Descriptive complexity for counting classes

Descriptive Complexity
ALMA Spring 2020

(1) The class \#P
(2) Descriptive Complexity for NP and \#P
(3) Logical hierarchy in \#P
(4) Descriptive complexity for $\# P$ in terms of Weighted Logics
(5) Robust counting classes with easy decision
(6) Classification of counting problems with respect to approximability

The class \#P

A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in $\# P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time Turing Machine M such that for every $x \in\{0,1\}^{*}$:

$$
f(x)=\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right|
$$

For a nondeterministic polynomial-time Turing Machine M, we define the function $\operatorname{acc}_{M}(x):\{0,1\}^{*} \rightarrow \mathbb{N}$ as follows:

$$
\operatorname{acc}_{M}(x)=\# \text { accepting paths of } M \text { on input } x
$$

Then \#P is the class:

$$
\# P=\left\{\operatorname{acc}_{M} \mid M \text { is a PNTM }\right\}
$$

Counting vs Decision

- Every decision problem in $N P$ has a counting version in \#P For example, HamiltonCycle $\in N P$ and \#HamiltonCycle $\in \# P$
- $F P \subseteq \# P \subseteq F P S P A C E$
- $N P \subseteq P^{\# P[1]}$
- If $F P=\# P$, then $P=N P$

Toda's Theorem

$$
P H \subseteq P^{\# P[1]}
$$

Reductions between functions

- Cook (poly-time Turing)

$$
f \leqslant_{T}^{p} g: f \in F P^{g}
$$

- Karp / parsimonious (poly-time many one)

$$
f \leqslant_{m}^{p} g: \exists h \in F P, \forall x f(x)=g(h(x))
$$

- \#SAT is \#P-complete under parsimonious reductions.
- \#PerfectMatching is \#P-complete under Turing reductions.
- A \#P-complete problem under parsimonious reductions
(1) has an $N P$-complete decision version, e.g. $S A T$ is $N P$-complete,
(2) cannot be aprroximated efficiently unless $R P=N P$.
- There are $\# P$-complete problem under Turing reductions that
(1) have a decision in P, e.g. PerfectMatcing is in P,
(2) admit an FPRAS, e.g. \#DNF.

Definition of an FPRAS

Definition

A fully polynomial randomised approximation scheme (FPRAS) for a function $f: \Sigma^{*} \rightarrow \mathbb{N}$ is a probabilistic TM that takes as input an instance x of $f, \varepsilon>0$ and $0<\delta<1$, and produces as output an integer random variable Y satisfying the condition

$$
\operatorname{Pr}((1-\varepsilon) f(x) \leq Y \leq(1+\varepsilon) f(x)) \geq 1-\delta .
$$

It also runs in time poly $(|x|, 1 / \varepsilon)$.

- For a self-reducible counting problem,
randomized approximation poly-time algorithm within a polynomial factor $\Rightarrow F P R A S$

\#PE and TotP

For a counting function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ we define the related language $L_{f}=\{x \mid f(x)>0\}$. Then,

$$
\# P E=\left\{f \mid f \in \# P \text { and } L_{f} \in P\right\}
$$

For a nondeterministic polynomial-time Turing Machine M, we define the function $\operatorname{tot}_{M}(x):\{0,1\}^{*} \rightarrow \mathbb{N}$ as follows:

$$
\operatorname{tot}_{M}(x)=\# \text { paths of } M \text { on input } x-1
$$

Then $T o t P$ is the class:

$$
\operatorname{Tot} P=\left\{\operatorname{tot}_{M} \mid M \text { is a PNTM }\right\}
$$

- TotP is the Karp-closure of all self-reducible \#PE functions.

For any $\# A \in \# P$, there exists:

- a randomized polynomial-time (in $|x|$ and $1 / \varepsilon$) algorithm, which using an $N P$-oracle, approximates $\# A$ within ratio $(1+\varepsilon)$.
- a deterministic polynomial-time (in $|x|$ and $1 / \varepsilon$) algorithm, which using an \sum_{2}^{p}-oracle, approximates $\# A$ within ratio $(1+\varepsilon)$.

Our interests today

- Descriptive Complexity for counting
- How can descriptive complexity contribute to the classification of counting problems with respect to their approximability?

Fagin's Theorem (reminder)

Theorem (Fagin)
\exists SO captures NP: A language L is NP computable iff it is definable by an existential second-order sentence, i.e. iff there is a sentence $\phi(\mathbf{T})$ with predicate symbols from $\mathbf{T} \cup \sigma$ such that

$$
\mathcal{A} \in L \Leftrightarrow \mathcal{A} \models \exists \mathbf{T} \phi(\mathbf{T})
$$

where \mathcal{A} is an ordered finite structure over the vocabulary σ.
Corollary (Cook)
SAT is NP-complete

- 3COL: A graph can be encoded by a finite structure $\mathcal{A}=\left\{\left(x_{1}, \ldots, x_{n}\right), E^{2}\right\}$ and $\psi_{3 C O L}=\left(\exists R^{1}\right)\left(\exists B^{1}\right)\left(\exists G^{1}\right)(\forall x)[(R(x) \vee B(x) \vee G(x)) \wedge$ $(\forall y)(E(x, y) \rightarrow \neg(R(x) \wedge R(y)) \wedge \neg(B(x) \wedge B(y)) \wedge \neg(G(x) \wedge G(y)))]$
- SAT: A boolean formula in conjunctive normal form can be encoded by a finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}, c_{1}, \ldots, c_{m}\right), C^{1}, P^{2}, N^{2}\right\}$ and $\psi_{S A T}=\left(\exists S^{1}\right)(\forall c)(\exists v)[C(c) \rightarrow(P(c, v) \wedge S(v)) \vee(N(c, v) \wedge \neg S(v))]$
- Let σ be a vocabulary containing a relation symbol \leq.
- Let f be a counting function with finite structures \mathcal{A} over σ, as instances.
- Let $\mathbf{T}=\left\{T_{1}, \ldots, T_{r}\right\}$ and $\mathbf{z}=\left\{z_{1}, \ldots, z_{m}\right\}$ be sequences of predicate symbols and first-order variables respectively.

A counting function belongs to \#FO iff there is a first-order formula with predicate symbols from $\mathbf{T} \cup \sigma$ and free first-order variables from \mathbf{z} such that

$$
f(\mathcal{A})=\mid\{<\mathbf{T}, \mathbf{z}\rangle: \mathcal{A} \models \phi(\mathbf{T}, \mathbf{z})\} \mid
$$

- Let σ be a vocabulary containing a relation symbol \leq.
- Let f be a counting function with finite structures \mathcal{A} over σ, as instances.
- Let $\mathbf{T}=\left\{T_{1}, \ldots, T_{r}\right\}$ and $\mathbf{z}=\left\{z_{1}, \ldots, z_{m}\right\}$ be sequences of predicate symbols and first-order variables respectively.

A counting function belongs to \#FO iff there is a first-order formula with predicate symbols from $\mathbf{T} \cup \sigma$ and free first-order variables from \mathbf{z} such that

$$
f(\mathcal{A})=\mid\{<\mathbf{T}, \mathbf{z}\rangle: \mathcal{A} \models \phi(\mathbf{T}, \mathbf{z})\} \mid
$$

- If the formula ϕ in the above definition is a $\Sigma_{i}\left(\Pi_{i}\right.$ resp.), $i \in \mathbb{N}$, then we obtain the subclasses $\# \Sigma_{i}\left(\# \Pi_{i}\right.$ resp. $), i \in \mathbb{N}$, of $\# F O$.

Saluja, Sabrahmanyama and Thakur (1995)

Theorem

The class \#P coincides with the class \#FO. In fact, $\# \Pi_{2}$ captures \#FO.

Proof. \#FO $\subseteq \# P$: The NP machine guesses a tuple $<\mathbf{T}, \mathbf{z}>$ and verifies in polynomial time that $\mathcal{A} \models \phi(\mathbf{T}, \mathbf{z})$.
$\# P \subseteq \# F O$: For an $f \in \# P$, the decision version $L_{f} \in N P$. By Fagin's Theorem, $\mathcal{A} \in L_{f}$ iff $\mathcal{A} \vDash \exists \mathbf{T} \phi(\mathbf{T})$. The formula ϕ is such that every accepting computation of the NP machine on input \mathcal{A} corresponds to a unique value of \mathbf{T} that satisfies $\phi \mathbf{(T)}$. So, the number of accepting paths is equal to $|\{<\mathbf{T}>: \mathcal{A} \vDash \phi(\mathbf{T})\}|$.
Furthermore, from the proof of Fagin's Theorem, ϕ is a Π_{2} first-order formula.

- \#DNF: A DNF formula can be encoded by a finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}, d_{1}, \ldots, d_{m}\right), D^{1}, P^{2}, N^{2}\right\}$ and $f_{\# D N F}(\mathcal{A})=|\{T: \mathcal{A} \models \exists d \forall v(D(d) \wedge(P(d, v) \rightarrow T(v)) \wedge(N(d, v) \rightarrow \neg T(v)))\}|$.
Hence \#DNF $\in \# \Sigma_{2}$.
- \#DNF: A DNF formula can be encoded by a finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}, d_{1}, \ldots, d_{m}\right), D^{1}, P^{2}, N^{2}\right\}$ and
$f_{\# D N F}(\mathcal{A})=|\{T: \mathcal{A} \models \exists d \forall v(D(d) \wedge(P(d, v) \rightarrow T(v)) \wedge(N(d, v) \rightarrow \neg T(v)))\}|$.
Hence $\# D N F \in \# \Sigma_{2}$.
- \#3CNF: A boolean formula in conjunctive normal form with three literals per clause can be encoded by a finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}\right), C_{0}^{3}, C_{1}^{3}, C_{2}^{3}, C_{3}^{3}\right\}$ and $f_{\# 3 C N F}(\mathcal{A})=\mid\left\{T: \mathcal{A} \mid=\left(\forall x_{1}\right)\left(\forall x_{2}\right)\left(\forall x_{3}\right)\left[\left(C_{0}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(T\left(x_{1}\right) \wedge T\left(x_{2}\right) \wedge\right.\right.\right.\right.$ $\left.\left.T\left(x_{3}\right)\right)\right) \wedge\left(C_{1}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge\left(C_{2}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\right.$ $\left.\left.\left.\left(\neg T\left(x_{1}\right) \wedge \neg T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge\left(C_{3}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge \neg T\left(x_{2}\right) \wedge \neg T\left(x_{3}\right)\right)\right)\right]\right\} \mid$. Hence \#3CNF $\in \# \Pi_{1}$.
- \#DNF: A DNF formula can be encoded by a finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}, d_{1}, \ldots, d_{m}\right), D^{1}, P^{2}, N^{2}\right\}$ and
$f_{\# D N F}(\mathcal{A})=|\{T: \mathcal{A} \models \exists d \forall v(D(d) \wedge(P(d, v) \rightarrow T(v)) \wedge(N(d, v) \rightarrow \neg T(v)))\}|$.
Hence $\# D N F \in \# \Sigma_{2}$.
- \#3CNF: A boolean formula in conjunctive normal form with three literals per clause can be encoded by a finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}\right), C_{0}^{3}, C_{1}^{3}, C_{2}^{3}, C_{3}^{3}\right\}$ and $f_{\# 3 C N F}(\mathcal{A})=\mid\left\{T: \mathcal{A} \mid=\left(\forall x_{1}\right)\left(\forall x_{2}\right)\left(\forall x_{3}\right)\left[\left(C_{0}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(T\left(x_{1}\right) \wedge T\left(x_{2}\right) \wedge\right.\right.\right.\right.$ $\left.\left.T\left(x_{3}\right)\right)\right) \wedge\left(C_{1}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge\left(C_{2}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\right.$ $\left.\left.\left.\left(\neg T\left(x_{1}\right) \wedge \neg T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge\left(C_{3}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge \neg T\left(x_{2}\right) \wedge \neg T\left(x_{3}\right)\right)\right)\right]\right\} \mid$. Hence \#3CNF $\in \# \Pi_{1}$.
- \#SAT: A boolean formula in conjunctive normal form can be encoded by a finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}, c_{1}, \ldots, c_{m}\right), C^{1}, P^{2}, N^{2}\right\}$ and
$f_{\# S A T}(\mathcal{A})=|\{T: \mathcal{A} \vDash(\forall c)(\exists v)[C(c) \rightarrow(P(c, v) \wedge T(v)) \vee(N(c, v) \wedge \neg T(v))]\}|$. Hence $\# S A T \in \# \Pi_{2}$.

Hierarchy in \#FO
Proposition 1:

$$
\# \Sigma_{0}=\# \Pi_{0}^{\# \Pi_{1}} \leqslant_{\# \Sigma_{1}}^{\Vdash_{2} \subseteq \# \Sigma_{2}=\# \mathrm{P} .}
$$

Proposition 2:

$$
\# \Sigma_{0}=\# \Pi_{0} \subset \# \Sigma_{1} \subset \# \Pi_{1} \subset \# \Sigma_{2} \subset \# \Pi_{2}=\# F O
$$

Proof. $\# \Sigma_{1} \subseteq \# \Pi_{1}$:
Let $f \in \# \Sigma_{1}$ with $\left.f(\mathcal{A})=\mid\{<\mathbf{T}, \mathbf{z}\rangle: \mathcal{A} \vDash \exists \mathbf{x} \psi(\mathbf{x}, \mathbf{z}, \mathbf{T})\right\} \mid$. Instead of counting the tuples $\langle\mathbf{T}, \mathbf{z}\rangle$, we count the tuples $<\mathbf{T},\left(\mathbf{z}, \mathbf{x}^{*}\right)>$ where \mathbf{x}^{*} is the lexicographically smallest \mathbf{x} such that $\mathcal{A} \models \psi(\mathbf{x}, \mathbf{z}, \mathbf{T})$. Let $\theta\left(\mathbf{x}, \mathbf{x}^{*}\right)$ be the quantifier-free formula which expresses that \mathbf{x}^{*} is lexicographically smaller than \mathbf{x} under \leq. Then,

$$
f(\mathcal{A})=\left|\left\{<\mathbf{T},\left(\mathbf{z}, \mathbf{x}^{*}\right)>: \mathcal{A} \models \psi\left(\mathbf{x}^{*}, \mathbf{z}, \mathbf{T}\right) \wedge(\forall \mathbf{x})\left(\psi(\mathbf{x}, \mathbf{z}, \mathbf{T}) \rightarrow \theta\left(\mathbf{x}, \mathbf{x}^{*}\right)\right)\right\}\right|
$$

The second part of the proof includes the following:

- \#3DNF $\in \# \Sigma_{1} \backslash \# \Sigma_{0}$
- $\# 3 C N F \in \# \Pi_{1} \backslash \# \Sigma_{1}$
- \#DNF $\in \# \Sigma_{2} \backslash \# \Pi_{1}$
- \#HamiltonCycle $\in \# \Pi_{2} \backslash \# \Sigma_{2}$

The above classes are not closed under parsimonious reductions. For example, $\# 3 C N F \in \# \Pi_{1}$, but $\#$ HamiltonCycle $\notin \# \Pi_{1}$.

- Every counting function in $\# \Sigma_{0}$ is computable in deterministic polynomial time.
- Every counting function in $\# \Sigma_{1}$ has an FPRAS.
(1) Every $\# \Sigma_{1}$ function is reducible to a restricted version of \#DNF under a reducibility which preserves approximability.
(2) \#DNF has an FPRAS.
- Poly-time product reduction

$$
f \leqslant_{p r} g: \exists h_{1}, h_{2} \in F P, \forall x f(x)=g\left(h_{1}(x)\right) \cdot h_{2}(|x|)
$$

Definition

For any $k \in \mathbb{N}, \# k \cdot \log D N F$ is the problem of counting the satisfying assignments for a DNF formula with at most $k \cdot \operatorname{logn}$ literals in each disjunct, where n is the number of variables in the formula.

Proposition

For every counting function $f \in \# \Sigma_{1}$ there is a positive constant k such that $f \leqslant p r \# k \cdot \log D N F$.

Proof. $f(\mathcal{A})=|\{<\mathbf{T}, \mathbf{z}\rangle: \mathcal{A} \models \exists \mathbf{y} \psi(\mathbf{y}, \mathbf{z}, \mathbf{T}\}|$, where ψ is in DNF, \mathbf{y} has arity p, \mathbf{z} has arity m and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

- For every $\mathbf{z}_{\mathbf{i}} \in A^{m}$, we write $\exists \mathbf{y} \psi\left(\mathbf{y}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$ as a disjunct $\bigvee_{j=1}^{|A|^{p}} \psi\left(\mathbf{y}_{\mathbf{j}}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$.

Proof. $f(\mathcal{A})=|\{<\mathbf{T}, \mathbf{z}\rangle: \mathcal{A} \models \exists \mathbf{y} \psi(\mathbf{y}, \mathbf{z}, \mathbf{T}\}|$, where ψ is in DNF, \mathbf{y} has arity p, \mathbf{z} has arity m and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

- For every $\mathbf{z}_{\mathbf{i}} \in A^{m}$, we write $\exists \mathbf{y} \psi\left(\mathbf{y}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$ as a disjunct $\bigvee_{j=1}^{|A|^{p}} \psi\left(\mathbf{y}_{\mathbf{j}}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$.
- We replace every subformula that is satisfied by \mathcal{A} by TRUE and every subformula that is not satisfied by \mathcal{A} by FALSE and we obtain $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$.

Proof. $f(\mathcal{A})=|\{<\mathbf{T}, \mathbf{z}\rangle: \mathcal{A} \models \exists \mathbf{y} \psi(\mathbf{y}, \mathbf{z}, \mathbf{T}\}|$, where ψ is in DNF, \mathbf{y} has arity p, \mathbf{z} has arity m and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

- For every $\mathbf{z}_{\mathbf{i}} \in A^{m}$, we write $\exists \mathbf{y} \psi\left(\mathbf{y}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$ as a disjunct $\bigvee_{j=1}^{|A|^{p}} \psi\left(\mathbf{y}_{\mathbf{j}}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$.
- We replace every subformula that is satisfied by \mathcal{A} by TRUE and every subformula that is not satisfied by \mathcal{A} by FALSE and we obtain $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$.
- The formula $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$ is a propositional formula in DNF with variables of the form $T_{i}\left(w_{i}\right), w_{i} \in A^{a_{i}}, 1 \leq i \leq r$.

Proof. $f(\mathcal{A})=\mid\{<\mathbf{T}, \mathbf{z}>: \mathcal{A} \models \exists \mathbf{y} \psi(\mathbf{y}, \mathbf{z}, \mathbf{T}\} \mid$, where ψ is in DNF, \mathbf{y} has arity p, \mathbf{z} has arity m and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

- For every $\mathbf{z}_{\mathbf{i}} \in A^{m}$, we write $\exists \mathbf{y} \psi\left(\mathbf{y}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$ as a disjunct $\bigvee_{j=1}^{|A|^{p}} \psi\left(\mathbf{y}_{\mathbf{j}}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$.
- We replace every subformula that is satisfied by \mathcal{A} by TRUE and every subformula that is not satisfied by \mathcal{A} by FALSE and we obtain $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$.
- The formula $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$ is a propositional formula in DNF with variables of the form $T_{i}\left(w_{i}\right), w_{i} \in A^{a_{i}}, 1 \leq i \leq r$.
- We introduce I new variables x_{1}, \ldots, x_{l}, where $I=\log \left(|A|^{m}\right)$. The binary representation s of an integer between 0 and $2^{\prime}-1$ can be encoded by the conjunction $x(s)$ of these variables in which x_{i} appears negated iff the $i^{\text {th }}$ bit of s is 0 .

Proof. $f(\mathcal{A})=\mid\{<\mathbf{T}, \mathbf{z}>: \mathcal{A} \models \exists \mathbf{y} \psi(\mathbf{y}, \mathbf{z}, \mathbf{T}\} \mid$, where ψ is in DNF, \mathbf{y} has arity p, \mathbf{z} has arity m and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

- For every $\mathbf{z}_{\mathbf{i}} \in A^{m}$, we write $\exists \mathbf{y} \psi\left(\mathbf{y}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$ as a disjunct $\bigvee_{j=1}^{|A|^{p}} \psi\left(\mathbf{y}_{\mathbf{j}}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$.
- We replace every subformula that is satisfied by \mathcal{A} by TRUE and every subformula that is not satisfied by \mathcal{A} by FALSE and we obtain $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$.
- The formula $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$ is a propositional formula in DNF with variables of the form $T_{i}\left(w_{i}\right), w_{i} \in A^{a_{i}}, 1 \leq i \leq r$.
- We introduce I new variables x_{1}, \ldots, x_{l}, where $I=\log \left(|A|^{m}\right)$. The binary representation s of an integer between 0 and $2^{\prime}-1$ can be encoded by the conjunction $x(s)$ of these variables in which x_{i} appears negated iff the $i^{\text {th }}$ bit of s is 0 .
- We define
$\theta_{\mathcal{A}}=\left[\psi^{\prime}\left(\mathbf{z}_{\mathbf{0}}, \mathbf{T}\right) \wedge x(0)\right] \vee\left[\psi^{\prime}\left(\mathbf{z}_{\mathbf{1}}, \mathbf{T}\right) \wedge x(1)\right] \vee \ldots \vee\left[\psi^{\prime}\left(\mathbf{z}_{|\mathbf{A}|^{\mathbf{m}}-\mathbf{1}}, \mathbf{T}\right) \wedge x\left(|A|^{m}-1\right)\right]$.

Proof. $f(\mathcal{A})=\mid\{<\mathbf{T}, \mathbf{z}>: \mathcal{A} \models \exists \mathbf{y} \psi(\mathbf{y}, \mathbf{z}, \mathbf{T}\} \mid$, where ψ is in DNF, \mathbf{y} has arity p, \mathbf{z} has arity m and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

- For every $\mathbf{z}_{\mathbf{i}} \in A^{m}$, we write $\exists \mathbf{y} \psi\left(\mathbf{y}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$ as a disjunct $\bigvee_{j=1}^{|A|^{p}} \psi\left(\mathbf{y}_{\mathbf{j}}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$.
- We replace every subformula that is satisfied by \mathcal{A} by TRUE and every subformula that is not satisfied by \mathcal{A} by FALSE and we obtain $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$.
- The formula $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$ is a propositional formula in DNF with variables of the form $T_{i}\left(w_{i}\right), w_{i} \in A^{a_{i}}, 1 \leq i \leq r$.
- We introduce I new variables x_{1}, \ldots, x_{l}, where $I=\log \left(|A|^{m}\right)$. The binary representation s of an integer between 0 and $2^{\prime}-1$ can be encoded by the conjunction $x(s)$ of these variables in which x_{i} appears negated iff the $i^{\text {th }}$ bit of s is 0 .
- We define
$\theta_{\mathcal{A}}=\left[\psi^{\prime}\left(\mathbf{z}_{\mathbf{0}}, \mathbf{T}\right) \wedge x(0)\right] \vee\left[\psi^{\prime}\left(\mathbf{z}_{\mathbf{1}}, \mathbf{T}\right) \wedge x(1)\right] \vee \ldots \vee\left[\psi^{\prime}\left(\mathbf{z}_{|\mathbf{A}|^{\mathbf{m}}-\mathbf{1}}, \mathbf{T}\right) \wedge x\left(|A|^{m}-1\right)\right]$.
- Finally, $\theta_{\mathcal{A}}$ can be easily rewritten as a DNF formula with variables of the form $T_{i}\left(w_{i}\right)$ and x_{1}, \ldots, x_{1}. Also, each disjunct will contain $\mathcal{O}(\log n)$ literals.

Proof. $f(\mathcal{A})=\mid\{<\mathbf{T}, \mathbf{z}>: \mathcal{A} \models \exists \mathbf{y} \psi(\mathbf{y}, \mathbf{z}, \mathbf{T}\} \mid$, where ψ is in DNF, \mathbf{y} has arity p, \mathbf{z} has arity m and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

- For every $\mathbf{z}_{\mathbf{i}} \in A^{m}$, we write $\exists \mathbf{y} \psi\left(\mathbf{y}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$ as a disjunct $\bigvee_{j=1}^{|A|^{p}} \psi\left(\mathbf{y}_{\mathbf{j}}, \mathbf{z}_{\mathbf{i}}, \mathbf{T}\right\}$.
- We replace every subformula that is satisfied by \mathcal{A} by TRUE and every subformula that is not satisfied by \mathcal{A} by FALSE and we obtain $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$.
- The formula $\psi^{\prime}\left(\mathbf{z}_{\mathbf{i}}, \mathbf{T}\right)$ is a propositional formula in DNF with variables of the form $T_{i}\left(w_{i}\right), w_{i} \in A^{a_{i}}, 1 \leq i \leq r$.
- We introduce I new variables x_{1}, \ldots, x_{l}, where $I=\log \left(|A|^{m}\right)$. The binary representation s of an integer between 0 and $2^{\prime}-1$ can be encoded by the conjunction $x(s)$ of these variables in which x_{i} appears negated iff the $i^{\text {th }}$ bit of s is 0 .
- We define
$\theta_{\mathcal{A}}=\left[\psi^{\prime}\left(\mathbf{z}_{\mathbf{0}}, \mathbf{T}\right) \wedge x(0)\right] \vee\left[\psi^{\prime}\left(\mathbf{z}_{\mathbf{1}}, \mathbf{T}\right) \wedge x(1)\right] \vee \ldots \vee\left[\psi^{\prime}\left(\mathbf{z}_{|\mathbf{A}|^{\mathbf{m}}-\mathbf{1}}, \mathbf{T}\right) \wedge x\left(|A|^{m}-1\right)\right]$.
- Finally, $\theta_{\mathcal{A}}$ can be easily rewritten as a DNF formula with variables of the form $T_{i}\left(w_{i}\right)$ and x_{1}, \ldots, x_{1}. Also, each disjunct will contain $\mathcal{O}(\operatorname{logn})$ literals.
- Let $c(\mathcal{A})$ be the variables of the form $T_{i}\left(w_{i}\right)$ that do not appear in $\theta_{\mathcal{A}}$. It holds that:

$$
f(\mathcal{A})=2^{c(\mathcal{A})} \cdot\left(\text { the number of satisfying assignments of } \theta_{\mathcal{A}}\right)
$$

- Assuming $N P \neq R P$, the following is undecidable: Given a first-order formula $\phi(\mathbf{z}, \mathbf{T})$ over $\sigma \cup \mathbf{T}$, does the counting function defined by $\phi(\mathbf{z}, \mathbf{T})$ have a polynomial-time (ϵ, δ) randomized approximation algorithm for some constants $\epsilon, \delta>0$?
- Assuming $P \neq P^{\# P}$, the following is undecidable: Given a first-order formula $\phi(\mathbf{z}, \mathbf{T})$ over $\sigma \cup \mathbf{T}$, is the counting function defined by $\phi(\mathbf{z}, \mathbf{T})$ polynomial-time computable?

A counting function f belongs to $\# R \Sigma_{2}$ iff there is a first-order formula ψ with predicate symbols from $\mathbf{T} \cup \sigma$ and free first-order variables from \mathbf{z} such that

$$
f(\mathcal{A})=|\{\langle\mathbf{T}, \mathbf{z}\rangle: \mathcal{A} \models \exists \mathbf{x} \forall \mathbf{y} \phi(\mathbf{x}, \mathbf{y}, \mathbf{T}, \mathbf{z})\}|
$$

where ψ is quantifier-free and when it is expressed in CNF, each conjunct has at most one occurrence of a predicate symbol from \mathbf{T}.

Proposition

Every function in $\# R \Sigma_{2}$ has an FPRAS.
Proof. \#DNF is complete for $\# R \Sigma_{2}$ under product reductions. The proof is similar to the previous one.

- The decision version of every function in $\# \Sigma_{0}, \# \Sigma_{1}$ and $\# R \Sigma_{2}$ is in P.
- \#Triangle $\in \# \Sigma_{0}$
- \#NonClique, $\#$ NonVertexCover $\in \# \Sigma_{1}$,
- \#NonDominatingSet, \#NonEdgeDominatingSet $\in \# R \Sigma_{2}$.

Given a relational vocabulary σ, the set of Quantitative Second-Order logic formulae (or just QSO-formulae) over σ is given by the following grammar:
$\alpha:=\phi|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x . \alpha|\Pi x . \alpha| \Sigma X . \alpha \mid \Pi X . \alpha$
where ϕ is an SO-formula, $s \in \mathbb{N}, x$ is a first-order variable and X is a second-order variable (or a predicate that does not belong to σ).

- $Q S O(\mathcal{L})$ is the fragment of $Q S O$ obtained by restricting ϕ to be in \mathcal{L}.
- QFO is the fragment of QSO where second-order sum and product are not allowed.
- $\Sigma Q S O$ is the fragment of QSO where first- and second-order products (Πx. and ΠX.) are not allowed.

Semantics: Let \mathfrak{A} be a structure, v a first-order assignment for \mathfrak{A} and V a second-order assignment for \mathfrak{A}. Then the evaluation of a $Q S O$-formula α over (\mathfrak{A}, v, V) is defined as a function $\|\alpha\|$ that on input (\mathfrak{A}, v, V) returns a number in \mathbb{N}.

$$
\begin{aligned}
\llbracket \varphi \rrbracket(\mathfrak{A}, v, V) & = \begin{cases}1 & \text { if }(\mathfrak{A}, v, V) \models \varphi \\
0 & \text { otherwise }\end{cases} \\
\llbracket s \rrbracket(\mathfrak{A}, v, V) & =s \\
\llbracket \alpha_{1}+\alpha_{2} \rrbracket(\mathfrak{A}, v, V) & =\llbracket \alpha_{1} \rrbracket(\mathfrak{A}, v, V)+\llbracket \alpha_{2} \rrbracket(\mathfrak{A}, v, V) \\
\llbracket \alpha_{1} \cdot \alpha_{2} \rrbracket(\mathfrak{A}, v, V) & =\llbracket \alpha_{1} \rrbracket(\mathfrak{A}, v, V) \cdot \llbracket \alpha_{2} \rrbracket(\mathfrak{A}, v, V) \\
\llbracket \Sigma x . \alpha \rrbracket(\mathfrak{A}, v, V) & =\sum_{a \in A} \llbracket \alpha \rrbracket(\mathfrak{A}, v[a / x], V) \\
\llbracket \Pi x . \alpha \rrbracket(\mathfrak{A}, v, V)= & \prod_{a \in A} \llbracket \alpha \rrbracket(\mathfrak{A}, v[a / x], V) \\
\llbracket \Sigma X . \alpha \rrbracket(\mathfrak{A}, v, V)= & \sum_{B \subseteq A^{\operatorname{arrity}(X)}} \llbracket \alpha \rrbracket(\mathfrak{A}, v, V[B / X]) \\
\llbracket \Pi X . \alpha \rrbracket(\mathfrak{A}, v, V)= & \prod_{B \subseteq A^{\text {arity }(X)}} \llbracket \alpha \rrbracket(\mathfrak{A}, v, V[B / X]) \\
& \text { Table I }
\end{aligned}
$$

The semantics of QSO formulae.

- Counting triangles in a graph:
$\alpha_{1}=\Sigma x . \Sigma y . \Sigma z .(E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z)$
- Counting cliques in a graph: $\alpha_{2}=\Sigma X . \forall x \forall y(X(x) \wedge X(y) \wedge x \neq y) \rightarrow E(x, y)$
- Computing the permanent of a $(0,1) n \times n$ matrix A, $\operatorname{perm}(A)=\Sigma_{\sigma \in S_{n}} \Pi_{i=1}^{n} A[i, \sigma(i)]$ $\alpha_{3}=\Sigma S \cdot \operatorname{permut}(S) \cdot \Pi x \cdot(\exists y(S(x, y) \wedge M(x, y)))$
where permut (S) is a first-order sentence that is true iff S is a permutation (a total bijective function).

Arenas, Muñoz and Riveros (2017)

Let F be a fragment of $Q S O$ and C a counting complexity class. Then F captures C over ordered structures if the following conditions hold:
(1) for every $\alpha \in F$, there exists $f \in C$ such that $\|\alpha\|(\mathfrak{A})=f(\mathfrak{A})$ for every ordered structure \mathfrak{A}.
(2) for every $f \in \mathcal{C}$, there exists $\alpha \in F$ such that $f(\mathfrak{A})=\|\alpha\|(\mathfrak{A})$ for every ordered structure \mathfrak{A}.

[^0]
Hierarchy in $\Sigma Q S O(F O)$

Proposition:

Robust counting classes with easy decision

- The goal is to give logical characterizations of robust subclasses of \#PE.
- A class is defined to be robust if it is closed under sum, multiplication and subtraction by one and it has natural complete problems.
- \#PE is not robust, since it contains $\# S A T_{+1}$, but not $\# S A T$, unless $P=N P$.
- Tot P is robust.

Characterization of robust subclasses of \#PE

- $\Sigma Q S O\left(\Sigma_{1}[F O]\right):$ A subclass of TotP closed under sum, multiplication and subtraction by one
- $\Sigma Q S O\left(\Sigma_{2^{-}} H O R N\right)$: A subclass of TotP with a natural complete problem

Reductions that preserve approximability

- Parsimonious and product reductions preserve approximability: If $\# A \leq \# B$ and $\# B$ has an FPRAS, then $\# A$ has also an FPRAS.
- Approximation preserving reduction:
$f \leq_{A P} g$ iff there is a probabilistic oracle TM M that takes as input an instance x of f and $0<\varepsilon<1$ and satisfies the following:
(1) every oracle call made by M is of the form (w, δ), where w is an instance of g , and $0<\delta<1$ is an error bound satisfying $\delta^{-1} \leq \operatorname{poly}\left(|x|, \epsilon^{-1}\right)$,
(2) the TM M meets the specification for being a randomised approximation scheme for f whenever the oracle meets the specification for being a randomised approximation scheme for g, and
(3) the run-time of M is polynomial in $|x|$ and ε^{-1}.
- If $f \leq_{A P} g$ and $g \leq_{A P} f$ then we say that f and g are AP-interreducible, and write $f \equiv_{A P} g$.

Dyer, Goldberg, Greenhill and Jerrum (2004)

We define three counting classes to categorize counting problems with respect to their approximability:

- The class of counting problems with an FPRAS. For example, \#MatchingOfAllSizes, \#DNF.
- The class of counting problems AP-interriducible with \#SAT. This class contains all counting problems with NP-complete decision version and others, such as \#IndependentSetOfAllSizes.
- The class of counting problems AP-interriducible with \#BIS. For example, \#P4-Coloring, \#1P1NSAT, \#Downset.

Name. \#BIS
Instance. A bipartite graph G.
Output. The number of independent sets in G.
Name. \#P4-Coloring
Instance. A graph G.
Output. The number of homomorphisms from G to P_{4}, where P_{4} is the path of length 3.

Name. \#Downset
Instance. A partially ordered set (X, \leq).
Output. The number of downsets in (X, \leq).
Name. \#1P1NSAT
Instance. A Boolean formula ϕ in conjunctive normal form, with at most one unnegated literal per clause, and at most one negated literal.
Output. The number of satisfying assignments to ϕ.
\#BIS, \#P4-Coloring, \#1P1NSAT and \#Downset:

- are AP-interriducible
- belong to $\# R H \Pi_{1}$

We say that a counting problem f is in the class $\# R H \Pi_{1}$ if it can be expressed in the form

$$
f(\mathcal{A})=|\{<\mathbf{T}, \mathbf{z}>: \mathcal{A} \models \forall \mathbf{x} \psi(\mathbf{x}, \mathbf{z}, \mathbf{T})\}|
$$

where ψ is an quantifier-free CNF formula in which each clause has at most one occurrence of an unnegated predicate symbol from \mathbf{T}, and at most one occurrence of a negated predicate symbol from \mathbf{T}.

- For example,

$$
f_{D S}=|\{D: \mathcal{A} \models(\forall x)(\forall y)(D(x) \wedge y \leq x \rightarrow D(y))\}|
$$

- $\# 1 P 1 N S A T$ is complete for $\# R H \Pi_{1}$ under parsimonious reductions.
- \#BIS, \#P4-Coloring, \#1P1NSAT and \#Downset are complete for $\# R H \Pi_{1}$ under AP reductions.

References

- Sanjeev Saluja, K. V. Subrahmanyam, Madhukar N. Thakur: Descriptive Complexity of \#P Functions. Computational Complexity Conference 1992: 169-184.
- Marcelo Arenas, Martin Muñoz, Cristian Riveros: Descriptive Complexity for counting complexity classes. LICS 2017: 1-12.
- Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, Mark Jerrum: The Relative Complexity of Approximate Counting Problems. Algorithmica 38(3): 471-500 (2004).

[^0]: Theorem
 $\Sigma Q S O(F O)$ captures \#P over ordered structures

