
Linear Hashing & Spiral Storage

Gkanios Antonios

Per-Ake Larson, Dynamic Hash Tables

12/11/2020

Gkanios Antonios Dynamic Hash Tables

Contents

1 Linear Hashing
Hashing in General
Static Hashing
Linear Hashing in General
Linear Hashing Scheme

Initial Layout
Bucket Split

Round and Hash Function Advancement
Search Scheme
Linear Hashing Variations
Performance Analysis

2 Spiral Storage
Problem with Linear Hashing and Workaround
Spiral Storage Scheme
Performance Analysis

Gkanios Antonios Dynamic Hash Tables

Hashing in General

A hash table is an in-memory data structure that associates
keys with values.
The primary operation it supports efficiently is a lookup: given
a key, find the corresponding value.
It works by transforming the key using a hash function into a
hash, a number that is used as an index in an array to locate
the desired location where the values should be.
Multiple keys may be hashed to the same bucket.
All hash table implementations have some collision resolution
strategy.
Hash tables are often used to implement associative arrays,
sets and caches.

Gkanios Antonios Dynamic Hash Tables

Hashing in General

Gkanios Antonios Dynamic Hash Tables

Static Hashing

In the static hashing, the hash function maps search-key values
to a fixed set of buckets.This has some disadvantages:

Hash tables grow with time. Once buckets start to overflow,
performance will degrade.
If we attempt to anticipate some future size and allocate
sufficient buckets for that expected size when we build the
hash table initially, we will waste lots of space.
If the hash table ever shrinks, space will be wasted.
We can try some workarounds, like reorganizing records, but is
very expensive

To avoid these problems, we would like to use some techniques
that allow us to modify dynamically the number of buckets in
our hash table.
Linear Hashing is the first in a number of schemes known as
dynamic hashing.

Gkanios Antonios Dynamic Hash Tables

Linear Hashing in General

Linear Hashing scheme was invented by Witold Litwin in 1980.
Linear Hashing is a dynamic data structure which implements
a hash table and grows or shrinks one bucket at a time.
The name Linear Hashing is used because the number of
buckets grows or shrinks in a linear fashion.
When an overflow occurs, it is not always the overflown bucket
that is split.
Overflows are handled by creating a chain of pages under the
overflown bucket.
The hashing function changes dynamically and at any given
instant there are two hashing functions used by the scheme.

Gkanios Antonios Dynamic Hash Tables

Initial Layout

The Linear Hashing scheme has N initial buckets labelled 0
through N − 1.
Initial hashing function h0(k) = f (k)%N (used to map any
key k into one of the N buckets).
Index p which points to the bucket to be split next whenever
an overflow page is generated (p = 0).

Gkanios Antonios Dynamic Hash Tables

Bucket Split

When the first overflow occurs (it can occur in any bucket),
bucket 0, which is pointed by p, is split (rehashed) into two
buckets (0 and N).
A new empty page is also added in the overflown bucket to
accommodate the overflow.
Splitting a bucket involves moving approximately half of the
records from the bucket to a new bucket at the end of the
table using a new hash function h1.
A crucial property of h1 is that search values that were
originally mapped by h0 to some bucket j must be remapped
either to bucket j or bucket j + N.

Gkanios Antonios Dynamic Hash Tables

Bucket Split (2)

N = 4, h0(k) = k % 22, h1(k) = k % 23.

Gkanios Antonios Dynamic Hash Tables

Round and Hash Function Advancement

After enough overflows, all original N buckets will be split.
This marks the end of splitting-round 0.
At the end of round 0 the Linear Hashing scheme has a total
of 2N buckets.
Hashing function h0 is no longer needed as all 2N buckets can
be addressed by hashing function h1.Index p is reset to 0 and a
new round, namely splitting-round 1, starts. A new hash
function h2 will start to be used.

Gkanios Antonios Dynamic Hash Tables

Round and Hash Function Advancement (2)

Linear Hashing scheme involves a family of hash functions
h0, h1, h2,
hi (k) = f (k) % 2i ∗ N. This way, it is guaranteed that if hi
hashes a key to bucket j ∈ [0 . . . 2i ∗N − 1], hi+1 will hash the
same key to either bucket j or bucket j + 2i ∗ N.
In splitting round i, the hash functions hi and hi+1 are used.
At the beginning of round i, p = 0 and there are 2i ∗ N
buckets.
When all of these buckets are split, splitting round i + 1 starts
and hash functions hi+1 and hi+2 will start to be used.

Gkanios Antonios Dynamic Hash Tables

Round and Hash Function Advancement (3)

N = 4, h0(k) = k % 22, h1(k) = k % 23.

Gkanios Antonios Dynamic Hash Tables

Round and Hash Function Advancement (4)

N = 4, h1(k) = k % 23, h2(k) = k % 24.

Gkanios Antonios Dynamic Hash Tables

Search Scheme

A search scheme is needed to map a key k to a bucket, either
when searching for an existing record or when inserting a new
record. The search scheme works as follows:

If hi (k) ≥ p, then choose bucket denoted by hi (k) since the
bucket has not been split yet in the current round.
If hi (k) < p, then choose bucket denoted by hi+1(k) which
can be either bucket denoted by hi (k) or its spit image bucket
hi (k) + 2i ∗m.

Gkanios Antonios Dynamic Hash Tables

Linear Hashing Variations

A split performed whenever a bucket overflow occurs is an
uncontrolled split.
The overall load factor is defined as the number of records in
the table divided by the (current) number of buckets. In our
case, the overall load factor equals the average chain length.
We fix a lower and an upper bound on the overall load factor
and expand (contract) the table whenever the overall load
factor goes above (below) the upper (lower).
In practice, higher storage utilization is achieved if a split is
triggered not by an overflow, but when the load factor
becomes greater than some upper threshold.
This is called a controlled split.

Gkanios Antonios Dynamic Hash Tables

Performance Analysis

We analyze the expected performance of a growing linear hash
table under the assumption that the table is expanded as soon
as the overall load factor exceeds α, α > 0.
It is also assumed that there are no deletions.
The expected cost of retrieval and insertion depends on what
fraction of the buckets has already been split during the
current round.
The performance is best at the end of an expansion because
the load is uniform over the whole table.
The performance varies cyclically where a cycle corresponds to
a doubling of the table.

Gkanios Antonios Dynamic Hash Tables

Performance Analysis (2)

A linear hash table can be viewed as consisting of two
traditional hash tables:

The buckets that have not yet been split during the current
round.
The buckets that have been split plus the new buckets created
during the current round.

Within each part, the expected load is the same for every
bucket.

Gkanios Antonios Dynamic Hash Tables

Performance Analysis (3)

Let’s consider a traditional hash table with load factor λ,
where records are stored using chaining.
Expected number of key comparisons for a for a successful
search: s(λ) = 1 + λ

2 .
Expected number of key comparisons for a for an unsuccessful
search: u(λ) = λ.
Let 0 ≤ x ≤ 1, denote the fraction of buckets that have been
split during the current round.
Let z, denote the expected number of records in an unsplit
bucket.

Gkanios Antonios Dynamic Hash Tables

Performance Analysis (4)

For the overall load factor to be equal to α, the following must
hold:
2xz/2 + (1− x)z = a(2x + 1− x) =⇒ z = a(1 + x).
In other words, the expected number of records in an unsplit
bucket grows linearly from α to 2α.
Let S(α, x), denote the expected number of key comparisons
for a successful search when a fraction x of the buckets have
been split.
Let U(α, x), denote the expected number of key comparisons
for an unsuccessful search when a fraction x of the buckets
have been split.
S(α, x) = xs(α(1+x)

2)+(1−x)s(α(1+x)) = 1+ α
4 (−x2+x+2)

U(α, x) = xu(α(1+x)
2) + (1− x)u(α(1 + x)) = α

2 (−x2 + x + 2)

Gkanios Antonios Dynamic Hash Tables

Performance Analysis (5)

The minimum expected search lengths occur when the load is
uniform over the whole table, that is, when x = 0 or
x = 1.Then:

S(α, 0) = 1 + α
2 .

U(α, 0) = α.
The average search cost over a cycle can be computed by
integrating the expected search length over a split round.
Then:

S̄(α, x) =
∫ 1
0 S(α, x)dx = 1 + α

2
13
12 .

Ū(α, x) =
∫ 1
0 U(α, x)dx = α 13

12

Gkanios Antonios Dynamic Hash Tables

Problem with Linear Hashing and Workaround

When using linear hashing the expected cost of retrieving,
inserting or deleting a record varies cyclically.
Spiral storage overcomes this undesirable feature and exhibits
uniform performance regardless of the table size
The load is high at the beginning of the (active) address space
and tapers off towards the end.
To expand the table additional space is allocated at the end of
the address space, and at the same time a smaller amount of
space is freed at the beginning.

Gkanios Antonios Dynamic Hash Tables

Spiral Storage Address Space

Gkanios Antonios Dynamic Hash Tables

Spiral Storage Scheme

Spiral storage requires a hashing function that maps keys
uniformly into [0, 1). 0 ≤ h(k) < 1.
h(K) is then mapped into a value x in [S , S + 1). x is uniquely
determined by requiring that its fractional part must agree
with h(K): (x = dS − h(k)e+ h(k))

The final address is computed as y = bdxc.
Currently active address space extends from
bdSc to ddS+1e − 1 ≈ dS ∗ (d − 1) addresses.
d ≥ 1 is a constant, called expansion factor
dx is called expansion function (most convenient value for
computations, is d = 2).
There are many possible expansion functions.
The expansion function 2x has the property that the expansion
rate is constant.

Gkanios Antonios Dynamic Hash Tables

Spiral Storage Example (1)

Let’s assume that we start from an active address space of 5
addresses. Let d = 2.
We look for a value of S, that gives us 5 active addresses.
(dS ∗ (d − 1) = 5 =⇒ 2S = 5 =⇒ S = log2 5 = 2.3219)

First active address = bdSc = b22.3219c = 5.
Last active address = ddS+1e − 1 = d23.3219e − 1 = 9.
We want to see, where all keys will be distributed according to
their hash value.
For example, if h(k) = 0.75,
x = d2.3219− 0.75e+ 0.75 = 2.75 =⇒ y = b22.75c = 6.
The resulting distribution according to hash values is given in
the table below.

Gkanios Antonios Dynamic Hash Tables

Spiral Storage Example (1)

Gkanios Antonios Dynamic Hash Tables

Spiral Storage Expansion

To increase the active address space we simply increase S to
S

′
.

The keys that previously mapped into the range [S , S
′
), now

map into the range [S + 1,S
′

+ 1).
The new address range is approximately d times the old
address range.
The records stored in the bucket that disappears are relocated
to the new buckets and the expansion is complete.
The value S

′
is normally chosen so that exactly one bucket

disappears.
Most of the time an expansion creates two new buckets, but
occasionally either one or three buckets are created.

Gkanios Antonios Dynamic Hash Tables

Spiral Storage Expansion (2)

Gkanios Antonios Dynamic Hash Tables

Spiral Storage Setback

The most expensive part of the address calculation is the
computation of 2x .
A function of this type is normally computed by approximating
it with a polynomial of a fairly high degree.
Let f (x) be a function that approximates 2x , 0 ≤ x ≤ 1.
Most suggested function is: f (x) = a

b−x + c , 0 ≤ x ≤ 1.
The values of the parameters a, b and c can be determined by
fixing the value of f (x) at three points.
The resulting performance is very close to the performance
obtained when using 2x (The expansion rate is almost, but not
exactly constant).

Gkanios Antonios Dynamic Hash Tables

Performance Analysis

As before, it is assumed that the overall load factor is kept
constant and equal to α, α > 0.
Expansion function 2x is used.
It is assumed that there are no deletions.
For convenience, we can consider only the normalized address
range [1, 2).
p(y), denotes the probability that a key hashes to a
(normalized) address in [y , y + dy] ⊆ [1, 2) .

Gkanios Antonios Dynamic Hash Tables

Performance Analysis (2)

p(y) = log2(y + dy)− log2(y) = log2(1 + dy
y) = dy

yln2 .

The insertion probability density function is: 1
yln2 .

Over the normalized address range [1, 2), the insertion
probability density function is: 1

yln2 .
The expected load factor of a bucket at address y is
proportional to the insertion probability at y.
Load factor: λ(y) = c1

yln2 , c1 is a normalizing constant.

Average load factor must equal α:
∫ 2
1

c1dy
yln2 = α =⇒ c1 = α.

Gkanios Antonios Dynamic Hash Tables

Performance Analysis (3)

The probability of a successful search hitting a bucket is
proportional to the load factor of the bucket
The probability of hitting a bucket with an address in
[y , y + dy) is c

y dy .
The constant c is determined by the fact that the probability
of a search hitting some bucket is one.∫ 2
1

c
y dy = 1 =⇒ c = 1

ln2 .
If a successful search hits a bucket with a load factor of λ, the
expected cost is s(λ) = 1 + λ

2 .

Gkanios Antonios Dynamic Hash Tables

Performance Analysis (4)

The expected cost of a successful search is:
S̄(α) =

∫ 2
1 s(α

yln2) dy
yln2 =

∫ 2
1 (1+ α

2yln2) dy
yln2 = · · · = 1+ α

2 1.0407
.
Respectively the expected cost of an unsuccessful search in a
bucket with load factor λ is u(λ) = λ.
The expected cost of an unsuccessful search is
Ū(α) =

∫ 2
1 u(a

yln2) dy
yln2 =

∫ 2
1 (a

(ln2)2)dy
y2 = · · · = α1.0407.

Gkanios Antonios Dynamic Hash Tables

	Linear Hashing
	Hashing in General
	Static Hashing
	Linear Hashing in General
	Linear Hashing Scheme
	Round and Hash Function Advancement
	Search Scheme
	Linear Hashing Variations
	Performance Analysis

	Spiral Storage
	Problem with Linear Hashing and Workaround
	Spiral Storage Scheme
	Performance Analysis

