IS, CLIQUE, MAX CUT

Petropanagiotaki Maria

November 032014

MPLA, Algorithms and Complexity 2.

IS

- $G=(V, E), I \subseteq V$

The set I is independent if whenever $i, j \in I$ then there is no edge between i and j .

IS

Input: $G=(V, E), K \in \mathbb{N}$
Question: Is there an independent set I with $|I|=K$?

■ Independent Set is NP-complete.

- $3-S A T \leq^{P} I S$.

■ Given an instance φ of 3-SAT with m clauses $C_{i}=\left(\alpha_{i 1}, \alpha_{i 2}, \alpha_{i 3}\right)$, we construct an instance of IS (G, K) where:
$K=m$
$V=\left\{\alpha_{i j}: i=1, \ldots, m ; j=1,2,3\right\}$
$E=$
$\left\{\left[\alpha_{i j}, \alpha_{i k}\right]: i=1, \ldots, m ; j \neq k\right\} \bigcup\left\{\left[\alpha_{i j}, \alpha_{l k}\right]: i \neq l, \alpha_{i j}=\neg \alpha_{l k}\right\}$
(the first set defines the m triangles and the second group joins opposing literals).

- There is an independent set I of K nodes in $G \Leftrightarrow \varphi$ is satisfiable.

IS

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

\Leftarrow Suppose that such I exists.
Then the true literals are just those which are labels of nodes of I because each triangle offers a node to $I(K=m)$ and there is an edge between the nodes x_{i} and $\neg x_{i}$ so they cannot both be in I
\Rightarrow If a satisfying truth assignment exists, then we identify a true literal in each clause, and pick the node in the triangle of this clause labeled by this literal

4-DEGREE INDEPENDENT SET

- 4-DEGREE INDEPENDENT SET is NP-complete.

■ Proposition 3SAT remains NP-complete even for expressions in which each variable is restricted to appear at most three times, and each literal at most twice.

- We construct the graph as in Independent Set.

■ Each node in the graph has degree at most four.

- Complication: there are clauses now that contain just two literals.
- Such clauses are represented by a single edge joining the two literals.

CLIQUE

K-clique is a set of nodes that have all possible edges between them.

CLIQUE

Input: $G=(V, E), K \in \mathbb{N}$
Question: Is there a set of K nodes that form a clique?
We reduce INDEPENDENT SET to CLIQUE by taking the complement of the graph.

NODE COVER

NODE COVER

Input: $G=(V, E), K \in \mathbb{N}$
Question: Is there a set C with K or fewer nodes such each edge of G has at least one of its endpoints in C ?
I is an independent set of a graph $G=(V, E) \Leftrightarrow V-I$ is a node cover of the same graph.

MAX CUT

- Cut : a partition of the nodes into two nonempty sets S and $V-S$.
- Size of cut: the number of edges between S and $V-S$.
- MIN CUT $\in P$
- MAX CUT is NP-complete. For the proof we will need the NAESAT problem.

MAX CUT

■ NAESAT: in no clause are all literals equal in truth value (neither all true, nor all false)

For an instance φ with m clauses and n variables we construct a graph $G=(V, E)$ as follows:

- $V=\left\{x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}\right\}$

■ If $C_{i}=(\alpha, \beta, \gamma)$ we add to E the three edges of the triangle $[\alpha, \beta, \gamma]$.

- If $C_{i}=(\alpha, \beta)$ we unite the nodes α, β with a double edge.
- If x_{i} or $\neg x_{i}$ occurres n_{i} times in the clauses then we add n_{i} copies of the edge $\left[x_{i}, \neg x_{i}\right]$

$$
\begin{gathered}
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \equiv \\
\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
\end{gathered}
$$

MAX CUT

There is a truth assignment T that satisfies all clauses in the sense of NAESAT
\Leftrightarrow the graph $G=(V, E)$ has a cut $(S, V-S)$ of size $5 m$ or more.

- With no loss of generality we assume that all variables are separated from their negations.
If both x_{i} and $\neg x_{i}$ are on the same side of the cut then we could change the side of one of them without decreasing the size of the cut because x_{i} and $\neg x_{i}$ together offers $2 n_{i}$ edges to the cut.
- The literals in S are true and those in $V-S$ are false.

MAX CUT

- There are $3 m$ edges that connect opposite literals
- The remaining $2 m$ edges must be obtained from the triangles that correspond to the m clauses
Each triangle offers at most two to the size of the cut, so all triangles must be split.
- That means that at least one of the literals in the triangle is false, and at least one true.

MAX BISECTION

MAX BISECTION

Input: $G=(V, E), K \in \mathbb{N}$
Question: Is there a cut of size K or more such that $|S|=|V-S|$?

MAX BISECTION is NP-complete.
Proof: MAXCUT $\leq{ }^{P}$ MAXBISECTION
■ We construct a new graph G^{\prime} by adding $|V|$ disconnected new nodes.

- Every cut of G can be made into a bisection by appropriately splitting the new nodes between S and $V-S$.

BISECTION WIDTH

BISECTION WIDTH

Input: $G=(V, E), K \in \mathbb{N}$
Question: Is there a cut of size K or less such that $|S|=|V-S|$?
BISECTION WIDTH is NP-complete.
Proof: We observe that a graph $G=(V, E)$ where $|V|=2 n$ has a bisection of size K or more \Leftrightarrow the complement of G has a bisection of size $n^{2}-K$.

