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NP problems
TRIPARTITE MATCHING: Let B,G,H sets with
|B| = |G| = |H | = n ∈ N and T ⊆ B × G × H . Is there a set
of n triples in T such that no two triples have a common
component?

SET COVERING: Let F = {S1, ...,Sn} with Si ⊆ U , where U
is a finite set and positive integer B . ∃B sets in F with U as
their union?

SET PACKING: Let F = {S1, ...,Sn} with Si ⊆ U , where U
is a finite set and positive integer K . ∃K pairwise disjoint sets
in F with U as their union?

EXACT COVER BY 3-SETS: Let F = {S1, ...,Sn} with
Si ⊆ U , where |U | = 3m for some positive integer m and
|Si | = 3 ∀i ∈ {1, ...n}. ∃m disjoint sets in F with U as their
union?
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NP problems

KNAPSACK: Let i ∈ {1, ...,n} items with value vi and weight
wi , W and K positive integers. ∃ S ⊆ {1, ...n} such that∑

i∈S wi ≤ W and
∑

i∈S vi ≥ K ?

Bin PACKING: Let a1, ..., aN ,C ,B ∈ N. Can {a1, ..., aN} be
partitioned in B subsets such that each subset has total sum
of at most C?
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SC, SP, EC3S
Before we begin proving the NP-completeness of the previous
problems, we note that:

TRIPARTITE MATCHING is a special case of EXACT
COVER BY 3-SETS, where m = n, U is partitioned in three
sets B,G,H : |B| = |G| = |H | = n such that each Si
contains one element from each set.

EXACT COVER BY 3-SETS is a special case of SET
COVERING, where |U | = 3m, |B| = m and
|Si | = 3,∀i ∈ {1, ...,n}

EXACT COVER BY 3-SETS is a special case of SET
PACKING, where |U | = 3m, |K | = m and
|Si | = 3,∀i ∈ {1, ...,n}

Thus, proving NP-completeness for TRIPARTITE MATCHING
gives us the NP-completeness of the other three problems with the
obvious reductions.
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TRIPARTITE MATCHING
3SAT ≤P TRIPARTITEMATCHING
Let B be the set of boys, G of girls and H of homes. For each
instance ϕ of 3SAT, we want a matching of each boy with a
different girl and home to exist if and only if ϕ is satisfiable.
For the proof of the above statement we’ll need two gadgets:

Choice-consistency gadget:
•∀ variables x in clause ϕ we create k boys, k girls and 2k
homes, where k is the maximum over the appearences of x
and of ¬x. The boys and girls are unique for each x.
•The boys and girls form a circle 2k-long, with edges {gk , b1},
{bi , gi} and {gi , bi+1} ∀i ∈ {1, ..., k − 1}.
•The homes are connected with the above circle with edges
{bi , hi+1},{hi+1, gi}, ∀i ∈ {1, ..., k − 1} and {gk , h1},{h1, b1}.
•Homes h2i−1 correspond to occurences of x and homes h2k
to occurences of ¬x, i ∈ {1, ..., k}. When the number of
occurences of x is different than that of ¬x, some homes will
correspond to nothing.
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Choice-Consistency gadget, k = 4
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TRIPARTITE MATCHING continued
•If a matching exists, then bi is matched either to gi and h2i or to
gi−1 (or gk if i = 1) and h2i−1 ∀i ∈ {1, ..., k}.
•∀ variables x ∈ ϕ, T(x) = True corresponds to the matching
(bi , gi , h2i), i ∈ {1, ..., k}.
•∀ variables x ∈ ϕ, T(x) = False corresponds to the matching
(bi , gi−1, h2i−1), i ∈ {2, ..., k}, and (b1, gk , h1), i = 1.

Constraint gadget: For each close c in ϕ, we have a boy b and
a girl g (different from these of the choice-consistency
gadget). Thus we get three triples (b, g, h) with h ranging
over the homes that correspond to the three variables of
clause c.
Claim: If any of the corresponding homes is unoccupied (from
the boys and girls of the Choice-consistency gadget), it
corresponds to a true literal. If no home (of the three) is
unoccupied, then all three literals in c are false and b,g cannot
be matched to a house.
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Examples of the clause constraint

We will use two examples to check the previous claim’s correctness:
Let ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ x2 ∨ ¬x3) and
T(x2) = T(x3) = T(x4) = False. We examine the 1st clause of ϕ
•Example1. Let T(x1) = True. The corresponding homes for this
clause are h11, h21, h31, since its the first appearence for all the
literals in the clause. From the choice concictency gadgets of x1,
x2 and x3, h11 is unoccupied (and the other two occupied). So, the
satisfied clause corresponds to (b, g, h11).
•Example2. Let T(x1) = False. Again, the corresponding homes
for this clause are h11, h21, h31. From the choice concictency
gadgets of x1, x2 and x3, all the corresponding houses are
occupied. Thus, there is no mathcing for the boy and girl that
correspond to the unsatisfied clause.
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TRIPARTITE MATCHING continued

To finish the reduction, we need to fix one more thing. Observe
that if ϕhas m clauses, there are 3m occurences of the literals, so
we have |H | ≥ 3m.
We now look at the gadgets. In the Choice-consistency gadget, the
number of boys (or girls) is |H |/2 and in the Constraint part, we
have m more boys (or girls), with m ≤ |H |/3.
Thus we have |B| = |G| ≤ |H |/2 + |H |/3 < |H |.

Let l = |H | − |B|. We add l more boys and girls with the
triples (bj , gj , h), j ∈ {1, ..., l}, ∀h ∈ H . These boys and girls
will occupy any house that’s left unoccupied.

The polynomiality of the reduction and it’s correctness are now
easily checked.
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KNAPSACK

We will restrict the problem for instances were
vi = wi ∀i ∈ {1, ...,n} and K = W .
EXACT COVER BY 3− SETS ≤P KNAPSACK

Let {S1, ...,Sn} an instance of EXACT COVER BY 3-SETS.
Then, we have |Si | = 3 ∀i ∈ {1, ...n} and we are asked if
there exist m disjoint Si that cover U = {1, ..., 3m}.
We think the given sets as vectors in {0, 1}3m. We have 3m
bits and the numbers in the set corresbond to the positions of
the three 1’s.
We would like to see them as binary integers and their union
as the binary integer addition, so our target would have been
the all-one vector. Then, for K = 2n − 1, the reduction would
have been complete.
But, binary integer addition has carry.
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Examples

Let m = 3.
•For {3, 4, 8} and {1, 2, 5}, we’d like the addition of the
corresponding vectors to give us their union {1, 2, 3, 4, 5, 8}.
Indeed, 001100010(26 + 25 + 2) + 110010000(28 + 27 + 24) =
111110010(28 + 27 + 26 + 25 + 24 + 2)

•On the other hand, we have {3, 4, 8} ∪ {3, 4, 5} = {3, 4, 5, 8} but
001100010 + 001110000 = 011010010 which corresponds to the
set {2, 3, 5, 8}
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KNAPSACK continued
We think the integers in base n + 1.
Thus, ∀i ∈ {1, ...,n}, the set Si corresponds to integer
wi =

∑
j∈Si

(n + 1)3m−j .
Setting K =

∑3m−1
j=0 (n + 1)j completes the reduction.

Proof.
•We first observe that the problems with carrying are corrected,
since we need n + 1 1’s in the same position to encounter this
problem in base n + 1 and we have only n vectors.
•Suppose we have a cover {S1, ...,Sm}. Then for S = {1, ...,m}
we have:

⋃m
i=1 Si = {1, ..., 3m} , which gives us∑m

i=1 wi =
∑3m−j

j=0 (n + 1)j , the all-one vector.
•On the other hand, supposing that
∃S :

∑
i∈S wi =

∑3m−j
j=0 (n + 1)j and keeping in mind that the base

n + 1 prevents carrying, we get |S | = m and {Si |i ∈ S} is an exact
cover.
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Another example

•Let m = 3, U = {1, 2, 3, 4, 5, 6, 7, 8, 9} ,S1 = {1, 3, 4} ,S2 =
{2, 3, 4} ,S3 = {2, 5, 6} ,S4 = {6, 7, 8} ,S5 = {7, 8, 9}
•Since we have five Si ’s, n = 5 and our base is n + 1 = 6
•From the reduction that we described we get:
K =

∑3·3−1
j=0 6j = 68 + 67 + 66 + 65 + 64 + 63 + 62 + 61 + 60

w1 =
∑

j∈S1
69−j = 101100000 = 68 + 66 + 65

w2 =
∑

j∈S2
69−j = 011100000 = 67 + 66 + 65

w3 =
∑

j∈S3
69−j = 010011000 = 67 + 64 + 63

w4 =
∑

j∈S4
69−j = 000001110 = 63 + 62 + 61

w5 =
∑

j∈S5
69−j = 000000111 = 62 + 61 + 60

•We have w1 + w3 + w5 = K and S1 ∪ S3 ∪ S5 = U , an exact
cover by 3-sets.
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BIN PACKING

TRIPARTITE MATCHING ≤P BIN PACKING
Let B = {b1, ..., bn} ,G = {g1, ..., gn} ,H = {h1, ..., hn} ,T =
{t1, ..., tm} ⊆ B × G × H . We want to know if there exist n
triples in T : each boy, girl and home is contained in one and
only one such triple.
We want to construct an instance of BIN PACKING, that is
items a1, ..., aN , a capacity C and B bins.
We construct one item for each triple and one for each
occurence of a boy, a girl and a home in each such triple.
Thus, N = 4m. The items corresponding to the boy bi are
bi [1], ..., bi [N (bi)],∀i ∈ {1, ...,n}, where N (bi) is the number
of occurences of bi in the triples. The same goes for the items
corresponding to girls and homes. Finally, the items
corresponding to triples are t1, ..., tm.
The sizes of these items are shown in the following table.
M = 100n, C = 40M 4 + 15 and B = m.
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Items in BIN PACKING
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Proof that 3DM ≤P BP
Suppose that there is a way to fit these items into m bins.
•Observe that the capacity C is always just enough to fit a
triple and one occurence of each of it’s three members,
provided they are either all three or none, a first occurence.
Also the sum of all items’ sizes is mC .
•All items’ sizes are between 1/5 and 1/3 of C . Thus, each
bin must contain four items.
•C ≡ 15modM , and there is only one way (modM ) to create
15 out of 1, 2, 4, 8 with four items, even if repetitions are
allowed. And that is to take all numbers, one time each. It
follows that each bin will get a triple {bi , gj , hk}, a boy b′i , a
girl g′j and a home h′

k .
•C ≡ 15modM 2 as well, so i = i ′. Equivalently, taking
CmodM 3 and M 4, we get j = j ′ and h = h′.
•It follows that there are n bins with only first occurences.
The n triples in these bins form a TRIPARTITE MATCHING.
The opposite direction is obvious.
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Pseudopolynomial Algorithms and Strong
NP-Completeness

Proposition: Every instance of KNAPSACK can be solved in
O(nW ).

Proof.
•Let V (w, i) be the maximum value over the first i items such that
their total weight is exactly w. We compute it in a table as follows:
•V (w, 0) = 0 ∀w
•V (w, i + 1) = max {V (w, i), vi+1 + V (w − wi+1, i)}
•An instance of KNAPSACK is a ’yes’ instance iff the table
contains an entry greater than or equal to K .
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Pseudopolynomial Algorithms and Strong
NP-Completeness, continued

The O(nW ) complexity does not contradict the fact that the
knapsack is NP-complete, since W , unlike n, is not
polynomial in the length of the input to the problem. The
length of the W input to the problem is proportional to the
number of bits in W , logW , not to W itself.
Strong NP-Completeness: A problem that remains
NP-Complete even for input of size at most p(n) is called
strongly NP-Complete.
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