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The class #P

A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N→ N
and a polynomial-time Turing Machine M such that for every x ∈ {0, 1}∗:

f (x) = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|

For a nondeterministic polynomial-time Turing Machine M, we define the
function accM(x) : {0, 1}∗ → N as follows:

accM(x) = # accepting paths of M on input x

Then #P is the class:

#P = {accM |M is a PNTM }
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Counting vs Decision

Every decision problem in NP has a counting version in #P For
example, HamiltonCycle ∈ NP and #HamiltonCycle ∈ #P

FP ⊆ #P ⊆ FPSPACE
NP ⊆ P#P[1]

If FP = #P, then P = NP

Toda’s Theorem
PH ⊆ P#P[1]
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Reductions between functions

Cook (poly-time Turing)

f 6p
T g : f ∈ FPg

Karp / parsimonious (poly-time many one)

f 6p
m g : ∃h ∈ FP, ∀x f (x) = g(h(x))

#SAT is #P-complete under parsimonious reductions.
#PerfectMatching is #P-complete under Turing reductions.
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A #P-complete problem under parsimonious reductions
1 has an NP-complete decision version, e.g. SAT is NP-complete,
2 cannot be aprroximated efficiently unless RP = NP.

There are #P-complete problem under Turing reductions that
1 have a decision in P, e.g. PerfectMatcing is in P,
2 admit an FPRAS, e.g. #DNF .
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Definition of an FPRAS

Definition
A fully polynomial randomised approximation scheme (FPRAS) for a
function f : Σ∗ → N is a probabilistic TM that takes as input an instance
x of f , ε > 0 and 0 < δ < 1, and produces as output an integer random
variable Y satisfying the condition

Pr
(
(1− ε)f (x) ≤ Y ≤ (1 + ε)f (x)

)
≥ 1− δ.

It also runs in time poly(|x |, 1/ε).

For a self-reducible counting problem,
randomized approximation poly-time algorithm within a polynomial factor⇒ FPRAS
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#PE and TotP

For a counting function f : {0, 1}∗ → N we define the related language
Lf = {x | f (x) > 0}. Then,

#PE = {f | f ∈ #P and Lf ∈ P}

For a nondeterministic polynomial-time Turing Machine M, we define the
function totM(x) : {0, 1}∗ → N as follows:

totM(x) = # paths of M on input x − 1

Then TotP is the class:

TotP = {totM |M is a PNTM }

TotP is the Karp-closure of all self-reducible #PE functions.

Descriptive complexity for counting classes Descriptive Complexity ALMA Spring 2020 8 / 36



For any #A ∈ #P, there exists:
a randomized polynomial-time (in |x | and 1/ε) algorithm, which using
an NP-oracle, approximates #A within ratio (1 + ε).

a deterministic polynomial-time (in |x | and 1/ε) algorithm, which
using an Σp

2-oracle, approximates #A within ratio (1 + ε).
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Our interests today

Descriptive Complexity for counting
How can descriptive complexity contribute to the classification of
counting problems with respect to their approximability?
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Fagin’s Theorem (reminder)

Theorem (Fagin)
∃SO captures NP: A language L is NP computable iff it is definable by
an existential second-order sentence, i.e. iff there is a sentence φ(T) with
predicate symbols from T ∪ σ such that

A ∈ L ⇔ A |= ∃Tφ(T)

where A is an ordered finite structure over the vocabulary σ.

Corollary (Cook)
SAT is NP-complete
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3COL: A graph can be encoded by a finite structure
A = {(x1, ..., xn),E 2} and
ψ3COL = (∃R1)(∃B1)(∃G1)(∀x)

[(
R(x) ∨ B(x) ∨ G(x)

)
∧

(∀y)
(
E (x , y)→ ¬

(
R(x)∧R(y)

)
∧¬
(
B(x)∧B(y)

)
∧¬
(
G(x)∧G(y)

))]
SAT : A boolean formula in conjunctive normal form can be encoded
by a finite structure A = {(v1, ..., vn, c1, ..., cm),C1,P2,N2} and
ψSAT = (∃S1)(∀c)(∃v)

[
C(c)→

(
P(c, v)∧S(v)

)
∨
(
N(c, v)∧¬S(v)

)]
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Let σ be a vocabulary containing a relation symbol ≤.
Let f be a counting function with finite structures A over σ, as
instances.
Let T = {T1, ...,Tr} and z = {z1, ..., zm} be sequences of predicate
symbols and first-order variables respectively.

A counting function belongs to #FO iff there is a first-order formula with
predicate symbols from T∪σ and free first-order variables from z such that

f (A) = |{< T, z > : A |= φ(T, z)}|

If the formula φ in the above definition is a Σi (Πi resp.), i ∈ N, then
we obtain the subclasses #Σi (#Πi resp.), i ∈ N, of #FO.
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Saluja, Sabrahmanyama and Thakur (1995)

Theorem
The class #P coincides with the class #FO.
In fact, #Π2 captures #FO.

Proof. #FO ⊆ #P: The NP machine guesses a tuple < T, z > and
verifies in polynomial time that A |= φ(T, z).

#P ⊆ #FO: For an f ∈ #P, the decision version Lf ∈ NP. By Fagin’s
Theorem, A ∈ Lf iff A |= ∃Tφ(T). The formula φ is such that every
accepting computation of the NP machine on input A corresponds to a
unique value of T that satisfies φ(T). So, the number of accepting paths
is equal to |{< T > : A |= φ(T)}|.
Furthermore, from the proof of Fagin’s Theorem, φ is a Π2 first-order
formula. �
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#DNF : A DNF formula can be encoded by a finite structure
A = {(v1, ..., vn, d1, ..., dm),D1,P2,N2} and
f#DNF (A) = |{T : A |= ∃d ∀v

(
D(d)∧

(
P(d , v)→ T (v)

)
∧
(
N(d , v)→ ¬T (v)

))
}|.

Hence #DNF ∈ #Σ2.

#3CNF : A boolean formula in conjunctive normal form with three
literals per clause can be encoded by a finite structure
A = {(v1, ..., vn),C3

0 ,C3
1 ,C3

2 ,C3
3 } and

f#3CNF (A) = |{T : A |= (∀x1)(∀x2)(∀x3)
[(

C0(x1, x2, x3)→ (T (x1) ∧ T (x2) ∧
T (x3))

)
∧
(
C1(x1, x2, x3)→ (¬T (x1) ∧ T (x2) ∧ T (x3))

)
∧
(
C2(x1, x2, x3)→

(¬T (x1)∧¬T (x2)∧T (x3))
)
∧
(
C3(x1, x2, x3)→ (¬T (x1)∧¬T (x2)∧¬T (x3))

)]
}|.

Hence #3CNF ∈ #Π1.

#SAT : A boolean formula in conjunctive normal form can be
encoded by a finite structure A = {(v1, ..., vn, c1, ..., cm),C1,P2,N2}
and
f#SAT (A) = |{T : A |= (∀c)(∃v)

[
C(c)→

(
P(c, v)∧T (v)

)
∨
(
N(c, v)∧¬T (v)

)]
}|.

Hence #SAT ∈ #Π2.
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Hierarchy in #FO
Proposition 1:

Proposition 2:

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO

Proof. #Σ1 ⊆ #Π1:
Let f ∈ #Σ1 with f (A) = |{< T, z > : A |= ∃xψ(x, z,T)}|.
Instead of counting the tuples < T, z >, we count the tuples
< T, (z, x∗) > where x∗ is the lexicographically smallest x such that
A |= ψ(x, z,T). Let θ(x, x∗) be the quantifier-free formula which expresses
that x∗ is lexicographically smaller than x under ≤. Then,

f (A) = |{< T, (z, x∗) > : A |= ψ(x∗, z,T) ∧ (∀x)
(
ψ(x, z,T)→ θ(x, x∗)

)
}|
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The second part of the proof includes the following:
#3DNF ∈ #Σ1 \#Σ0

#3CNF ∈ #Π1 \#Σ1

#DNF ∈ #Σ2 \#Π1

#HamiltonCycle ∈ #Π2 \#Σ2

�

The above classes are not closed under parsimonious reductions.
For example, #3CNF ∈ #Π1, but #HamiltonCycle 6∈ #Π1.
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Every counting function in #Σ0 is computable in deterministic
polynomial time.
Every counting function in #Σ1 has an FPRAS.

1 Every #Σ1 function is reducible to a restricted version of #DNF under
a reducibility which preserves approximability.

2 #DNF has an FPRAS.
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Poly-time product reduction

f 6pr g : ∃h1, h2 ∈ FP,∀x f (x) = g(h1(x)) · h2(|x |)

Definition
For any k ∈ N, #k · logDNF is the problem of counting the satisfying
assignments for a DNF formula with at most k · logn literals in each
disjunct, where n is the number of variables in the formula.

Proposition
For every counting function f ∈ #Σ1 there is a positive constant k such
that f 6pr #k · logDNF .
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Proof. f (A) = |{< T, z >: A |= ∃yψ(y, z,T}|, where ψ is in DNF, y has arity p, z has
arity m and Ti has arity ai , 1 ≤ i ≤ r .
• For every zi ∈ Am, we write ∃yψ(y, zi,T} as a disjunct

∨|A|p
j=1 ψ(yj, zi,T}.

• We replace every subformula that is satisfied by A by TRUE and every subformula
that is not satisfied by A by FALSE and we obtain ψ′(zi,T).
• The formula ψ′(zi,T) is a propositional formula in DNF with variables of the form
Ti (wi ), wi ∈ Aai , 1 ≤ i ≤ r .
• We introduce l new variables x1, ..., xl , where l = log(|A|m). The binary representation
s of an integer between 0 and 2l − 1 can be encoded by the conjunction x(s) of these
variables in which xi appears negated iff the i th bit of s is 0.
• We define
θA = [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z|A|m−1,T) ∧ x(|A|m − 1)].
• Finally, θA can be easily rewritten as a DNF formula with variables of the form Ti (wi )
and x1, ..., xl . Also, each disjunct will contain O(logn) literals.
• Let c(A) be the variables of the form Ti (wi ) that do not appear in θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA)

�
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Assuming NP 6= RP, the following is undecidable: Given a first-order
formula φ(z,T) over σ ∪ T, does the counting function defined by
φ(z,T) have a polynomial-time (ε, δ) randomized approximation
algorithm for some constants ε, δ > 0?

Assuming P 6= P#P , the following is undecidable: Given a first-order
formula φ(z,T) over σ ∪ T, is the counting function defined by
φ(z,T) polynomial-time computable?
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A counting function f belongs to #RΣ2 iff there is a first-order formula ψ
with predicate symbols from T ∪ σ and free first-order variables from z
such that

f (A) = |{< T, z >: A |= ∃x ∀yφ(x, y,T, z)}|

where ψ is quantifier-free and when it is expressed in CNF, each conjunct
has at most one occurrence of a predicate symbol from T.

Proposition
Every function in #RΣ2 has an FPRAS.

Proof. #DNF is complete for #RΣ2 under product reductions. The proof
is similar to the previous one. �
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The decision version of every function in #Σ0, #Σ1 and #RΣ2
is in P.
#Triangle ∈ #Σ0

#NonClique, #NonVertexCover ∈ #Σ1,
#NonDominatingSet, #NonEdgeDominatingSet ∈ #RΣ2.
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Given a relational vocabulary σ, the set of Quantitative Second-Order
logic formulae (or just QSO-formulae) over σ is given by the following
grammar:
α := φ | s | (α + α) | (α · α) | Σx .α | Πx .α | ΣX .α | ΠX .α
where φ is an SO-formula, s ∈ N, x is a first-order variable and X is a second-order
variable (or a predicate that does not belong to σ).

• QSO(L) is the fragment of QSO obtained by restricting φ to be in L.
• QFO is the fragment of QSO where second-order sum and product are not allowed.
• ΣQSO is the fragment of QSO where first- and second-order products (Πx . and ΠX .)
are not allowed.

Semantics: Let A be a structure, v a first-order assignment for A and V a second-order
assignment for A. Then the evaluation of a QSO-formula α over (A, v ,V ) is defined as
a function ‖α‖ that on input (A, v ,V ) returns a number in N.
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Counting triangles in a graph:
α1 = Σx .Σy .Σz .

(
E (x , y) ∧ E (y , z) ∧ E (z , x) ∧ x < y ∧ y < z

)
Counting cliques in a graph:
α2 = ΣX .∀x∀y

(
X (x) ∧ X (y) ∧ x 6= y)→ E (x , y)

Computing the permanent of a (0, 1) n × n matrix A,
perm(A) = Σσ∈Sn Πn

i=1A[i , σ(i)]

α3 = ΣS.permut(S) · Πx .
(
∃y(S(x , y) ∧M(x , y))

)
where permut(S) is a first-order sentence that is true iff S is a
permutation (a total bijective function).
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Arenas, Muñoz and Riveros (2017)

Let F be a fragment of QSO and C a counting complexity class. Then F
captures C over ordered structures if the following conditions hold:

1 for every α ∈ F , there exists f ∈ C such that ‖α‖(A) = f (A) for
every ordered structure A.

2 for every f ∈ C , there exists α ∈ F such that f (A) = ‖α‖(A) for
every ordered structure A.

Theorem
ΣQSO(FO) captures #P over ordered structures
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Hierarchy in ΣQSO(FO)

Proposition:
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Robust counting classes with easy decision

The goal is to give logical characterizations of robust subclasses of
#PE .

A class is defined to be robust if it is closed under sum, multiplication
and subtraction by one and it has natural complete problems.

#PE is not robust, since it contains #SAT+1, but not #SAT , unless
P = NP.

TotP is robust.
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Characterization of robust subclasses of #PE

ΣQSO(Σ1[FO]): A subclass of TotP closed under sum,
multiplication and subtraction by one

ΣQSO(Σ2-HORN): A subclass of TotP with a natural complete
problem
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Reductions that preserve approximability

Parsimonious and product reductions preserve approximability:
If #A ≤ #B and #B has an FPRAS, then #A has also an FPRAS.
Approximation preserving reduction:
f ≤AP g iff there is a probabilistic oracle TM M that takes as input
an instance x of f and 0 < ε < 1 and satisfies the following:

1 every oracle call made by M is of the form (w , δ), where w is an
instance of g, and 0 < δ < 1 is an error bound satisfying
δ−1 ≤ poly(|x |, ε−1),

2 the TM M meets the specification for being a randomised
approximation scheme for f whenever the oracle meets the
specification for being a randomised approximation scheme for g , and

3 the run-time of M is polynomial in |x | and ε−1.
If f ≤AP g and g ≤AP f then we say that f and g are
AP-interreducible, and write f ≡AP g .
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Dyer, Goldberg, Greenhill and Jerrum (2004)

We define three counting classes to categorize counting problems with
respect to their approximability:

The class of counting problems with an FPRAS.
For example, #MatchingOfAllSizes, #DNF .
The class of counting problems AP-interriducible with #SAT .
This class contains all counting problems with NP-complete decision
version and others, such as #IndependentSetOfAllSizes.
The class of counting problems AP-interriducible with #BIS. For
example, #P4-Coloring , #1P1NSAT , #Downset.
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Name. #BIS
Instance. A bipartite graph G .
Output. The number of independent sets in G .

Name. #P4-Coloring
Instance. A graph G .
Output. The number of homomorphisms from G to P4, where P4 is the
path of length 3.

Name. #Downset
Instance. A partially ordered set (X ,≤).
Output. The number of downsets in (X ,≤).

Name. #1P1NSAT
Instance. A Boolean formula φ in conjunctive normal form, with at most
one unnegated literal per clause, and at most one negated literal.
Output. The number of satisfying assignments to φ.
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#BIS, #P4-Coloring , #1P1NSAT and #Downset:
are AP-interriducible
belong to #RHΠ1

We say that a counting problem f is in the class #RHΠ1 if it can be
expressed in the form

f (A) = |{< T, z > : A |= ∀xψ(x, z,T)}|

where ψ is an quantifier-free CNF formula in which each clause has at
most one occurrence of an unnegated predicate symbol from T, and at
most one occurrence of a negated predicate symbol from T.

For example,

fDS = |{D : A |= (∀x)(∀y)
(
D(x) ∧ y ≤ x → D(y)

)
}|
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#1P1NSAT is complete for #RHΠ1 under parsimonious reductions.

#BIS, #P4-Coloring , #1P1NSAT and #Downset are complete for
#RHΠ1 under AP reductions.
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