj,zi, T}
e We replace every subformula that is satisfied by .A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain '(z;, T).
e The formula 1)'(z;, T) is a propositional formula in DNF with variables of the form
Ti(wi), wi € A%, 1<i<r.
e We introduce / new variables xi, ..., x;, where | = log(]A|™). The binary representation
s of an integer between 0 and 2/ — 1 can be encoded by the conjunction x(s) of these
variables in which x; appears negated iff the i" bit of s is 0.

o We define

04 =[Y'(20, T) Ax(0)] V [(21, T) AX(1)] V... V [¢'(zjam 1, T) A x(JA|™ — 1)].

e Finally, 6.4 can be easily rewritten as a DNF formula with variables of the form T;(w;)
and xi, ..., x;. Also, each disjunct will contain O(logn) literals.

BISe el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

Proof. f(A) =|{< T,z>: AE 3yy(y,z, T}|, where ¢ is in DNF, y has arity p, z has
arity mand T; has arity a;, 1 <i<r.

m . . |AlP
e For every z; € A™, we write Jyi(y, zi, T} as a disjunct \/J.:1 (yj,zi, T}
e We replace every subformula that is satisfied by .A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain '(z;, T).
e The formula 1)'(z;, T) is a propositional formula in DNF with variables of the form
Ti(wi), wi € A%, 1<i<r.
e We introduce / new variables xi, ..., x;, where | = log(]A|™). The binary representation
s of an integer between 0 and 2/ — 1 can be encoded by the conjunction x(s) of these
variables in which x; appears negated iff the i" bit of s is 0.

o We define

04 =[Y'(20, T) Ax(0)] V [(21, T) AX(1)] V... V [¢'(zjam 1, T) A x(JA|™ — 1)].

e Finally, 6.4 can be easily rewritten as a DNF formula with variables of the form T;(w;)
and xi, ..., x;. Also, each disjunct will contain O(logn) literals.

o Let c(A) be the variables of the form T;(w;) that do not appear in 6.4. It holds that:

f(A) = 2<(A) (the number of satisfying assignments of 6.4)

BISe el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

@ Assuming NP # RP, the following is undecidable: Given a first-order
formula ¢(z, T) over 0 U T, does the counting function defined by
¢(z, T) have a polynomial-time (¢, d) randomized approximation
algorithm for some constants ¢,6 > 07

o Assuming P # P#P the following is undecidable: Given a first-order
formula ¢(z, T) over 0 UT, is the counting function defined by
¢(z, T) polynomial-time computable?

BIsSed e el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

A counting function f belongs to #RY, iff there is a first-order formula
with predicate symbols from T U ¢ and free first-order variables from z

such that

f(A)={<T,z> AE IxVyop(x,y, T,2z)}|

where 9 is quantifier-free and when it is expressed in CNF, each conjunct

has at most one occurrence of a predicate symbol from T.

Proposition
Every function in #R¥> has an FPRAS.

V.

Proof. #DNF is complete for #RY > under product reductions.
is similar to the previous one.

The proof
O

BISed el el S e e el e EESES Descriptive Complexity ALMA Spring 2020

The decision version of every function in #¥ o, #%1 and #RY,
isin P.

Triangle € #Y

#NonClique, # NonVertexCover € #¥ 1,

#NonDominatingSet, #NonEdgeDominatingSet € #R%».

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

Given a relational vocabulary o, the set of Quantitative Second-Order
logic formulae (or just QSO-formulae) over o is given by the following
grammar:

a=¢|s|(a+a)l|(a a)|Zxa|Nxa|ZX.a | NX.a

where ¢ is an SO-formula, s € N, x is a first-order variable and X is a second-order
variable (or a predicate that does not belong to o).

e QSO(L) is the fragment of QSO obtained by restricting ¢ to be in L.

e QFO is the fragment of QSO where second-order sum and product are not allowed.

e ¥ QSO is the fragment of QSO where first- and second-order products (INx. and MNX.)
are not allowed.

Semantics: Let 2 be a structure, v a first-order assignment for 2 and V' a second-order
assignment for 2. Then the evaluation of a QSO-formula a over (2, v, V) is defined as
a function ||« that on input (2, v, V) returns a number in N.

BISe el el ST e el e EEEES Descriptive Complexity ALMA Spring 2020

[l (2,0, V) = {1 i (A0, V)=

0 otherwise

[s](2, v, V)

[+ el 0, V) = [a J(2, 0, V) + [an] (A, v, V)
|I”1 ! ”2]{‘2]': o, V) - ﬂ“'l]](Ql‘ L V} ’ ﬂ“?]](mr o, VJ
Er. al(2, v, V) = Z [l (2, v|a/z], V)

acA

e al(W 0, V) = | | [o](A v[a/z], V)

acd
EX. a0, V) = E [e](A, o, V|B/X])
Bo Asrity (X))
[MX.alWo, V)= || [l V[B/X])
R Aarity(X)
Table 1

THE SEMANTICS OF QSO FORMULAE.

o = DA
Descriptive complexity for counting classes

@ Counting triangles in a graph:
a1 =Ix.Xy Yz (E(x,y) NE(y,2) NE(z,x) Ax <y ANy < z)

@ Counting cliques in a graph:
ap = IX XYy (X(x) AX(y) Ax #y) = E(x,y)

e Computing the permanent of a (0,1) n x n matrix A,
perm(A) = X,es, M1 Ali, o(i)]

az = XS.permut(S) - NMx.(3y(S(x,y) A M(x,y)))

where permut(S) is a first-order sentence that is true iff S is a
permutation (a total bijective function).

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

Arenas, Mufioz and Riveros (2017)

Let F be a fragment of QSO and C a counting complexity class. Then F
captures C over ordered structures if the following conditions hold:

@ for every a € F, there exists f € C such that ||«||() = f(2A) for
every ordered structure L.

@ for every f € C, there exists o € F such that () = ||«||(2A) for
every ordered structure 2.

Theorem
Y. QSO(FO) captures #P over ordered structures J

BIsSe e el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

Hierarchy in XQSO(FO)

Proposition:

#L1
&
#X ¥QSO(X;) & EQSO(I;) < XQSO(E:) < XQSO(Ilz) = #FO
£ & [] Il Il
£QS0(Zp) #11; #E9 #l1ly

=] & = E DA
Descriptive complexity for counting classes

Robust counting classes with easy decision

@ The goal is to give logical characterizations of robust subclasses of
#PE.

@ A class is defined to be robust if it is closed under sum, multiplication
and subtraction by one and it has natural complete problems.

@ #PE is not robust, since it contains #S5SAT 1, but not #SAT, unless
P = NP.

@ TotP is robust.

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

Characterization of robust subclasses of #PE

@ YQSO(X1[FO]): A subclass of TotP closed under sum,
multiplication and subtraction by one

@ Y QSO(X2-HORN): A subclass of TotP with a natural complete
problem

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

Reductions that preserve approximability

@ Parsimonious and product reductions preserve approximability:
If #A < #B and #B has an FPRAS, then #A has also an FPRAS.

@ Approximation preserving reduction:
f <ap g iff there is a probabilistic oracle TM M that takes as input
an instance x of f and 0 < € < 1 and satisfies the following:
@ every oracle call made by M is of the form (w,d), where w is an
instance of g, and 0 < § < 1 is an error bound satisfying
571 < poly(|x|,e7t),
@ the TM M meets the specification for being a randomised
approximation scheme for f whenever the oracle meets the
specification for being a randomised approximation scheme for g, and

© the run-time of M is polynomial in |x| and e71.

o If f <ap g and g <pp f then we say that f and g are
AP-interreducible, and write f =ap g.

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

Dyer, Goldberg, Greenhill and Jerrum (2004)

We define three counting classes to categorize counting problems with
respect to their approximability:
@ The class of counting problems with an FPRAS.
For example, #MatchingOfAllSizes, #DNF.

@ The class of counting problems AP-interriducible with #SAT .
This class contains all counting problems with NP-complete decision
version and others, such as #/ndependentSetOfAllSizes.

@ The class of counting problems AP-interriducible with #BIS. For
example, #Py4-Coloring, #1P1NSAT, #Downset.

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

Name. #BIS
Instance. A bipartite graph G.
Output. The number of independent sets in G.

Name. #P,4-Coloring

Instance. A graph G.

Output. The number of homomorphisms from G to P4, where Py is the
path of length 3.

Name. # Downset
Instance. A partially ordered set (X, <).
Output. The number of downsets in (X, <).

Name. #1P1NSAT

Instance. A Boolean formula ¢ in conjunctive normal form, with at most
one unnegated literal per clause, and at most one negated literal.
Output. The number of satisfying assignments to ¢.

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

#BIS, #P4-Coloring, #1P1NSAT and # Downset:
@ are AP-interriducible
@ belong to #RHTI1;

We say that a counting problem f is in the class #RHT1; if it can be
expressed in the form

f(A)={<T,z>: AEVx9(x,z,T)}|

where ¢ is an quantifier-free CNF formula in which each clause has at
most one occurrence of an unnegated predicate symbol from T, and at
most one occurrence of a negated predicate symbol from T.

@ For example,

fos = {D : A= (Yx)(Vy)(D(x) Ay < x — D(y))}|

BIsSe el el S T e el e EESES Descriptive Complexity ALMA Spring 2020

@ #1P1NSAT is complete for #RHIM; under parsimonious reductions.

@ #BIS, #P4-Coloring, #1P1NSAT and #Downset are complete for
#RHT1; under AP reductions.

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

References

@ Sanjeev Saluja, K. V. Subrahmanyam, Madhukar N. Thakur:
Descriptive Complexity of #P Functions. Computational Complexity
Conference 1992: 169-184.

@ Marcelo Arenas, Martin Munoz, Cristian Riveros: Descriptive
Complexity for counting complexity classes. LICS 2017: 1-12.

@ Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, Mark
Jerrum: The Relative Complexity of Approximate Counting Problems.
Algorithmica 38(3): 471-500 (2004).

BISe el el S T el e EESES Descriptive Complexity ALMA Spring 2020

	The class #P
	Descriptive Complexity for NP and #P
	Logical hierarchy in #P
	Descriptive complexity for #P in terms of Weighted Logics
	Robust counting classes with easy decision
	Classification of counting problems with respect to approximability

