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What is it about?

How ”much” communication do we need to
perform a computational task for which
information is distributed among different entities?
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. . . . . .

Why communication complexity?

Simple enough so we can prove lower bounds, general enough so we
can obtain important applications of these lower bounds.

Some applications:

Lower bounds for Data Structures
Lower bounds for parallel and VLSI computations
Auctions (cost for prefenences)
Polyhedral Theory
Time-space tradeoff for Turing Machines
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. . . . . .

Yao’s Model [’79]

Two parties (Alice and Bob) with unlimited computational power

Each holds an n-bit input x , y

They want to compute f (x , y) where f : {0, 1}n × {0, 1}n → {0, 1} is
known to both.

They have agreed upon a protocol of communication P.

COST (P): the number of bits communicated by the players for the
worst-case choice of x , y
Communication Complexity of f , C (f ): the minimum COST (P) over all
valid protocols P
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. . . . . .

Example: Parity

f (x , y):the parity of all bits in x , y
It holds that C (f ) = 2!

C (f ) ≥ 2 because f depends on both x and y

C (f ) ≤ 2 because there is a protocol P with COST (P) = 2 (Alice
sends the parity of x and Bob XORs it with the parity of y)

For every function C (f ) ≤ n + 1
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The Fooling Set Method

Observation: If the communication pattern is the same for (x , x) and
(x ′, x ′) then the output of the protocol is the same for all
(x , x), (x , x ′), (x ′, x), (x ′, x ′).

Say there is a protocol P with COST (P) ≤ n − 1.

Then there are at most 2n−1 communication patterns.

But there are 2n input pairs of the form (x , x).

There exist two distinct pairs with the same communication pattern.

Fooling Set S

∀(x , y) ∈ S : f (x , y) = b

∀(x , y ′), (x ′, y) ∈ S : f (x , y ′) 6= borf (x ′, y) 6= b
.
Theorem
..
......If f has a size-M fooling set then C (f ) ≤ logM
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The Tiling Method

M(f ) the matrix of f

Is partitioned into rectangles depending on the protocol bits (that
turn out to be monochromatic - why?)

χ(f ) is the minimum number of rectangles in any monochromatic
tiling

.
Theorem (AUY’83)
..

......logχ(f ) ≤ C (f ) ≤ 16(logχ(f ))2

Lydia Zakynthinou (NTUA) Communication Complexity June 26, 2014 10 / 24



. . . . . .

The Rank Method

The rank of a matrix, rank(M), can be expressed as the minimum l s.t.:

M =
l∑

i=1

Bi , where rank(Bi ) = 1

.
Theorem
..
......For every function f , χ(f ) ≥ rank(M(f ))

Lydia Zakynthinou (NTUA) Communication Complexity June 26, 2014 11 / 24



. . . . . .

The Discrepancy Method

Discrepancy of M(f ): Disc(f ) = max 1
2(2n)

|
∑

x∈A,y∈B Mx ,y | over all
rectangles A× B
.
Theorem
..

......
χ(f ) ≥ 1

Disc(f )

.
Theorem (Eigenvalue Bound)
..

......Disc(A× B) ≤ 1
22n

λmax(M)
√

|A||B|
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Comparison

The tiling argument is the strongest lower bound

logχ(f ) fully characterizes C (f ) within a constant factor

The rank and fooling set methods are incomparable

Conjecture (log rank conjecture): There is a constant c > 1 such that
C (f ) = O(log(rank(M(f )))c) for all f and input sizes n.
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The Model

Most interesting model: ”Number on the forehead”
Example: C3(f ) = 3 where f (x1, x2, x3) = ⊕maj(x1i , x2i , x3i )
Best known lower bound for the communication complexity of an explicit
function (GIP) is of the form n/2−Ω(k)
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. . . . . .

In a non-deterministic protocol P, the players are both provided an
additional input z of some length m that may depend on x , y . We
require that f (x , y) = 1 iff there exists z that makes the players
output 1.

COST (P) = |z |+number of bits communicated

Inequality and Intersection are in NP.
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. . . . . .

All players have access to a random string r and we define R(f ) to be
the expected number of bits communicated by the protocol.

For example, Equality has a randomized protocol with O(log n)
complexity.
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. . . . . .

PCC = (NPCC
∩

coNPCC ) ⊂ BPPCC

PCC : deterministic polylog time

RPCC : polylog time - error at ”no” instances only at most 1/4 (1-sided
error)

BPPCC : polylog time - correct with probability 3/4 (2-sided error)

NPCC : non-deterministic polylog time
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Computational Complexity: A Modern Approach [Arora, Barak] :
Chapter 13

Communication Complexity [Kushilevitz, Nisan]

An Invitation to Mathematics: from Competitions to Research :
Chapter 8 by A.Razborov
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Thank you!

Lydia Zakynthinou (NTUA) Communication Complexity June 26, 2014 24 / 24


	Definition
	Lower Bound Methods
	Multiparty Communication Complexity
	Non-Determinism
	Randomization
	Classes
	Bibliography

