Fast Matrix Multiplication
Algorithms




Why should we caree¢

Complexity of matrix multiplication = Complexity of “almost all’ matrix problems

» Solving linear systems
» Fvaluafing determinants

» | U factorization

» Many more

P. Burgisser, M. Clausen, M. A.
Shokrollahi

Algebraic complexity theory.
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Bilinear Algorithms

P = ABi'=Zw--P
Given two matrices 4, B (X0 wipAli, 1) (X vijuBli 1), 7 2 ; et

linear combinations.




The minimum number of products r that a bilinear algorithm can use to
compute the product of two n x n matrices is called the rank of n x n matrix
multiplication R({n, n,n))

The product of two kn X kn matrices can be viewed as the product of two k X
k matrices the entries of which are n x n matrices

We can create a recursive algorithm ALG for multiplication of k x k.
View the k! x k! as k x k matrices with entries k=1 x k=1 matrices

The recursive approach using an upper bound of r on R({k, k, k)) gives @
bound w < log, r, (the number of additions that one has to do in each step is
no more than 3rk?

As long as r < k3 we get a non frivial bound for w
Strassen: k =2,r=7
Pan: k = 70,r = 143640
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Approximate Bilinear Algorithms (ABA)

= |n bilinear algorithms the coefficients u;;;, v;j;, w;j; were constants.

» |n ABA these coefficients are linear combinations of the intfeger powers of a
indeterminate A.

» The entries of AB are then only approximately computed:
ABli,j] = Xy wi; P + 0(4)

0(A): linear combinafion of positive powers of A.
» When 1 - 0, then the product is almost exactly.

» The minimum number of products r for an ABA to compute the product of
two n X n mafrices, is called border rank of a matrix multiplication R({n, n, n))



Bini showed that when dealing with the asymptotic complexity of matrix
multiplication, approximate algorithms suffice obtaining bounds for w

If R((n,n,n)) <r, then w <log,r

Bini used 10 entry products to multiply a 2 x 3 matrix with a 3 x 3 matrix k= 12,
r = 1000

Shonhage 1-theorem: Suppose we have an upper bound of r on the border
rank of computing p independent instances of matrix multiplication with
dimensions k; X m; by m; x m; fori =1, ...,p. Then w < 37, where ),;,(kkm;n;)*=r

In particular he showed that one can approximately compute the product of a
3x1by1x3vectorand the product of a1 x 4 by 4 X 1 vector together using
only 10 products, whereas any exact bilinear algorithm needs at least 13
products.
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Basic group theory definitions

Group

A group is a non empty set G with a binary operation - defined on ¢ such that the
following conditions hold:

1. Foralla,b,ce G,we havea-(b-c)=(a-b)-c
2. There exists an element 1e G suchthatl-a=aanda-1=aforadlla eaG

3. Forall a € G there exists an elementa ! e Gsuchthata-al=1anda™l-a=1

Order of a group

The order |G| of a group is its cardinality, i.e. the number of elements in its sef.




Cyclic Group

A group is said to be cyclic if it is generated by a single element.

(We say that X generates G if ¢ = (X) if every element of ¢ can be written as a finite
product of elements from X and their inverses. Note that the order of an element a
of a group is the order of the subgroup (a) it generates)

Abelian Group

The group G is said to be abelianifa-b =b-afaralla,b € G.




Group Algebra

The group algebra F[G] of G is defined to be the F-vector space with basis the
elements of G endowed with the multiplication extending that on G. Thus:

1. An element of F[G] is a sum Y e c59, Cg€EF

2. Two elements ¥ e ¢59, X ge6 €gg Of FIG] are equal if and only if ¢, = ¢4 for all g

3 (Zgec 99 )(Zgeccgd) = Lgec g9 » ¢ =X 9192 = 9c4¢g

Homomorphism

A homomorphism for a group G to a group G’ is a map a: G - G’ such that a(ab) =
a(a)a(b) for all a,b € G. An isomorphism is a bijective homomorphism.



Multiplying polynomials via FFT

» Standard method requires fime complexity of 0(n?)

» We think of the coefficient vectors of the polynomials as elements of the
group algebra C[G] of a finite group G

» |f the group is large (order at least 2n), convolution of two vectors in the
group algebra corresponds to the polynomial product.




Multiplying polynomials via FFT

» Standard method requires fime complexity of 0(n?)

» We think of the coefficient vectors of the polynomials as elements of the
group algebra C[G] of a finite group G

» |f the group is large (order at least 2n), convolution of two vectors in the
group algebra corresponds to the polynomial product.

Discrete convolution

Suppose we have two complex vectors in EV:
Z=(202; - zZy_1)" Y=oy -~ yn-1)"

The discrete convolution of these two vectors is another vector, which we
denote Z Y, defined componentwise by (Z * Y),= X120 zx—;yj, k = 0,1,2, ...



Multiplying polynomials via FFT

» Standard method requires fime complexity of 0(n?)

» We think of the coefficient vectors of the polynomials as elements of the
group algebra C[G] of a finite group G

» |f the group is large (order at least 2n), convolution of two vectors in the
group algebra corresponds to the polynomial product.

» Convolution in the group algebra can be computed quickly using the FFT.

» Time complexity of FFT and inverse FFT: O(nlogn)




Discrete Fourier Transform for
polynomials

Discrete Fourier Transform

Embed polynomials as elements of the group algebra C[G]:

Let G = (z) be a cyclic group of order m = 2n. Define
A=Y"1a;zt B=Y"4bz
Discrete Fourier Transform is an invertible linear transformation

D: C[G] — C!¢!, such that
_ .. .. L. 27Tl
D(A) = g atxl, Y g alxl, ., X alxl_1,), x, =en

Then AB = D~Y(D(A)D(B))



Embedding matrices A, B into elements 4, B
of the group algebra C[G]

Cohn & Umans

Matrix multiplication can be embedded into the group algebra of a finite
group G (G must be non-abelian)

Let F be afield and S, T and U be subsets of G.

A= (as,t)sES,teT and B = (bt,u)tET,uEU
are |S| x |T| and |T| x |U|, indexed by elements of S, T and T, U respectively.

Then embed 4, B as elements 4,B € F[G]:

= —1 = _ —1
A= ZSES,tET as¢s”tand B = ZtET,uEU beyt™ u




Using the FFT

As with the polynomial method, the Fourier transform provides an efficient way
to compute the convolution product.

For a non-abelian group a fundamental theorem of Weddeburn says that the
group algebra is isomorphic, via a Fourier transform, to an algebra of block
diagonal matrices having block dimensions d; ...dy, with ¥ d? = |G|.

Convolution in C[G] is thus transformed into block diagonal matrix
multiplication.






Triple Product Property

The approach works only if the group G admits an embedding of matrix
multiplication into its group algebra.

The coefficients of the convolution product correspond to the entries of the
product matrix.

Such an embedding is possible whenever the group G has three subgroups,
H,, H,, H; with the property that whenever h,e Hy, h,e H, and h;e H; with
h1h2h3 - 1, Theﬂ hl = hz = h3 = 1

(The condition can be generalized to subsets of G rather than subbgroups)



Beating the sum of cubes

In order for w to be less than 3, the group must satisfy more conditions.

In particular, it must be the case that:
|Hy||H||H3| > ¥ d?,

d;: the block dimensions of the block matrices




Group Theory Definitions

Permutation Groups
Let S be a set and let Sym(S) be the set of bijections a:S — S

Sym(S) is a group, called the group of symmetries of S. For example, the
permutation group on n letters S, is defined to be the group of symmetries of the
set{1, ..., n}— it has order n!.

Groups Acting on Sets

Let X be a set and let G be a group. A left action of ¢ on X is a mapping (g,x) —
gx:G X X - X such that

a) 1x= x,forallx € X

b) (9192)x = g1(g2x). all g1,9, € G,x € X

A set together with a (left) action of G is called a (left) G-set. An action is trivial if gx =
xforallg € G




Direct product

When G and H are groups, we can construct a new group ¢ X H, called the
(direct) product of G and H. As a set, it is the Cartesian product of ¢ and H, and
multiplication is defined by: (g, h)(g',h") = (gg’, hh")

Normal subgroups

A subgroup N of G is normal, denoted N < G, if gNg~t = N forallg € G

Semidirect product

A group G is a semidirect product of its subgroups N and @ if N is normal and the
homomorphism G — ¢/, induces an isomorphism Q — ¢/y.

We write G = N x Q.




Wreath Product

The wreath product of two groups A and B is constructed in the following way.

Let AB be the set of all functions defined on B with values in A.

With respect to the componentwise mulfiplication, this set is a group which is the
complete direct product of |B| copies of A.

The semidirect product W of B and A% is called the Cartesian wreath product of
A and B, and is denoted by A Wr B.

If instead of A% one takes the smaller group A® consisting of all functions with
finite support, that is, functions taking only non-identity values on a finite set of
points, then one obtains a subgroup of W called the wreath product of A and B
and is denoted by A wr B.



Beating the sum of cubes, finally...

The elusive group G that managed to “beat the sum of cubes” turned out to
be a wreath product of:

» Abelian group of order 173

» Symmetric group of order 2







The elusive group G that managed to “beat
the sum of cubes” turned out to be a wreath
product of;

» Abelian group of order 173

» Symmetric group of order 2

Elementary fact of group representation theory

index of the largest abelian subgroup of a
oup is an upper bound on the size of the
aximum block of the block diagonal matrix
epresentation given by Wedderburn's
eorem.

Beating the sum of cubes,

For a non-abelian group a
fundamental theorem of
Weddeburn says that the
group algebra is isomorphic,
via a Fourier fransform, to an
algebra of block diagonal
maftrices having block
dimensions d; ...d;, with

Ydi =1aGl.




Improving the bounds for w

» Szegedy readlized that some of the combinatory structures of the 1987
Coppersmith - Winograd paper could be used to select the three subsets in
the wreath product groups in amore sophisticated way.

» The researchers managed to achieve exponential bound: w < 2.48

» The researchers distilled their insights into two conjectures, one that has an
algebraic flavor and one that has a combinatorial.




A 6x6 strong USP, along with 2 of its 18
pleces
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