Communication Complexity

Lydia Zakynthinou

Corelab
NTUA
June 26, 2014

Outline

(1) Definition
(2) Lower Bound Methods
(3) Multiparty Communication Complexity

4 Non-Determinism
(5) Randomization
(6) Classes
(7) Bibliography

Outline

(1) Definition

(2) Lower Bound Methods

(3) Multiparty Communication Complexity
(4) Non-Determinism
(5) Randomization
(6) Classes

(7) Bibliography

What is it about?

How "much" communication do we need to perform a computational task for which information is distributed among different entities?

Why communication complexity?

- Simple enough so we can prove lower bounds, general enough so we can obtain important applications of these lower bounds.
- Some applications:
- Lower bounds for Data Structures
- Lower bounds for parallel and VLSI computations
- Auctions (cost for prefenences)
- Polyhedral Theory
- Time-space tradeoff for Turing Machines

Why communication complexity?

- Simple enough so we can prove lower bounds, general enough so we can obtain important applications of these lower bounds.
- Some applications:
- Lower bounds for Data Structures
- Lower bounds for parallel and VLSI computations
- Auctions (cost for prefenences)
- Polyhedral Theory
- Time-space tradeoff for Turing Machines

Yao's Model ['79]

- Two parties (Alice and Bob) with unlimited computational power
- Each holds an n-bit input x, y
- They want to compute $f(x, y)$ where $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ is known to both.
- They have agreed upon a protocol of communication P
$\operatorname{COST}(P)$: the number of bits communicated by the players for the worst-case choice of x, y
Communication Complexity of $f, C(f)$: the minimum $\operatorname{COST}(P)$ over all valid protocols P

Yao's Model ['79]

- Two parties (Alice and Bob) with unlimited computational power
- Each holds an n-bit input x, y
- They want to compute $f(x, y)$ where $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ is known to both.
- They have agreed upon a protocol of communication P
$\operatorname{COST}(P)$: the number of bits communicated by the players for the worst-case choice of x, y
Communication Complexity of $f, C(f)$: the minimum $\operatorname{COST}(P)$ over all valid protocols P

Yao's Model ['79]

- Two parties (Alice and Bob) with unlimited computational power
- Each holds an n-bit input x, y
- They want to compute $f(x, y)$ where $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ is known to both.
- They have agreed upon a protocol of communication P
> $\operatorname{COST}(P)$: the number of bits communicated by the players for the worst-case choice of x, y Communication Complexity of $f, C(f)$: the minimum $\operatorname{COST}(P)$ over all valid protocols P

Yao's Model ['79]

- Two parties (Alice and Bob) with unlimited computational power
- Each holds an n-bit input x, y
- They want to compute $f(x, y)$ where $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ is known to both.
- They have agreed upon a protocol of communication P.

$\operatorname{COST}(P)$: the number of bits communicated by the players for the worst-case choice of x, y Communication Complexity of $f, C(f)$: the minimum $\operatorname{COST}(P)$ over all valid protocols P

Yao's Model ['79]

- Two parties (Alice and Bob) with unlimited computational power
- Each holds an n-bit input x, y
- They want to compute $f(x, y)$ where $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ is known to both.
- They have agreed upon a protocol of communication P.
$\operatorname{COST}(P)$: the number of bits communicated by the players for the worst-case choice of x, y
Communication Complexity of $f, C(f)$: the minimum $\operatorname{COST}(P)$ over all valid protocols P

Example: Parity

$f(x, y)$:the parity of all bits in x, y
It holds that $C(f)=2$!

- $C(f) \geq 2$ because f depends on both x and y
- $C(f) \leq 2$ because there is a protocol P with $\operatorname{COST}(P)=2$ (Alice sends the parity of x and Bob XORs it with the parity of y)

For every function $C(f) \leq n+1$

Example: Parity

$f(x, y)$:the parity of all bits in x, y
It holds that $C(f)=2$!

- $C(f) \geq 2$ because f depends on both x and y
- $C(f) \leq 2$ because there is a protocol P with $\operatorname{COST}(P)=2$ (Alice sends the parity of x and Bob XORs it with the parity of y)

For every function $C(f) \leq n+1$

Outline

(1) Definition

(2) Lower Bound Methods

(3) Multiparty Communication Complexity

4 Non-Determinism

(5) Randomization
(7) Bibliography

The Fooling Set Method

Observation: If the communication pattern is the same for (x, x) and $\left(x^{\prime}, x^{\prime}\right)$ then the output of the protocol is the same for all $(x, x),\left(x, x^{\prime}\right),\left(x^{\prime}, x\right),\left(x^{\prime}, x^{\prime}\right)$.

- Say there is a protocol P with $\operatorname{COST}(P) \leq n-1$.
- Then there are at most 2^{n-1} communication patterns.
- But there are 2^{n} input pairs of the form (x, x)
- There exist two distinct pairs with the same communication pattern.

Fooling Set S

- $\forall(x, y) \in S: f(x, y)=b$
- $\forall\left(x, y^{\prime}\right),\left(x^{\prime}, y\right) \in S: f\left(x, y^{\prime}\right) \neq \operatorname{borf}\left(x^{\prime}, y\right) \neq b$

Theorem

If f has a size- M fooling set then $C(f) \leq \log M$

The Fooling Set Method

Observation: If the communication pattern is the same for (x, x) and $\left(x^{\prime}, x^{\prime}\right)$ then the output of the protocol is the same for all $(x, x),\left(x, x^{\prime}\right),\left(x^{\prime}, x\right),\left(x^{\prime}, x^{\prime}\right)$.

- Say there is a protocol P with $\operatorname{COST}(P) \leq n-1$.
- Then there are at most 2^{n-1} communication patterns.
- But there are 2^{n} input pairs of the form (x, x).
- There exist two distinct pairs with the same communication pattern.

Fooling Set S

Theorem
If f has a size- M fooling set then $C(f) \leq \log M$

The Fooling Set Method

Observation: If the communication pattern is the same for (x, x) and (x^{\prime}, x^{\prime}) then the output of the protocol is the same for all $(x, x),\left(x, x^{\prime}\right),\left(x^{\prime}, x\right),\left(x^{\prime}, x^{\prime}\right)$.

- Say there is a protocol P with $\operatorname{COST}(P) \leq n-1$.
- Then there are at most 2^{n-1} communication patterns.
- But there are 2^{n} input pairs of the form (x, x).
- There exist two distinct pairs with the same communication pattern.

Fooling Set S

- $\forall(x, y) \in S: f(x, y)=b$
- $\forall\left(x, y^{\prime}\right),\left(x^{\prime}, y\right) \in S: f\left(x, y^{\prime}\right) \neq \operatorname{borf}\left(x^{\prime}, y\right) \neq b$

The Fooling Set Method

Observation: If the communication pattern is the same for (x, x) and (x^{\prime}, x^{\prime}) then the output of the protocol is the same for all $(x, x),\left(x, x^{\prime}\right),\left(x^{\prime}, x\right),\left(x^{\prime}, x^{\prime}\right)$.

- Say there is a protocol P with $\operatorname{COST}(P) \leq n-1$.
- Then there are at most 2^{n-1} communication patterns.
- But there are 2^{n} input pairs of the form (x, x).
- There exist two distinct pairs with the same communication pattern.

Fooling Set S

- $\forall(x, y) \in S: f(x, y)=b$
- $\forall\left(x, y^{\prime}\right),\left(x^{\prime}, y\right) \in S: f\left(x, y^{\prime}\right) \neq \operatorname{borf}\left(x^{\prime}, y\right) \neq b$

Theorem

If f has a size- M fooling set then $C(f) \leq \log M$

The Tiling Method

- $M(f)$ the matrix of f
- Is partitioned into rectangles depending on the protocol bits (that turn out to be monochromatic - why?)
- $\chi(f)$ is the minimum number of rectangles in any monochromatic tiling

Theorem (AUY'83)

$\log \chi(f) \leq C(f) \leq 16(\log \chi(f))^{2}$

The Rank Method

The rank of a matrix, $\operatorname{rank}(M)$, can be expressed as the minimum / s.t.:

$$
M=\sum_{i=1}^{l} B_{i}, \text { where } \operatorname{rank}\left(B_{i}\right)=1
$$

Theorem

For every function $f, \chi(f) \geq \operatorname{rank}(M(f))$

The Discrepancy Method

Discrepancy of $M(f): \operatorname{Disc}(f)=\max \frac{1}{2(2 n)}\left|\sum_{x \in A, y \in B} M_{x, y}\right|$ over all rectangles $A \times B$

Theorem

$\chi(f) \geq \frac{1}{\operatorname{Disc}(f)}$

Theorem (Eigenvalue Bound)

$\operatorname{Disc}(A \times B) \leq \frac{1}{2^{2 n}} \lambda_{\max }(M) \sqrt{|A||B|}$

Comparison

- The tiling argument is the strongest lower bound
- $\log \chi(f)$ fully characterizes $C(f)$ within a constant factor
- The rank and fooling set methods are incomparable
\square
Conjecture (log rank conjecture): There is a constant $c>1$ such that $C(f)=O\left(\log (\operatorname{rank}(M(f)))^{c}\right)$ for all f and input sizes n.

Comparison

- The tiling argument is the strongest lower bound
- $\log \chi(f)$ fully characterizes $C(f)$ within a constant factor
- The rank and fooling set methods are incomparable

Conjecture (log rank conjecture): There is a constant $c>1$ such that $C(f)=O\left(\log (\operatorname{rank}(M(f)))^{c}\right)$ for all f and input sizes n.

Outline

(1) Definition

2 Lower Bound Methods

(3) Multiparty Communication Complexity

(4) Non-Determinism
(5) Randomization
(6) Classes
(7) Bibliography

The Model

Most interesting model: "Number on the forehead"

> Example: $C_{3}(f)=3$ where $f\left(x_{1}, x_{2}, x_{3}\right)=\oplus \operatorname{maj}\left(x_{1 i}, x_{2 i}, x_{3 i}\right)$ Best known lower bound for the communication complexity of an explicit function (GIP) is of the form $n / 2^{-\Omega(k)}$

The Model

Most interesting model: "Number on the forehead" Example: $C_{3}(f)=3$ where $f\left(x_{1}, x_{2}, x_{3}\right)=\oplus \operatorname{maj}\left(x_{1 i}, x_{2 i}, x_{3 i}\right)$ Best known lower bound for the communication complexity of an explicit function (GIP) is of the form $n / 2^{-}$

The Model

Most interesting model: "Number on the forehead" Example: $C_{3}(f)=3$ where $f\left(x_{1}, x_{2}, x_{3}\right)=\oplus \operatorname{maj}\left(x_{1 i}, x_{2 i}, x_{3 i}\right)$
Best known lower bound for the communication complexity of an explicit function (GIP) is of the form $n / 2^{-\Omega(k)}$

Outline

(1) Definition

(2) Lower Bound Methods

(3) Multiparty Communication Complexity
(4) Non-Determinism
(5) Randomization
(6) Classes
(7) Bibliography

- In a non-deterministic protocol P, the players are both provided an additional input z of some length m that may depend on x, y. We require that $f(x, y)=1$ iff there exists z that makes the players output 1.
- $\operatorname{COST}(P)=|z|+$ number of bits communicated
- Inequality and Intersection are in $N P$.

Outline

(1) Definition

(2) Lower Bound Methods

(3) Multiparty Communication Complexity

4 Non-Determinism
(5) Randomization
(6) Classes

(7) Bibliography

- All players have access to a random string r and we define $R(f)$ to be the expected number of bits communicated by the protocol.
- For example, Equality has a randomized protocol with $O(\log n)$ complexity.

Outline

(1) Definition

(2) Lower Bound Methods

(3) Multiparty Communication Complexity

4 Non-Determinism
(5) Randomization
(6) Classes
(7) Bibliography

$$
P^{C C}=\left(N P^{C C} \cap \operatorname{coNP} P^{C C}\right) \subset B P P^{C C}
$$

- $P^{C C}$: deterministic polylog time
- $R P^{C C}$: polylog time - error at " no" instances only at most $1 / 4$ (1-sided error)
- $B P P^{C C}$: polylog time - correct with probability $3 / 4$ (2-sided error)
- $N P^{C C}$: non-deterministic polylog time

Outline

(1) Definition

(2) Lower Bound Methods

(3) Multiparty Communication Complexity
4) Non-Determinism
(5) Randomization

6 Classes
(7) Bibliography

- Computational Complexity: A Modern Approach [Arora, Barak] : Chapter 13
- Communication Complexity [Kushilevitz, Nisan]
- An Invitation to Mathematics: from Competitions to Research : Chapter 8 by A.Razborov

Thank you!

