
Descriptive complexity for counting classes

Descriptive Complexity
ALMA Spring 2020

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 1 / 36

1 The class #P

2 Descriptive Complexity for NP and #P

3 Logical hierarchy in #P

4 Descriptive complexity for #P in terms of Weighted Logics

5 Robust counting classes with easy decision

6 Classification of counting problems with respect to approximability

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 2 / 36

The class #P

A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N→ N
and a polynomial-time Turing Machine M such that for every x ∈ {0, 1}∗:

f (x) = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|

For a nondeterministic polynomial-time Turing Machine M, we define the
function accM(x) : {0, 1}∗ → N as follows:

accM(x) = # accepting paths of M on input x

Then #P is the class:

#P = {accM |M is a PNTM }

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 3 / 36

Counting vs Decision

Every decision problem in NP has a counting version in #P For
example, HamiltonCycle ∈ NP and #HamiltonCycle ∈ #P

FP ⊆ #P ⊆ FPSPACE
NP ⊆ P#P[1]

If FP = #P, then P = NP

Toda’s Theorem
PH ⊆ P#P[1]

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 4 / 36

Reductions between functions

Cook (poly-time Turing)

f 6p
T g : f ∈ FPg

Karp / parsimonious (poly-time many one)

f 6p
m g : ∃h ∈ FP, ∀x f (x) = g(h(x))

#SAT is #P-complete under parsimonious reductions.
#PerfectMatching is #P-complete under Turing reductions.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 5 / 36

A #P-complete problem under parsimonious reductions
1 has an NP-complete decision version, e.g. SAT is NP-complete,
2 cannot be aprroximated efficiently unless RP = NP.

There are #P-complete problem under Turing reductions that
1 have a decision in P, e.g. PerfectMatcing is in P,
2 admit an FPRAS, e.g. #DNF .

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 6 / 36

Definition of an FPRAS

Definition
A fully polynomial randomised approximation scheme (FPRAS) for a
function f : Σ∗ → N is a probabilistic TM that takes as input an instance
x of f , ε > 0 and 0 < δ < 1, and produces as output an integer random
variable Y satisfying the condition

Pr
(
(1− ε)f (x) ≤ Y ≤ (1 + ε)f (x)

)
≥ 1− δ.

It also runs in time poly(|x |, 1/ε).

For a self-reducible counting problem,
randomized approximation poly-time algorithm within a polynomial factor⇒ FPRAS

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 7 / 36

#PE and TotP

For a counting function f : {0, 1}∗ → N we define the related language
Lf = {x | f (x) > 0}. Then,

#PE = {f | f ∈ #P and Lf ∈ P}

For a nondeterministic polynomial-time Turing Machine M, we define the
function totM(x) : {0, 1}∗ → N as follows:

totM(x) = # paths of M on input x − 1

Then TotP is the class:

TotP = {totM |M is a PNTM }

TotP is the Karp-closure of all self-reducible #PE functions.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 8 / 36

For any #A ∈ #P, there exists:
a randomized polynomial-time (in |x | and 1/ε) algorithm, which using
an NP-oracle, approximates #A within ratio (1 + ε).

a deterministic polynomial-time (in |x | and 1/ε) algorithm, which
using an Σp

2-oracle, approximates #A within ratio (1 + ε).

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 9 / 36

Our interests today

Descriptive Complexity for counting
How can descriptive complexity contribute to the classification of
counting problems with respect to their approximability?

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 10 / 36

Fagin’s Theorem (reminder)

Theorem (Fagin)
∃SO captures NP: A language L is NP computable iff it is definable by
an existential second-order sentence, i.e. iff there is a sentence φ(T) with
predicate symbols from T ∪ σ such that

A ∈ L ⇔ A |= ∃Tφ(T)

where A is an ordered finite structure over the vocabulary σ.

Corollary (Cook)
SAT is NP-complete

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 11 / 36

3COL: A graph can be encoded by a finite structure
A = {(x1, ..., xn),E 2} and
ψ3COL = (∃R1)(∃B1)(∃G1)(∀x)

[(
R(x) ∨ B(x) ∨ G(x)

)
∧

(∀y)
(
E (x , y)→ ¬

(
R(x)∧R(y)

)
∧¬
(
B(x)∧B(y)

)
∧¬
(
G(x)∧G(y)

))]
SAT : A boolean formula in conjunctive normal form can be encoded
by a finite structure A = {(v1, ..., vn, c1, ..., cm),C1,P2,N2} and
ψSAT = (∃S1)(∀c)(∃v)

[
C(c)→

(
P(c, v)∧S(v)

)
∨
(
N(c, v)∧¬S(v)

)]

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 12 / 36

Let σ be a vocabulary containing a relation symbol ≤.
Let f be a counting function with finite structures A over σ, as
instances.
Let T = {T1, ...,Tr} and z = {z1, ..., zm} be sequences of predicate
symbols and first-order variables respectively.

A counting function belongs to #FO iff there is a first-order formula with
predicate symbols from T∪σ and free first-order variables from z such that

f (A) = |{< T, z > : A |= φ(T, z)}|

If the formula φ in the above definition is a Σi (Πi resp.), i ∈ N, then
we obtain the subclasses #Σi (#Πi resp.), i ∈ N, of #FO.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 13 / 36

Let σ be a vocabulary containing a relation symbol ≤.
Let f be a counting function with finite structures A over σ, as
instances.
Let T = {T1, ...,Tr} and z = {z1, ..., zm} be sequences of predicate
symbols and first-order variables respectively.

A counting function belongs to #FO iff there is a first-order formula with
predicate symbols from T∪σ and free first-order variables from z such that

f (A) = |{< T, z > : A |= φ(T, z)}|

If the formula φ in the above definition is a Σi (Πi resp.), i ∈ N, then
we obtain the subclasses #Σi (#Πi resp.), i ∈ N, of #FO.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 13 / 36

Saluja, Sabrahmanyama and Thakur (1995)

Theorem
The class #P coincides with the class #FO.
In fact, #Π2 captures #FO.

Proof. #FO ⊆ #P: The NP machine guesses a tuple < T, z > and
verifies in polynomial time that A |= φ(T, z).

#P ⊆ #FO: For an f ∈ #P, the decision version Lf ∈ NP. By Fagin’s
Theorem, A ∈ Lf iff A |= ∃Tφ(T). The formula φ is such that every
accepting computation of the NP machine on input A corresponds to a
unique value of T that satisfies φ(T). So, the number of accepting paths
is equal to |{< T > : A |= φ(T)}|.
Furthermore, from the proof of Fagin’s Theorem, φ is a Π2 first-order
formula. �

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 14 / 36

#DNF : A DNF formula can be encoded by a finite structure
A = {(v1, ..., vn, d1, ..., dm),D1,P2,N2} and
f#DNF (A) = |{T : A |= ∃d ∀v

(
D(d)∧

(
P(d , v)→ T (v)

)
∧
(
N(d , v)→ ¬T (v)

))
}|.

Hence #DNF ∈ #Σ2.

#3CNF : A boolean formula in conjunctive normal form with three
literals per clause can be encoded by a finite structure
A = {(v1, ..., vn),C3

0 ,C3
1 ,C3

2 ,C3
3 } and

f#3CNF (A) = |{T : A |= (∀x1)(∀x2)(∀x3)
[(

C0(x1, x2, x3)→ (T (x1) ∧ T (x2) ∧
T (x3))

)
∧
(
C1(x1, x2, x3)→ (¬T (x1) ∧ T (x2) ∧ T (x3))

)
∧
(
C2(x1, x2, x3)→

(¬T (x1)∧¬T (x2)∧T (x3))
)
∧
(
C3(x1, x2, x3)→ (¬T (x1)∧¬T (x2)∧¬T (x3))

)]
}|.

Hence #3CNF ∈ #Π1.

#SAT : A boolean formula in conjunctive normal form can be
encoded by a finite structure A = {(v1, ..., vn, c1, ..., cm),C1,P2,N2}
and
f#SAT (A) = |{T : A |= (∀c)(∃v)

[
C(c)→

(
P(c, v)∧T (v)

)
∨
(
N(c, v)∧¬T (v)

)]
}|.

Hence #SAT ∈ #Π2.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 15 / 36

#DNF : A DNF formula can be encoded by a finite structure
A = {(v1, ..., vn, d1, ..., dm),D1,P2,N2} and
f#DNF (A) = |{T : A |= ∃d ∀v

(
D(d)∧

(
P(d , v)→ T (v)

)
∧
(
N(d , v)→ ¬T (v)

))
}|.

Hence #DNF ∈ #Σ2.

#3CNF : A boolean formula in conjunctive normal form with three
literals per clause can be encoded by a finite structure
A = {(v1, ..., vn),C3

0 ,C3
1 ,C3

2 ,C3
3 } and

f#3CNF (A) = |{T : A |= (∀x1)(∀x2)(∀x3)
[(

C0(x1, x2, x3)→ (T (x1) ∧ T (x2) ∧
T (x3))

)
∧
(
C1(x1, x2, x3)→ (¬T (x1) ∧ T (x2) ∧ T (x3))

)
∧
(
C2(x1, x2, x3)→

(¬T (x1)∧¬T (x2)∧T (x3))
)
∧
(
C3(x1, x2, x3)→ (¬T (x1)∧¬T (x2)∧¬T (x3))

)]
}|.

Hence #3CNF ∈ #Π1.

#SAT : A boolean formula in conjunctive normal form can be
encoded by a finite structure A = {(v1, ..., vn, c1, ..., cm),C1,P2,N2}
and
f#SAT (A) = |{T : A |= (∀c)(∃v)

[
C(c)→

(
P(c, v)∧T (v)

)
∨
(
N(c, v)∧¬T (v)

)]
}|.

Hence #SAT ∈ #Π2.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 15 / 36

#DNF : A DNF formula can be encoded by a finite structure
A = {(v1, ..., vn, d1, ..., dm),D1,P2,N2} and
f#DNF (A) = |{T : A |= ∃d ∀v

(
D(d)∧

(
P(d , v)→ T (v)

)
∧
(
N(d , v)→ ¬T (v)

))
}|.

Hence #DNF ∈ #Σ2.

#3CNF : A boolean formula in conjunctive normal form with three
literals per clause can be encoded by a finite structure
A = {(v1, ..., vn),C3

0 ,C3
1 ,C3

2 ,C3
3 } and

f#3CNF (A) = |{T : A |= (∀x1)(∀x2)(∀x3)
[(

C0(x1, x2, x3)→ (T (x1) ∧ T (x2) ∧
T (x3))

)
∧
(
C1(x1, x2, x3)→ (¬T (x1) ∧ T (x2) ∧ T (x3))

)
∧
(
C2(x1, x2, x3)→

(¬T (x1)∧¬T (x2)∧T (x3))
)
∧
(
C3(x1, x2, x3)→ (¬T (x1)∧¬T (x2)∧¬T (x3))

)]
}|.

Hence #3CNF ∈ #Π1.

#SAT : A boolean formula in conjunctive normal form can be
encoded by a finite structure A = {(v1, ..., vn, c1, ..., cm),C1,P2,N2}
and
f#SAT (A) = |{T : A |= (∀c)(∃v)

[
C(c)→

(
P(c, v)∧T (v)

)
∨
(
N(c, v)∧¬T (v)

)]
}|.

Hence #SAT ∈ #Π2.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 15 / 36

Hierarchy in #FO
Proposition 1:

Proposition 2:

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO

Proof. #Σ1 ⊆ #Π1:
Let f ∈ #Σ1 with f (A) = |{< T, z > : A |= ∃xψ(x, z,T)}|.
Instead of counting the tuples < T, z >, we count the tuples
< T, (z, x∗) > where x∗ is the lexicographically smallest x such that
A |= ψ(x, z,T). Let θ(x, x∗) be the quantifier-free formula which expresses
that x∗ is lexicographically smaller than x under ≤. Then,

f (A) = |{< T, (z, x∗) > : A |= ψ(x∗, z,T) ∧ (∀x)
(
ψ(x, z,T)→ θ(x, x∗)

)
}|

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 16 / 36

The second part of the proof includes the following:
#3DNF ∈ #Σ1 \#Σ0

#3CNF ∈ #Π1 \#Σ1

#DNF ∈ #Σ2 \#Π1

#HamiltonCycle ∈ #Π2 \#Σ2

�

The above classes are not closed under parsimonious reductions.
For example, #3CNF ∈ #Π1, but #HamiltonCycle 6∈ #Π1.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 17 / 36

Every counting function in #Σ0 is computable in deterministic
polynomial time.
Every counting function in #Σ1 has an FPRAS.

1 Every #Σ1 function is reducible to a restricted version of #DNF under
a reducibility which preserves approximability.

2 #DNF has an FPRAS.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 18 / 36

Poly-time product reduction

f 6pr g : ∃h1, h2 ∈ FP,∀x f (x) = g(h1(x)) · h2(|x |)

Definition
For any k ∈ N, #k · logDNF is the problem of counting the satisfying
assignments for a DNF formula with at most k · logn literals in each
disjunct, where n is the number of variables in the formula.

Proposition
For every counting function f ∈ #Σ1 there is a positive constant k such
that f 6pr #k · logDNF .

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 19 / 36

Proof. f (A) = |{< T, z >: A |= ∃yψ(y, z,T}|, where ψ is in DNF, y has arity p, z has
arity m and Ti has arity ai , 1 ≤ i ≤ r .
• For every zi ∈ Am, we write ∃yψ(y, zi,T} as a disjunct

∨|A|p
j=1 ψ(yj, zi,T}.

• We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain ψ′(zi,T).
• The formula ψ′(zi,T) is a propositional formula in DNF with variables of the form
Ti (wi), wi ∈ Aai , 1 ≤ i ≤ r .
• We introduce l new variables x1, ..., xl , where l = log(|A|m). The binary representation
s of an integer between 0 and 2l − 1 can be encoded by the conjunction x(s) of these
variables in which xi appears negated iff the i th bit of s is 0.
• We define
θA = [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z|A|m−1,T) ∧ x(|A|m − 1)].
• Finally, θA can be easily rewritten as a DNF formula with variables of the form Ti (wi)
and x1, ..., xl . Also, each disjunct will contain O(logn) literals.
• Let c(A) be the variables of the form Ti (wi) that do not appear in θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA)

�

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 20 / 36

Proof. f (A) = |{< T, z >: A |= ∃yψ(y, z,T}|, where ψ is in DNF, y has arity p, z has
arity m and Ti has arity ai , 1 ≤ i ≤ r .
• For every zi ∈ Am, we write ∃yψ(y, zi,T} as a disjunct

∨|A|p
j=1 ψ(yj, zi,T}.

• We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain ψ′(zi,T).

• The formula ψ′(zi,T) is a propositional formula in DNF with variables of the form
Ti (wi), wi ∈ Aai , 1 ≤ i ≤ r .
• We introduce l new variables x1, ..., xl , where l = log(|A|m). The binary representation
s of an integer between 0 and 2l − 1 can be encoded by the conjunction x(s) of these
variables in which xi appears negated iff the i th bit of s is 0.
• We define
θA = [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z|A|m−1,T) ∧ x(|A|m − 1)].
• Finally, θA can be easily rewritten as a DNF formula with variables of the form Ti (wi)
and x1, ..., xl . Also, each disjunct will contain O(logn) literals.
• Let c(A) be the variables of the form Ti (wi) that do not appear in θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA)

�

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 20 / 36

Proof. f (A) = |{< T, z >: A |= ∃yψ(y, z,T}|, where ψ is in DNF, y has arity p, z has
arity m and Ti has arity ai , 1 ≤ i ≤ r .
• For every zi ∈ Am, we write ∃yψ(y, zi,T} as a disjunct

∨|A|p
j=1 ψ(yj, zi,T}.

• We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain ψ′(zi,T).
• The formula ψ′(zi,T) is a propositional formula in DNF with variables of the form
Ti (wi), wi ∈ Aai , 1 ≤ i ≤ r .

• We introduce l new variables x1, ..., xl , where l = log(|A|m). The binary representation
s of an integer between 0 and 2l − 1 can be encoded by the conjunction x(s) of these
variables in which xi appears negated iff the i th bit of s is 0.
• We define
θA = [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z|A|m−1,T) ∧ x(|A|m − 1)].
• Finally, θA can be easily rewritten as a DNF formula with variables of the form Ti (wi)
and x1, ..., xl . Also, each disjunct will contain O(logn) literals.
• Let c(A) be the variables of the form Ti (wi) that do not appear in θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA)

�

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 20 / 36

Proof. f (A) = |{< T, z >: A |= ∃yψ(y, z,T}|, where ψ is in DNF, y has arity p, z has
arity m and Ti has arity ai , 1 ≤ i ≤ r .
• For every zi ∈ Am, we write ∃yψ(y, zi,T} as a disjunct

∨|A|p
j=1 ψ(yj, zi,T}.

• We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain ψ′(zi,T).
• The formula ψ′(zi,T) is a propositional formula in DNF with variables of the form
Ti (wi), wi ∈ Aai , 1 ≤ i ≤ r .
• We introduce l new variables x1, ..., xl , where l = log(|A|m). The binary representation
s of an integer between 0 and 2l − 1 can be encoded by the conjunction x(s) of these
variables in which xi appears negated iff the i th bit of s is 0.

• We define
θA = [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z|A|m−1,T) ∧ x(|A|m − 1)].
• Finally, θA can be easily rewritten as a DNF formula with variables of the form Ti (wi)
and x1, ..., xl . Also, each disjunct will contain O(logn) literals.
• Let c(A) be the variables of the form Ti (wi) that do not appear in θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA)

�

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 20 / 36

Proof. f (A) = |{< T, z >: A |= ∃yψ(y, z,T}|, where ψ is in DNF, y has arity p, z has
arity m and Ti has arity ai , 1 ≤ i ≤ r .
• For every zi ∈ Am, we write ∃yψ(y, zi,T} as a disjunct

∨|A|p
j=1 ψ(yj, zi,T}.

• We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain ψ′(zi,T).
• The formula ψ′(zi,T) is a propositional formula in DNF with variables of the form
Ti (wi), wi ∈ Aai , 1 ≤ i ≤ r .
• We introduce l new variables x1, ..., xl , where l = log(|A|m). The binary representation
s of an integer between 0 and 2l − 1 can be encoded by the conjunction x(s) of these
variables in which xi appears negated iff the i th bit of s is 0.
• We define
θA = [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z|A|m−1,T) ∧ x(|A|m − 1)].

• Finally, θA can be easily rewritten as a DNF formula with variables of the form Ti (wi)
and x1, ..., xl . Also, each disjunct will contain O(logn) literals.
• Let c(A) be the variables of the form Ti (wi) that do not appear in θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA)

�

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 20 / 36

Proof. f (A) = |{< T, z >: A |= ∃yψ(y, z,T}|, where ψ is in DNF, y has arity p, z has
arity m and Ti has arity ai , 1 ≤ i ≤ r .
• For every zi ∈ Am, we write ∃yψ(y, zi,T} as a disjunct

∨|A|p
j=1 ψ(yj, zi,T}.

• We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain ψ′(zi,T).
• The formula ψ′(zi,T) is a propositional formula in DNF with variables of the form
Ti (wi), wi ∈ Aai , 1 ≤ i ≤ r .
• We introduce l new variables x1, ..., xl , where l = log(|A|m). The binary representation
s of an integer between 0 and 2l − 1 can be encoded by the conjunction x(s) of these
variables in which xi appears negated iff the i th bit of s is 0.
• We define
θA = [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z|A|m−1,T) ∧ x(|A|m − 1)].
• Finally, θA can be easily rewritten as a DNF formula with variables of the form Ti (wi)
and x1, ..., xl . Also, each disjunct will contain O(logn) literals.

• Let c(A) be the variables of the form Ti (wi) that do not appear in θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA)

�

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 20 / 36

Proof. f (A) = |{< T, z >: A |= ∃yψ(y, z,T}|, where ψ is in DNF, y has arity p, z has
arity m and Ti has arity ai , 1 ≤ i ≤ r .
• For every zi ∈ Am, we write ∃yψ(y, zi,T} as a disjunct

∨|A|p
j=1 ψ(yj, zi,T}.

• We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain ψ′(zi,T).
• The formula ψ′(zi,T) is a propositional formula in DNF with variables of the form
Ti (wi), wi ∈ Aai , 1 ≤ i ≤ r .
• We introduce l new variables x1, ..., xl , where l = log(|A|m). The binary representation
s of an integer between 0 and 2l − 1 can be encoded by the conjunction x(s) of these
variables in which xi appears negated iff the i th bit of s is 0.
• We define
θA = [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z|A|m−1,T) ∧ x(|A|m − 1)].
• Finally, θA can be easily rewritten as a DNF formula with variables of the form Ti (wi)
and x1, ..., xl . Also, each disjunct will contain O(logn) literals.
• Let c(A) be the variables of the form Ti (wi) that do not appear in θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA)

�

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 20 / 36

Assuming NP 6= RP, the following is undecidable: Given a first-order
formula φ(z,T) over σ ∪ T, does the counting function defined by
φ(z,T) have a polynomial-time (ε, δ) randomized approximation
algorithm for some constants ε, δ > 0?

Assuming P 6= P#P , the following is undecidable: Given a first-order
formula φ(z,T) over σ ∪ T, is the counting function defined by
φ(z,T) polynomial-time computable?

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 21 / 36

A counting function f belongs to #RΣ2 iff there is a first-order formula ψ
with predicate symbols from T ∪ σ and free first-order variables from z
such that

f (A) = |{< T, z >: A |= ∃x ∀yφ(x, y,T, z)}|

where ψ is quantifier-free and when it is expressed in CNF, each conjunct
has at most one occurrence of a predicate symbol from T.

Proposition
Every function in #RΣ2 has an FPRAS.

Proof. #DNF is complete for #RΣ2 under product reductions. The proof
is similar to the previous one. �

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 22 / 36

The decision version of every function in #Σ0, #Σ1 and #RΣ2
is in P.
#Triangle ∈ #Σ0

#NonClique, #NonVertexCover ∈ #Σ1,
#NonDominatingSet, #NonEdgeDominatingSet ∈ #RΣ2.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 23 / 36

Given a relational vocabulary σ, the set of Quantitative Second-Order
logic formulae (or just QSO-formulae) over σ is given by the following
grammar:
α := φ | s | (α + α) | (α · α) | Σx .α | Πx .α | ΣX .α | ΠX .α
where φ is an SO-formula, s ∈ N, x is a first-order variable and X is a second-order
variable (or a predicate that does not belong to σ).

• QSO(L) is the fragment of QSO obtained by restricting φ to be in L.
• QFO is the fragment of QSO where second-order sum and product are not allowed.
• ΣQSO is the fragment of QSO where first- and second-order products (Πx . and ΠX .)
are not allowed.

Semantics: Let A be a structure, v a first-order assignment for A and V a second-order
assignment for A. Then the evaluation of a QSO-formula α over (A, v ,V) is defined as
a function ‖α‖ that on input (A, v ,V) returns a number in N.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 24 / 36

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 25 / 36

Counting triangles in a graph:
α1 = Σx .Σy .Σz .

(
E (x , y) ∧ E (y , z) ∧ E (z , x) ∧ x < y ∧ y < z

)
Counting cliques in a graph:
α2 = ΣX .∀x∀y

(
X (x) ∧ X (y) ∧ x 6= y)→ E (x , y)

Computing the permanent of a (0, 1) n × n matrix A,
perm(A) = Σσ∈Sn Πn

i=1A[i , σ(i)]

α3 = ΣS.permut(S) · Πx .
(
∃y(S(x , y) ∧M(x , y))

)
where permut(S) is a first-order sentence that is true iff S is a
permutation (a total bijective function).

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 26 / 36

Arenas, Muñoz and Riveros (2017)

Let F be a fragment of QSO and C a counting complexity class. Then F
captures C over ordered structures if the following conditions hold:

1 for every α ∈ F , there exists f ∈ C such that ‖α‖(A) = f (A) for
every ordered structure A.

2 for every f ∈ C , there exists α ∈ F such that f (A) = ‖α‖(A) for
every ordered structure A.

Theorem
ΣQSO(FO) captures #P over ordered structures

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 27 / 36

Hierarchy in ΣQSO(FO)

Proposition:

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 28 / 36

Robust counting classes with easy decision

The goal is to give logical characterizations of robust subclasses of
#PE .

A class is defined to be robust if it is closed under sum, multiplication
and subtraction by one and it has natural complete problems.

#PE is not robust, since it contains #SAT+1, but not #SAT , unless
P = NP.

TotP is robust.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 29 / 36

Characterization of robust subclasses of #PE

ΣQSO(Σ1[FO]): A subclass of TotP closed under sum,
multiplication and subtraction by one

ΣQSO(Σ2-HORN): A subclass of TotP with a natural complete
problem

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 30 / 36

Reductions that preserve approximability

Parsimonious and product reductions preserve approximability:
If #A ≤ #B and #B has an FPRAS, then #A has also an FPRAS.
Approximation preserving reduction:
f ≤AP g iff there is a probabilistic oracle TM M that takes as input
an instance x of f and 0 < ε < 1 and satisfies the following:

1 every oracle call made by M is of the form (w , δ), where w is an
instance of g, and 0 < δ < 1 is an error bound satisfying
δ−1 ≤ poly(|x |, ε−1),

2 the TM M meets the specification for being a randomised
approximation scheme for f whenever the oracle meets the
specification for being a randomised approximation scheme for g , and

3 the run-time of M is polynomial in |x | and ε−1.
If f ≤AP g and g ≤AP f then we say that f and g are
AP-interreducible, and write f ≡AP g .

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 31 / 36

Dyer, Goldberg, Greenhill and Jerrum (2004)

We define three counting classes to categorize counting problems with
respect to their approximability:

The class of counting problems with an FPRAS.
For example, #MatchingOfAllSizes, #DNF .
The class of counting problems AP-interriducible with #SAT .
This class contains all counting problems with NP-complete decision
version and others, such as #IndependentSetOfAllSizes.
The class of counting problems AP-interriducible with #BIS. For
example, #P4-Coloring , #1P1NSAT , #Downset.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 32 / 36

Name. #BIS
Instance. A bipartite graph G .
Output. The number of independent sets in G .

Name. #P4-Coloring
Instance. A graph G .
Output. The number of homomorphisms from G to P4, where P4 is the
path of length 3.

Name. #Downset
Instance. A partially ordered set (X ,≤).
Output. The number of downsets in (X ,≤).

Name. #1P1NSAT
Instance. A Boolean formula φ in conjunctive normal form, with at most
one unnegated literal per clause, and at most one negated literal.
Output. The number of satisfying assignments to φ.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 33 / 36

#BIS, #P4-Coloring , #1P1NSAT and #Downset:
are AP-interriducible
belong to #RHΠ1

We say that a counting problem f is in the class #RHΠ1 if it can be
expressed in the form

f (A) = |{< T, z > : A |= ∀xψ(x, z,T)}|

where ψ is an quantifier-free CNF formula in which each clause has at
most one occurrence of an unnegated predicate symbol from T, and at
most one occurrence of a negated predicate symbol from T.

For example,

fDS = |{D : A |= (∀x)(∀y)
(
D(x) ∧ y ≤ x → D(y)

)
}|

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 34 / 36

#1P1NSAT is complete for #RHΠ1 under parsimonious reductions.

#BIS, #P4-Coloring , #1P1NSAT and #Downset are complete for
#RHΠ1 under AP reductions.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 35 / 36

References

Sanjeev Saluja, K. V. Subrahmanyam, Madhukar N. Thakur:
Descriptive Complexity of #P Functions. Computational Complexity
Conference 1992: 169-184.

Marcelo Arenas, Martin Muñoz, Cristian Riveros: Descriptive
Complexity for counting complexity classes. LICS 2017: 1-12.

Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, Mark
Jerrum: The Relative Complexity of Approximate Counting Problems.
Algorithmica 38(3): 471-500 (2004).

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 36 / 36

	The class #P
	Descriptive Complexity for NP and #P
	Logical hierarchy in #P
	Descriptive complexity for #P in terms of Weighted Logics
	Robust counting classes with easy decision
	Classification of counting problems with respect to approximability

