Algorithms and Complexity:
The Complexity of Theorem-Proving
Procedures

Thomas Pipilikas

INTER-INSTITUTIONAL GRADUATE PROGRAM “ALGORITHMS, LOGIC AND
DISCRETE MATHEMATICS”

Aoyei) ke Avakperi
g =
i £
3 3
g a
2 ARV 2
v &
i &
X £
El 5
Fodq] gumXarzniapy

P-Completeness

m Presented at the 3rd Annual ACM SIGACT Symposium on the
Theory of Computing (STOC, May 3-5, 1971)

NP-Completeness

m Presented at the 3rd Annual ACM SIGACT Symposium on the
Theory of Computing (STOC, May 3-5, 1971)
m STOC 2020 Online, June 22-26, 2020
m STOC 2021 Rome, Italy, June 21-25, 2021

Thomas Pipilikas

& NP-Completeness

m Presented at the 3rd Annual ACM SIGACT Symposium on the
Theory of Computing (STOC, May 3-5, 1971)
m STOC 2020 Online, June 22-26, 2020
m STOC 2021 Rome, Italy, June 21-25, 2021

m In 1982, Cook received the Turing award. His citation reads:

For his advancement of our understanding of the complexity of
computation in a significant and profound way. His seminal pa-
per, The Complexity of Theorem Proving Procedures, presented
at the 1971 ACM SIGACT Symposium on the Theory of Com-
puting, laid the foundations for the theory of NP-Completeness.
The ensuing exploration of the boundaries and nature of NP-
complete class of problems has been one of the most active and
important research activities in computer science for the last
decade.

& NP-Completeness

Overview

Cook’s Theorem

m Any problem in NP can be reduced in polynomial time by a
deterministic Turing machine to the problem of determining
whether a formula in CNF is satisfiable (SAT).

P-Completeness

Overview

Cook’s Theorem

m Any problem in NP can be reduced in polynomial time by a
deterministic Turing machine to the problem of determining
whether a formula in CNF is satisfiable (SAT).

m If a set S of strings is accepted by some nondeterministic
Turing machine within polynomial time, then S is
P-reducible to {DNF tautologies}.

NP-Completeness

Overview

Cook’s Theorem

m Any problem in NP can be reduced in polynomial time by a
deterministic Turing machine to the problem of determining
whether a formula in CNF is satisfiable (SAT).

m If a set S of strings is accepted by some nondeterministic
Turing machine within polynomial time, then S is
P-reducible to {DNF tautologies}.

m P-reducibility stands for polynomial-time Turing reduction
(aka Cook reduction, 1971).

Thomas Pipilikas

Theorem & NP-Completeness

Overview

Cook’s Theorem

m Any problem in NP can be reduced in polynomial time by a
deterministic Turing machine to the problem of determining
whether a formula in CNF is satisfiable (SAT).

m If a set S of strings is accepted by some nondeterministic
Turing machine within polynomial time, then S is
P-reducible to {DNF tautologies}.

m P-reducibility stands for polynomial-time Turing reduction
(aka Cook reduction, 1971).

m vs polynomial-time many-one reduction
(aka Karp reduction, 1972).

Thomas Pipilikas

Theorem & NP-Completeness

Overview

Cook’s Theorem

m Any problem in NP can be reduced in polynomial time by a
deterministic Turing machine to the problem of determining
whether a formula in CNF is satisfiable (SAT).

m If a set S of strings is accepted by some nondeterministic
Turing machine within polynomial time, then S is
P-reducible to {DNF tautologies}.

m P-reducibility stands for polynomial-time Turing reduction
(aka Cook reduction, 1971).

m vs polynomial-time many-one reduction
(aka Karp reduction, 1972).

m NP-completeness.

Thomas Pipilikas

Theorem & NP-Completeness

Turing Machine

In his 1948 essay, "Intelligent Machinery", Turing wrote that his machine
consisted of:

Thomas Pipilikas

...an unlimited memory capacity obtained in the form of an infinite tape
marked out into squares, on each of which a symbol could be printed.
At any moment there is one symbol in the machine; it is called the
scanned symbol. The machine can alter the scanned symbol, and its
behavior is in part determined by that symbol, but the symbols on the
tape elsewhere do not affect the behavior of the machine. However,
the tape can be moved back and forth through the machine, this being
one of the elementary operations of the machine. Any symbol on the
tape may therefore eventually have an innings.

Formal Definition of Turing Machine

A (one-tape) Turing machine can be formally defined as a 6-tuple
M=(Q,T, %, qo, F) where

m Q is a finite, non-empty set of states;
m [is a finite, non-empty set of tape alphabet symbols;

m U €[is the blank symbol (the only symbol allowed to occur on the tape
infinitely often at any step during the computation);

m »c [is a special symbol, that defines thebegining of the tape.

m Y CI\{b,»} is the set of input alphabet symbols, that is, the set of
symbols allowed to appear in the initial tape contents;

B Qo € Q is the initial state;

m F C Q is the set of final states or accepting states. The initial tape
contents is said to be accepted by M if it eventually halts in a state from
F.

mS5:(Q\F)xTu{p}AH QxTU{p}x{L, R} is a partial function called the
transition function, where L is left shift, R is right shift and for any
qeQ\F,é6(g,»)=(...,» R), if § is defined on (g,»). If § is not
defined on the current state and the current tape symbol, then the
machine halts (rejects).

Turing Machine

> P a o k a r a U] --- Input/Output Tape

Reading and Writing Head
(moves in both directions)

@ an Finite Control

Turing Machine

The computation of a TM M starts with the state register initialized
with qo and the head reading the first square of the tape.

Thomas Pipili

Turing Machine

The computation of a TM M starts with the state register initialized
with qo and the head reading the first square of the tape.
We say that:

Thomas Pipili

Turing Machine

The computation of a TM M starts with the state register initialized
with qo and the head reading the first square of the tape.
We say that:

m a TM M accepts the string w iff M with input w ends in an
accepting state,

Thomas Pipili

Turing Machine

The computation of a TM M starts with the state register initialized
with qo and the head reading the first square of the tape.
We say that:

m a TM M accepts the string w iff M with input w ends in an
accepting state,

m a TM M rejects the string w iff M with input w ends in a
non-accepting state,

Thomas Pipili

Turing Machine

The computation of a TM M starts with the state register initialized
with qo and the head reading the first square of the tape.
We say that:

m a TM M accepts the string w iff M with input w ends in an
accepting state,

m a TM M rejects the string w iff M with input w ends in a
non-accepting state,

m a TM M recognises a set (language) L, when for any we ¥, M
accepts w if we L,

Thomas Pipili

Turing Machine

The computation of a TM M starts with the state register initialized
with qo and the head reading the first square of the tape.
We say that:

m a TM M accepts the string w iff M with input w ends in an
accepting state,

m a TM M rejects the string w iff M with input w ends in a
non-accepting state,

m a TM M recognises a set (language) L, when for any we ¥, M
accepts w if we L,

m a TM M decides a set (language) L iff for any w € L, M accepts w
and for any w € ¥* \ L, M rejects W,

P-Completeness

Turing Machine

The computation of a TM M starts with the state register initialized
with qo and the head reading the first square of the tape.
We say that:

m a TM M accepts the string w iff M with input w ends in an
accepting state,

m a TM M rejects the string w iff M with input w ends in a
non-accepting state,

m a TM M recognises a set (language) L, when for any we ¥, M
accepts w if we L,

m a TM M decides a set (language) L iff for any w € L, M accepts w
and for any w € ¥* \ L, M rejects W,

m L is recursive enumerable , iff there is a TM M that recognises L,

Completeness

Turing Machine

The computation of a TM M starts with the state register initialized
with qo and the head reading the first square of the tape.
We say that:

m a TM M accepts the string w iff M with input w ends in an
accepting state,

a TM M rejects the string w iff M with input w ends in a
non-accepting state,

m a TM M recognises a set (language) L, when for any we ¥, M
accepts w if we L,

m a TM M decides a set (language) L iff for any w € L, M accepts w
and for any w € ¥* \ L, M rejects W,

m L is recursive enumerable , iff there is a TM M that recognises L,

m L is recursive, iff there is a TM M that decides L.

Completeness

Church-Turing Thesis

Every realistic model of computation, yet discovered, has been
shown to be equivalent.

Completeness

Church-Turing Thesis

Every realistic model of computation, yet discovered, has been
shown to be equivalent.

Church-Turing thesis

m Every known and “unknown” models of notion of
computation (calculability) are effectively equivalent.

Thomas Pipilikas

Cook’s Theorem & NP-Completeness

Church-Turing Thesis

Every realistic model of computation, yet discovered, has been
shown to be equivalent.

Church-Turing thesis

m Every known and “unknown” models of notion of
computation (calculability) are effectively equivalent.

m Every effective computation can be carried out by a Turing
machine.

Church Turing

Thomas Pipilikas

Cook’s Theorem & NP-Completeness

Nondeterministic Turing Machine

In contrast to a deterministic Turing machine, in a
nondeterministic Turing machine (NTM) the set of rules may
prescribe more than one action to be performed for any given
situation,

Thomas Pipili

Completeness

Nondeterministic Turing Machine

In contrast to a deterministic Turing machine, in a
nondeterministic Turing machine (NTM) the set of rules may
prescribe more than one action to be performed for any given
situation,

ie. sC((Q\F)xTuU{})xQxTuU{r»}x{L, R} where again for
any g, € Q\Fand any y €T, (g,»,q,y,L) ¢ 6.

Thomas Pipilikas

& NP-Completeness

Nondeterministic Turing Machine

m a NTM N accepts the string w iff there is a computation of
N with input w ends in an accepting state,

NP-Completeness

Nondeterministic Turing Machine

m a NTM N accepts the string w iff there is a computation of
N with input w ends in an accepting state,

m a NTM N rejects the string w iff every computation of N
with input w ends in a non-accepting state,

P-Completeness

Nondeterministic Turing Machine

m a NTM N accepts the string w iff there is a computation of
N with input w ends in an accepting state,

m a NTM N rejects the string w iff every computation of N
with input w ends in a non-accepting state,

m a NTM N recognises a set (language) L, when for any w € ¥,
M accepts w iff we L,

NP-Completeness

Nondeterministic Turing Machine

m a NTM N accepts the string w iff there is a computation of
N with input w ends in an accepting state,

m a NTM N rejects the string w iff every computation of N
with input w ends in a non-accepting state,

m a NTM N recognises a set (language) L, when for any w € ¥,
M accepts w iff we L,

m a NTM N decides a set (language) L iff for any we L, N
accepts w and for any w € £\ L, N rejects w,

Thomas Pipilikas

& NP-Completeness

Nondeterministic Turing Machine

m a NTM N accepts the string w iff there is a computation of
N with input w ends in an accepting state,

m a NTM N rejects the string w iff every computation of N
with input w ends in a non-accepting state,

m a NTM N recognises a set (language) L, when for any w € ¥,
M accepts w iff we L,

a NTM N decides a set (language) L iff for any we L, N
accepts w and for any w € £\ L, N rejects w,

m NTMs and TMs decide (recognise) the same
languages.

Thomas Pipilikas

& NP-Completeness

Nondeterministic Turing Machine

m a NTM N accepts the string w iff there is a computation of
N with input w ends in an accepting state,

m a NTM N rejects the string w iff every computation of N
with input w ends in a non-accepting state,

m a NTM N recognises a set (language) L, when for any w € ¥,
M accepts w iff we L,

a NTM N decides a set (language) L iff for any we L, N
accepts w and for any w € £\ L, N rejects w,

m NTMs and TMs decide (recognise) the same
languages.(complexity?)

Thomas Pipilikas

& NP-Completeness

Query Machine

A query machine is a multitape Turing machine with a distinguished
tape called the query tape, and three distinguished states called the
query state (Gz), yes state (Qyes), and no state (Qno), respectively. If M is
a query machine and T is a set of strings, then a T-computation of M
is a computation of M in which initially M is in the initial state and
has an input string w on its input tape, and each time M assumes the
query state there is a string U on the query tape, and the next state M
assumes is the yes state if u € T and the no state if u¢ T. We think of
an “oracle”, which knows T, placing M in the yes state or no state.

Thomas Pipilikas

Query Machine

u --+ Input/Output Tape

»> c o v i d u
gz
an dyes
Finite Control Qno
92 9

g1

Reading and Writing Head
(moves in both directions)

Query Tape

Polynomial-time Turing reduction

Definition

A set S of strings is P-reducible (P for polynomial) to a set T of strings
iff there is some query machine M and a polynomial Q(n) such that for
each input string w, the T-computation of M with input w halts within

Q (|w|) steps (w] is the length of w) and ends in an accepting state iff
weS.

NP-Completeness

Polynomial-time Turing reduction

Definition

A set S of strings is P-reducible (P for polynomial) to a set T of strings
iff there is some query machine M and a polynomial Q(n) such that for
each input string w, the T-computation of M with input w halts within

Q (|w|) steps (w] is the length of w) and ends in an accepting state iff
weS.

m P-reducibility is a transitive relation.

NP-Completeness

Polynomial-time Turing reduction

Definition

A set S of strings is P-reducible (P for polynomial) to a set T of strings
iff there is some query machine M and a polynomial Q(n) such that for
each input string w, the T-computation of M with input w halts within
Q (|w|) steps (w] is the length of w) and ends in an accepting state iff
weS.

m P-reducibility is a transitive relation.

m The relation E on sets of strings, given by (S, T) € E iff
each of S and T is P-reducible to the other, is an
equivalence relation.

NP-Completeness

Polynomial-time Turing reduction

Definition

A set S of strings is P-reducible (P for polynomial) to a set T of strings
iff there is some query machine M and a polynomial Q(n) such that for
each input string w, the T-computation of M with input w halts within
Q (|w|) steps (w] is the length of w) and ends in an accepting state iff
weS.

m P-reducibility is a transitive relation.

m The relation E on sets of strings, given by (S, T) € E iff
each of S and T is P-reducible to the other, is an
equivalence relation.

m The equivalence class containing a set S will be denoted by
deg (S) (the polynomial degree of difficulty of S).

Thomas Pipilikas

& NP-Completeness

Polynomial-time Turing reduction

Definition

A set S of strings is P-reducible (P for polynomial) to a set T of strings
iff there is some query machine M and a polynomial Q(n) such that for
each input string w, the T-computation of M with input w halts within
Q (|w|) steps (w] is the length of w) and ends in an accepting state iff
weS.

m P-reducibility is a transitive relation.

m The relation E on sets of strings, given by (S, T) € E iff
each of S and T is P-reducible to the other, is an
equivalence relation.

m The equivalence class containing a set S will be denoted by
deg (S) (the polynomial degree of difficulty of S).

m We will denote deg ({0}) by .Z., where O denotes the zero
function.

Thomas Pipilikas

Theorem & NP-Completeness

Polynomial-time Turing reduction

Definition

A set S of strings is P-reducible (P for polynomial) to a set T of strings
iff there is some query machine M and a polynomial Q(n) such that for
each input string w, the T-computation of M with input w halts within
Q (|w|) steps (w] is the length of w) and ends in an accepting state iff
weS.

m P-reducibility is a transitive relation.

m The relation E on sets of strings, given by (S, T) € E iff
each of S and T is P-reducible to the other, is an
equivalence relation.

m The equivalence class containing a set S will be denoted by
deg (S) (the polynomial degree of difficulty of S).

m We will denote deg ({0}) by .Z., where O denotes the zero
function.(Z, = P)

Thomas Pipilikas

Theorem & NP-Completeness

Propositional Calculus

Let us fix a formalism for the propositional calculus in which formulas
are written as strings on X.

Propositional Calculus

Let us fix a formalism for the propositional calculus in which formulas
are written as strings on X.

Since we will require infinitely many proposition symbols (atoms), each
such symbol will consist of a member of ¥ followed by a number in
binary notation to distinguish that symbol.

P-Completeness

Propositional Calculus

Let us fix a formalism for the propositional calculus in which formulas
are written as strings on X.

Since we will require infinitely many proposition symbols (atoms), each
such symbol will consist of a member of ¥ followed by a number in
binary notation to distinguish that symbol.

Thus a formula of length n can only have about n/log n distinct
function and predicate symbols.

P-Completeness

Propositional Calculus

Let us fix a formalism for the propositional calculus in which formulas
are written as strings on X.

Since we will require infinitely many proposition symbols (atoms), each
such symbol will consist of a member of ¥ followed by a number in
binary notation to distinguish that symbol.

Thus a formula of length n can only have about n/log n distinct
function and predicate symbols.

The set of tautologies (denoted by {tautologies}) is a certain recursive
set of strings on this alphabet.

P-Completeness

Propositional Calculus

Let us fix a formalism for the propositional calculus in which formulas
are written as strings on X.

Since we will require infinitely many proposition symbols (atoms), each
such symbol will consist of a member of ¥ followed by a number in
binary notation to distinguish that symbol.

Thus a formula of length n can only have about n/log n distinct
function and predicate symbols.

The set of tautologies (denoted by {tautologies}) is a certain recursive
set of strings on this alphabet.

Cook’s Theorem will give evidence that {tautologies} is a difficult set to
recognize, since many apparently difficult problems can be reduced to
determining tautologyhood.

P-Completeness

Special Set of Strings

The subgraph problem is the problem given two finite undirected
graphs, determine whether the first is isomorphic to a subgraph of
the second. A graph G can be represented by a string G on the
alphabet {0, 1, =} by listing the successive rows of its adjacency
matrix, separated by #s. We let {subgraph pairs} denote the set of
strings Gp * *Gy such that Gy is isomorphic to a subgraph of Go.

Special Set of Strings

The subgraph problem is the problem given two finite undirected
graphs, determine whether the first is isomorphic to a subgraph of
the second. A graph G can be represented by a string G on the
alphabet {0, 1, =} by listing the successive rows of its adjacency
matrix, separated by #s. We let {subgraph pairs} denote the set of
strings Gp * *Gy such that Gy is isomorphic to a subgraph of Go.

The graph isomorphism problem will be represented by the set,

denoted by {isomorphic graphpairs}, of all strings Gy * Gz such
that Gy is isomorphic to Go.

Special Set of Strings

The subgraph problem is the problem given two finite undirected

graphs, determine whether the first is isomorphic to a subgraph of
the second. A graph G can be represented by a string G on the
alphabet {0, 1, =} by listing the successive rows of its adjacency
matrix, separated by #s. We let {subgraph pairs} denote the set of
strings Gp * *Gy such that Gy is isomorphic to a subgraph of Go.

The graph isomorphism problem will be represented by the set,

&

denoted by {isomorphic graphpairs}, of all strings Gy * Gz such
that Gy is isomorphic to Go.

The set {primes} is the set of all binary notations for prime
numbers.

Special Set of Strings

The subgraph problem is the problem given two finite undirected
graphs, determine whether the first is isomorphic to a subgraph of
the second. A graph G can be represented by a string G on the
alphabet {0, 1, =} by listing the successive rows of its adjacency
matrix, separated by #s. We let {subgraph pairs} denote the set of
strings Gp * *Gy such that Gy is isomorphic to a subgraph of Go.

The graph isomorphism problem will be represented by the set,
denoted by {isomorphic graphpairs}, of all strings Gy * Gz such
that Gy is isomorphic to Go.

The set {primes} is the set of all binary notations for prime
numbers.

The set {DNF tautologies} is the set of strings representing
tautologies in disjunctive normal form.

Special Set of Strings

The subgraph problem is the problem given two finite undirected
graphs, determine whether the first is isomorphic to a subgraph of
the second. A graph G can be represented by a string G on the
alphabet {0, 1, =} by listing the successive rows of its adjacency
matrix, separated by #s. We let {subgraph pairs} denote the set of
strings Gp * *Gy such that Gy is isomorphic to a subgraph of Go.

The graph isomorphism problem will be represented by the set,
denoted by {isomorphic graphpairs}, of all strings Gy * Gz such
that Gy is isomorphic to Go.

The set {primes} is the set of all binary notations for prime
numbers.

The set {DNF tautologies} is the set of strings representing
tautologies in disjunctive normal form.

The set D3 consists of those tautologies in disjunctive normal form
in which each disjunct has at most three conjuncts (each of which
is an atom or negation of an atom).

Cook’s Theorem

Theorem (Cook’s Theorem)

If a set S of strings is accepted by some nondeterministic Turing
machine within polynomial time, then S is P-reducible to
{DNF tautologies}.

Thomas Pipili

Completeness

Cook’s Theorem

Theorem (Cook’s Theorem)

If a set S of strings is accepted by some nondeterministic Turing
machine within polynomial time, then S is P-reducible to
{DNF tautologies}.

Corollary

Each of the sets in definitions 1)-5) is P-reducible to
{DNF tautologies}.

Thomas Pipilikas

Theorem & NP-Completeness

Cook’s Theorem (Proof)

Sketching the proof

NP-Completeness

Cook’s Theorem (Proof)

Sketching the proof

m Suppose a NTM M accepts a set S of strings within time
Q(n), where Q(n) is a polynomial.

NP-Completeness

Cook’s Theorem (Proof)

Sketching the proof
m Suppose a NTM M accepts a set S of strings within time
Q(n), where Q(n) is a polynomial.
m Given an input w for M, we will construct a proposition
formula A (w) in conjunctive normal form (CNF) such that
A (w) is satisfiable iff M accepts w.

Thomas Pipilikas

& NP-Completeness

Cook’s Theorem (Proof)

Sketching the proof

m Suppose a NTM M accepts a set S of strings within time
Q(n), where Q(n) is a polynomial.

m Given an input w for M, we will construct a proposition
formula A (w) in conjunctive normal form (CNF) such that
A (w) is satisfiable iff M accepts w.

m —A (w) is easily put in DNF (using De Morgan’s laws), and
—-A (w) is a tautology iff w ¢ S.

Thomas Pipilikas

& NP-Completeness

Cook’s Theorem (Proof)

Sketching the proof

m Suppose a NTM M accepts a set S of strings within time
Q(n), where Q(n) is a polynomial.

m Given an input w for M, we will construct a proposition
formula A (w) in conjunctive normal form (CNF) such that
A (w) is satisfiable iff M accepts w.

m —A (w) is easily put in DNF (using De Morgan’s laws), and
—-A (w) is a tautology iff w ¢ S.

m Since the whole construction can be carried out in time
bounded by a polynomial in |w|, the theorem will be proved.

Thomas Pipilikas

& NP-Completeness

Cook’s Theorem (Proof)

Let us number the squares of M from left to right 1,2,....

NP-Completeness

Cook’s Theorem (Proof)

Let us number the squares of M from left to right 1,2,....

Suppose the tape alphabet for M is {o1,...,0} and the set of
states is {Q1,...,Qr}.

NP-Completeness

Cook’s Theorem (Proof)

Let us number the squares of M from left to right 1,2,....

Suppose the tape alphabet for M is {o1,...,0} and the set of
states is {Q1,...,Qr}.

Let us fix an input w to M of length n, and suppose w € S.

Thomas Pipilikas

& NP-Completeness

Cook’s Theorem (Proof)

Let us number the squares of M from left to right 1,2,....

Suppose the tape alphabet for M is {o1,...,0} and the set of
states is {Q1,...,Qr}.

Let us fix an input w to M of length n, and suppose w € S.

Then there is a computation of M with input w that ends in an
accepting state within T = Q (n) steps.

Thomas Pipilikas

& NP-Completeness

Cook’s Theorem (Proof)

Let us number the squares of M from left to right 1,2,....

Suppose the tape alphabet for M is {o1,...,0} and the set of
states is {Q1,...,Qr}.

Let us fix an input w to M of length n, and suppose w € S.

Then there is a computation of M with input w that ends in an
accepting state within T = Q (n) steps.

Notice that since the computation has at most T = Q(n) steps,
no tape square beyond T is scanned.

Thomas Pipilikas

& NP-Completeness

Cook’s Theorem (Proof)

The formula A (w) will be built from many different proposition
symbols, whose intended meanings (listed in the next frame),
refer to such a computation.

P-Completeness

Cook’s Theorem (Proof)

The formula A (w) will be built from many different proposition
symbols, whose intended meanings (listed in the next frame),
refer to such a computation.

Proposition symbols:

P-Completeness

Cook’s Theorem (Proof)

The formula A (w) will be built from many different proposition
symbols, whose intended meanings (listed in the next frame),
refer to such a computation.

Proposition symbols:

| P;t is true iff tape square number S at step t contains the
symbol o, where i € [I], s,t € [T].

P-Completeness

Cook’s Theorem (Proof)

The formula A (w) will be built from many different proposition
symbols, whose intended meanings (listed in the next frame),
refer to such a computation.

Proposition symbols:

| P;t is true iff tape square number S at step t contains the
symbol o, where i € [I], s,t € [T].

] Q{ is true iff at step t the machine is in state g;, where
ielr], te[T].

P-Completeness

Cook’s Theorem (Proof)

The formula A (w) will be built from many different proposition
symbols, whose intended meanings (listed in the next frame),
refer to such a computation.

Proposition symbols:

| P;t is true iff tape square number S at step t contains the
symbol o, where i € [I], s,t € [T].

n Q{ is true iff at step t the machine is in state g;, where
ielr], te[T].

m Sg; is true iff at time t square number s is scanned by the
tape head, where s,t € [T].

NP-Completeness

Cook’s Theorem (Proof)

The formula A (w) is a conjunction BACADAEAFAGAI
formed as follows. Notice A (w) is in CNF.

NP-Completeness

Cook’s Theorem (Proof)

The formula A (w) is a conjunction BACADAEAFAGAI
formed as follows. Notice A (w) is in CNF.

B will assert that at each step t, one and only one square is
scanned.

Thomas Pipilikas

& NP-Completeness

Cook’s Theorem (Proof)

The formula A (w) is a conjunction BACADAEAFAGAI
formed as follows. Notice A (w) is in CNF.

B will assert that at each step t, one and only one square is
scanned.

B is a conjunction By A Bo A --- A By, where B; asserts that at

time f one and only one square is scanned:

B: = (S1J V Sz’t VeV ST,t) A /\ (—|S,',t \Y —|Sj,t)

1<i<j<T

NP-Completeness

Cook’s Theorem (Proof)

For s € [T] and t € [Tj] Cs; asserts that at square s and time t

there is one and only one symbol. C is the conjunction of all the
Cs,t.

NP-Completeness

Cook’s Theorem (Proof)

For s € [T] and t € [Tj] Cs; asserts that at square s and time t
there is one and only one symbol. C is the conjunction of all the

Cs t-

5

D asserts that for each t there is one and only one state.

P-Completeness

Cook’s Theorem (Proof)

For s € [T] and t € [Tj] Cs; asserts that at square s and time t
there is one and only one symbol. C is the conjunction of all the
Cs t-

D asserts that for each t there is one and only one state.
E asserts the initial conditions are satisfied:

_ o I i i 1 1
E=Q ASIA AP APZ A= AP IAP, g Ao APy

where w = o, ---0j,, Qo is the initial state and o1 = Ll is the
blank symbol.

Thomas Pipili

Completeness

Cook’s Theorem (Proof)

F, G and H assert that for each time t the values of the P’s, Q’s
and S’s are updated properly.

NP-Completeness

Cook’s Theorem (Proof)

F, G and H assert that for each time t the values of the P’s, Q’s
and S’s are updated properly.

For example, G is the conjunction over all t, i, j of Gi{j, where Git,j
asserts that if at time f the machine is in state g; scanning
symbol sj, then at time t + 1 the machine is in state gk, where gk
is the state given by the transition function (relation) for M.

P-Completeness

Cook’s Theorem (Proof)

F, G and H assert that for each time t the values of the P’s, Q’s
and S’s are updated properly.

For example, G is the conjunction over all t, i, j of Gi{j, where Git,j
asserts that if at time f the machine is in state g; scanning

symbol sj, then at time t + 1 the machine is in state gk, where gk
is the state given by the transition function (relation) for M. (!)

- Con pFel
.
t] j k
Gl = /\ (-Q} v =S5 v =P, v af,)
s=1

P-Completeness

Cook’s Theorem (Proof)

Finally, the formula | asserts that the machine reaches an
accepting state at some time. The machine M should be modified
so that it continues to compute in some trivial fashion after
reaching an accepting state, so that A (w) will be satisfied.

P-Completeness

Cook’s Theorem (Proof)

Finally, the formula | asserts that the machine reaches an
accepting state at some time. The machine M should be modified
so that it continues to compute in some trivial fashion after
reaching an accepting state, so that A (w) will be satisfied.

It is now straightforward to verify that A (w) has all the
properties asserted in the first paragraph of the proof.

P-Completeness

Cook’s Theorem (Proof)

Finally, the formula | asserts that the machine reaches an
accepting state at some time. The machine M should be modified
so that it continues to compute in some trivial fashion after
reaching an accepting state, so that A (w) will be satisfied.

It is now straightforward to verify that A (w) has all the
properties asserted in the first paragraph of the proof.

P-Completeness

sort of NP-Completeness

Theorem

The following sets are P-reducible to each other in pairs (and hence each
has the same polynomial degree of difficulty): {tautologies},
{DNF tautologies}, D3, {subgraph pairs}.

NP-Completeness

sort of NP-Completeness

Theorem

The following sets are P-reducible to each other in pairs (and hence each
has the same polynomial degree of difficulty): {tautologies},
{DNF tautologies}, D3, {subgraph pairs}.

Remark

We have not been able to add either {primes} or {isomorphic graphpairs}
to the above list. To show {tautologies} is P-reducible to {primes} would
seem to require some deep results in number theory

Thomas Pipil

& NP-Completeness

sort of NP-Completeness

Theorem

The following sets are P-reducible to each other in pairs (and hence each
has the same polynomial degree of difficulty): {tautologies},
{DNF tautologies}, D3, {subgraph pairs}.

Remark

We have not been able to add either {primes} or {isomorphic graphpairs}
to the above list. To show {tautologies} is P-reducible to {primes} would
seem to require some deep results in number theory (actually in P)

Thomas Pipil

& NP-Completeness

sort of NP-Completeness

Theorem

The following sets are P-reducible to each other in pairs (and hence each
has the same polynomial degree of difficulty): {tautologies},
{DNF tautologies}, D3, {subgraph pairs}.

Remark

We have not been able to add either {primes} or {isomorphic graphpairs}
to the above list. To show {tautologies} is P-reducible to {primes} would
seem to require some deep results in number theory (actually in P),
while showing {tautologies} is P-reducible to {isomorphic graphpairs}
would probably upset a conjecture of Corneil’s from which he deduces
that the graph isomorphism problem can be solved in polynomial time

Thomas Pipil

& NP-Completeness

sort of NP-Completeness

Theorem

The following sets are P-reducible to each other in pairs (and hence each
has the same polynomial degree of difficulty): {tautologies},
{DNF tautologies}, D3, {subgraph pairs}.

Remark

We have not been able to add either {primes} or {isomorphic graphpairs}
to the above list. To show {tautologies} is P-reducible to {primes} would
seem to require some deep results in number theory (actually in P),
while showing {tautologies} is P-reducible to {isomorphic graphpairs}
would probably upset a conjecture of Corneil’s from which he deduces
that the graph isomorphism problem can be solved in polynomial time
(believed to be NP-intermediate).

Thomas Pipil

& NP-Completeness

sort of NP-Completeness

m D, consisting of all DNF tautologies with at most two
conjuncts per disjunct, is in .Z. (Davis-Putnam procedure).
Hence D> cannot be added to the list in theorem 2 (unless
all sets in the list are in .%).

P-Completeness

sort of NP-Completeness

m D, consisting of all DNF tautologies with at most two
conjuncts per disjunct, is in .Z. (Davis-Putnam procedure).
Hence D> cannot be added to the list in theorem 2 (unless
all sets in the list are in .%Z,). (P vs NP !I)

P-Completeness

sort of NP-Completeness

m D, consisting of all DNF tautologies with at most two
conjuncts per disjunct, is in .Z. (Davis-Putnam procedure).
Hence D> cannot be added to the list in theorem 2 (unless
all sets in the list are in .%Z,). (P vs NP !I)

m {DNF tautologies} is actually coNP-complete.

Thomas Pipilikas

& NP-Completeness

Proof of the 2nd Theorem

Sketching the proof

NP-Completeness

Proof of the 2nd Theorem

Sketching the proof

m By the corollary, each of the sets is P-reducible to
{DNF tautologies}.

NP-Completeness

Proof of the 2nd Theorem

Sketching the proof

m By the corollary, each of the sets is P-reducible to
{DNF tautologies}.

m Obviously {DNF tautologies} is P-reducible to {tautologies}.

& NP-Completeness

Proof of the 2nd Theorem

Sketching the proof

m By the corollary, each of the sets is P-reducible to
{DNF tautologies}.

m Obviously {DNF tautologies} is P-reducible to {tautologies}.

m It remains to show {DNF tautologies} is P-reducible to D3
and

Thomas Pipilikas

& NP-Completeness

Proof of the 2nd Theorem

Sketching the proof

m By the corollary, each of the sets is P-reducible to
{DNF tautologies}.

m Obviously {DNF tautologies} is P-reducible to {tautologies}.

m It remains to show {DNF tautologies} is P-reducible to D3
and

m D3 is P-reducible to {subgraph pairs}.

Thomas Pipilikas

m & NP-Completeness

Proof of the 2nd Theorem

To show {DNF tautologies} is P-reducible to Ds:

Proof of the 2nd Theorem

To show {DNF tautologies} is P-reducible to Ds:

Let A= B; V---V Bg be a proposition formula in DNF, where
By = Ry A--- A Rs, and each R; is an atom or negation of an
atom, and s > 3.

Proof of the 2nd Theorem

To show {DNF tautologies} is P-reducible to Ds:

Let A= B; V---V Bg be a proposition formula in DNF, where
By = Ry A--- A Rs, and each R; is an atom or negation of an
atom, and s > 3.

Then A is a tautology if and only if A" is a tautology where
A’:(P/\R3/\../\R3)V(—|P/\R1 /\RZ)VBZVBSV'VB[(,

where P is a new atom.

Proof of the 2nd Theorem

To show {DNF tautologies} is P-reducible to Ds:

Let A= B; V---V Bg be a proposition formula in DNF, where
By = Ry A--- A Rs, and each R; is an atom or negation of an
atom, and s > 3.

Then A is a tautology if and only if A" is a tautology where
A’:(P/\R3/\./\R3)V(—|P/\R1 /\RZ)VBZVBSV'VB[(,

where P is a new atom.

Since we have reduced the number of conjuncts in By, this
process may be repeated until eventually a formula is found with
at most three conjuncts per disjunct.

Proof of the 2nd Theorem

To show {DNF tautologies} is P-reducible to Ds:

Let A= B; V---V Bg be a proposition formula in DNF, where
By = Ry A--- A Rs, and each R; is an atom or negation of an
atom, and s > 3.

Then A is a tautology if and only if A’ is a tautology where
A’:(P/\R3/\./\R3)V(—|P/\R1 /\RZ)VBZVBSV'VB[(,

where P is a new atom.

Since we have reduced the number of conjuncts in By, this
process may be repeated until eventually a formula is found with
at most three conjuncts per disjunct.

Clearly the entire process is bounded in time by a polynomial in
the length of A.

Proof of the 2nd Theorem

To show Dj is P-reducible to {subgraph pairs}:

Proof of the 2nd Theorem

To show Dj is P-reducible to {subgraph pairs}:

Suppose A = Cy V ---V Ck in D3, where Cj = Rj; A Ri2 A Ri3, and
each Rj is an atom or negation of an atom.

Proof of the 2nd Theorem

To show Dj is P-reducible to {subgraph pairs}:

Suppose A = Cy V ---V Ck in D3, where Cj = Rj; A Ri2 A Ri3, and
each Rj is an atom or negation of an atom.

Let Gi = Kk be the complete graph with k vertices.

Proof of the 2nd Theorem

To show Dj is P-reducible to {subgraph pairs}:

Suppose A = Cy V ---V Ck in D3, where Cj = Rj; A Ri2 A Ri3, and
each Rj is an atom or negation of an atom.

Let Gi = Kk be the complete graph with k vertices.

Ky Ko Ks Ky Kiz

Proof of the 2nd Theorem

Let Gy be the graph with vertices {u,-j}, i€[k], j €[], such that uj is
connected by an edge to Uy iff i # r and the two literals (Rj, Rrs) do

not form an opposite pair (that is they are neither of the form (P,—P)
nor of the form (=P, P)).

Proof of the 2nd Theorem

Let Gy be the graph with vertices {u,-j}, i€[k], j €[], such that uj is
connected by an edge to Uy iff i # r and the two literals (Rj, Rrs) do

not form an opposite pair (that is they are neither of the form (P,—P)
nor of the form (=P, P)).

Ci=RiARoARs=RA-PAX C,=Ri1AR2AR3=PARA=X

Ur1

Proof of the 2nd Theorem

In which cases are there no edges between vertices corresponding
to C/, Cr?

Proof of the 2nd Theorem

In which cases are there no edges between vertices corresponding

to C/, Cr?

Cy=—-PAN-PA-P

C,=PANPAP

Uit

Uy |
| . . ‘«
| |
| |
[|
| ‘ ‘
Ui Upn
[])
‘ |
|
[|
| |
| |
U3

Proof of the 2nd Theorem

When is Kk isomorphic to a subgraph of Go?

Proof of the 2nd Theorem

When is Kk isomorphic to a subgraph of Go?

Cy

o —t—-——~<—{

Proof of the 2nd Theorem

m Thus there is a falsifying truth assignment to the formula A
iff there is a graph homomorphism ¢: Gy — Gz such that for
each i, ¢ (i) = uj for some j.

Proof of the 2nd Theorem

m Thus there is a falsifying truth assignment to the formula A
iff there is a graph homomorphism ¢: Gy — Gz such that for
each i, ¢ (i) = uj for some j.

m The homomorphism tells for each i which of Rji, R, Ris
should be falsified, and the selective lack of edges in Go
guarantees that the resulting truth assignment is consistently
specified.

Proof of the 2nd Theorem

m Thus there is a falsifying truth assignment to the formula A
iff there is a graph homomorphism ¢: Gy — Gz such that for
each i, ¢ (i) = uj for some j.

m The homomorphism tells for each i which of Rji, R, Ris
should be falsified, and the selective lack of edges in Go
guarantees that the resulting truth assignment is consistently
specified.

m Then G is isomorphic to a subgraph of Go iff A ¢ Ds.

Proof of the 2nd Theorem

Thus there is a falsifying truth assignment to the formula A
iff there is a graph homomorphism ¢: Gy — Gz such that for
each i, ¢ (i) = uj for some j.

The homomorphism tells for each i which of Rji, Ri2, Ri3
should be falsified, and the selective lack of edges in Go
guarantees that the resulting truth assignment is consistently
specified.

Then Gy is isomorphic to a subgraph of Gy iff A ¢ Ds.
(coNP)

Proof of the 2nd Theorem

Thus there is a falsifying truth assignment to the formula A
iff there is a graph homomorphism ¢: Gy — Gz such that for
each i, ¢ (i) = uj for some j.

The homomorphism tells for each i which of Rji, Ri2, Ri3
should be falsified, and the selective lack of edges in Go
guarantees that the resulting truth assignment is consistently
specified.

Then Gy is isomorphic to a subgraph of Gy iff A ¢ Ds.
(coNP)

Such a construction can be carried out in polynomial time.

Proof of the 2nd Theorem

m Thus there is a falsifying truth assignment to the formula A
iff there is a graph homomorphism ¢: Gy — Gz such that for
each i, ¢ (i) = uj for some j.

m The homomorphism tells for each i which of Rji, R, Ris
should be falsified, and the selective lack of edges in Go
guarantees that the resulting truth assignment is consistently
specified.

m Then G is isomorphic to a subgraph of Go iff A ¢ Ds.
(coNP)

m Such a construction can be carried out in polynomial time.

This completes the proof of the 2nd theorem. m]

a o %
Discussion w

Theorem 1 and its corollary give strong evidence that it is not easy to determine
whether a given proposition formula is a tautology, even if the formula is in
normal disjunctive form. Theorems 1 and 2 together suggest that it is fruitless
to search for a polynomial decision procedure for the subgraph problem, since
success would bring polynomial decision procedures to many other apparently
intractible problems. Of course the same remark applies to any combinatorial
problem to which {tautologies} is P-reducible.

Furthermore, the theorems suggest that {tautologies} is a good candidate for
an interesting set not in %, and I feel it is worth spending considerable effort
trying to prove this conjecture. Such a proof would be a major breakthrough in
complexity theory.

In view of the apparent complexity of {DNF tautologies}, it is interesting to ex-
amine the Davis-Putnam procedure. This procedure was designed to determine
whether a given formula in conjunctive normal form is satisfiable, but of course
the “dual” procedure determines whether a given formula in disjunctive normal
form is a tautology. I have not yet been able to find a series of examples show-
ing the procedure (treated sympathetically to avoid certain pitfalls) must require
more than polynomial time. Nor have I found an interesting upper bound for
the time required.

The Legend Himself

An interview conducted with Cook by Bruce Kapron for the
ACM on February 25, 2016.

s Pipilikas

Theorem Completeness

https://www.youtube.com/watch?v=M_S_pbaMy0o
https://www.youtube.com/watch?v=M_S_pbaMy0o

Bibliography

@ Cook, Stephen A. "The complexity of theorem-proving
procedures." Proceedings of the third annual ACM
symposium on Theory of computing. 1971.

@ Zhou, JianMing, and Yu Li. "What is Cook’s theorem?."
arXiv preprint arXiv:1501.01910 (2015).

@ Zhou, J tanMing, and Yu Li. "Inquiry of P-reduction in Cook’s
1971 Paper-from Oracle machine to Turing machine." arXiv
preprint arXiv:1905.06311 (2019).

Thomas Pipilikas

m & NP-Completeness

