The "Berman-Hartmanis" Conjecture, NP-isomorphism, padding

Zampetakis Konstantinos

MPLA

November 20, 2014

Overview

Polynomial-time isomorphism

Definition(Polynomial-time isomorphism)

We say that tow languages $K, L \subset \Sigma^{*}$ are polynomialy isomorphic if there is a function $h: \Sigma^{*} \rightarrow \Sigma^{*}$, such that:
(1) h is one-to-one and onto
(2) For each $x \in \Sigma^{*}, x \in K \Leftrightarrow h(x) \in L$
(3) Both, h and h^{-1}, are polynomial-time computable.

Polynomial-time isomorphism vs Polynomial-time reduction

Polynomial
 Reductions

Polynomial Isomorphisms

Figure : A polynomial-time isomorphism is also a polynomial-time reduction

Polynomial-time isomorphism vs Polynomial-time reduction

- But which polynomial-time reductions are polynomial-time isomorphisms?

Polynomial-time isomorphism vs Polynomial-time reduction

- But which polynomial-time reductions are polynomial-time isomorphisms?
- Most of them are not!

Polynomial-time isomorphism vs Polynomial-time reduction

- But which polynomial-time reductions are polynomial-time isomorphisms?
- Most of them are not!
- But the reduction between Clique to Indepentent Set is.

From Polynomial-time reduction to Polynomial-time isomorphism ?

Question: Can we turn, systematicly, a reduction to an isomorphism?

From Polynomial-time reduction to Polynomial-time isomorphism ?

Question: Can we turn, systematicly, a reduction to an isomorphism?

Answer: Padding!

Padding

Definition(Padding)

Let $L \subset \Sigma^{*}$ be a language. We say tha a function pad : $\left(\Sigma^{*}\right)^{2} \rightarrow \Sigma^{*}$ is a padding function for L if it holds that:
(1) Is computable in logarithmic space (or polynomial time)
(2) For any $x, y \in \Sigma^{*}, \operatorname{pad}(x, y) \in L \Leftrightarrow x \in L$
(3) For any $x, y \in \Sigma^{*},|\operatorname{pad}(x, y)|>|x|+|y|$.
(1) There exist a logarithmic space (or polynomial time) algorithm which, given $\operatorname{pad}(x, y)$ recovers y

Padding Example 1 SAT

Input formula:

$$
x=\left(x_{1} \vee \neg x_{3} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{2}\right)
$$

Word y :

$$
y=0101
$$

Padding Example 1 SAT

Padding Result:

$$
\operatorname{pad}(x, y)=
$$

$$
\left(x_{1} \vee \neg x_{3} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{2}\right) \wedge\left(x_{5}\right) \wedge\left(x_{5}\right) \wedge\left(x_{5}\right) \wedge\left(\neg x_{6}\right) \wedge\left(x_{7}\right) \wedge\left(\neg x_{8}\right) \wedge\left(x_{9}\right)
$$

Padding Example 2 Clique

Figure : Padding $x=(G, K)$ with y

Padding

Lemma

Supose that R is a reduction from the language K to language L, and that pad is a padding function for L. Then the function mapping $x \in \Sigma^{*}$ to $\operatorname{pad}(R(x), x)$ is length-increasing, one-to-one reduction. Also, there is a logarithmic space (polynomial time) algorithm R^{-1} which, given $\operatorname{pad}(R(x), x)$ recovers x.

Padding

Proof.

The fact that $\operatorname{pad}(R(x), x)$ is a reduction and is length-increasing follows easily from the properties 1,2 and 3 of padding functions, respectively. The last property gives us that $\operatorname{pad}(R(x), x)$ recovers x in logarithmic space (polynomial time).

Padding

Theorem

Suppose that $L, K \subset \Sigma^{*}$, and $R: K \rightarrow L, S: L \rightarrow K$ are reductions. Suppose further that these reductions are one-to-one, length-increasing, and logarithmic space (polynomial time) invertible. Then K and L are polynomially isomorphic.

Padding

Proof.

Let the S-chain of x is defined as:

$$
\left(x, S^{-1}(X), R^{-1}\left(S^{-1}(X)\right), S^{-1}\left(R^{-1}\left(S^{-1}(X)\right)\right), \ldots\right)
$$

It's finite, since S^{-1}, R^{-1} are length-decreasing. We defineh: $\Sigma^{*} \rightarrow \Sigma^{*}$ as

- $h(x)=S^{-1}(x)$, if the S-chain stops on S
- $h(x)=R(x)$, if the S-chain stops on R

Then if $h(x)=h(y)$ we have $h(x)=S^{-I}(X)=R(y)=h(y), y=R^{-1}\left(S^{-1}(X)\right)$, contradiction. For onto, similarly we define :

- $h^{-1}(x)=S(x)$, if the R-chain stops on S
- $h^{-1}(x)=R^{-1}(x)$, if the R-chain stops on R

The other properties are trivial.

Berman-Hartmanis Conjecture(1977)

Berman-Hartmanis Conjecture (Isomorphism Conjecture)

All NP -complete languages are pairwise polynomial-time isomorphic (P - isomorphic) to each other.

Berman-Hartmanis Conjecture(1977)

Berman-Hartmanis Conjecture (Isomorphism Conjecture)

All NP -complete languages are pairwise polynomial-time isomorphic (P - isomorphic) to each other.

In their paper, Berman and Hartmanis showed that all the then-known NP -complete problems were pairwise P -isomorphic, by finding a padding for each one of them.

Berman-Hartmanis Conjecture(1977)

Berman-Hartmanis Conjecture (Isomorphism Conjecture)

All NP -complete languages are pairwise polynomial-time isomorphic (P - isomorphic) to each other.

In their paper, Berman and Hartmanis showed that all the then-known NP -complete problems were pairwise P -isomorphic, by finding a padding for each one of them.

Remark

If Berman-Hartmanis Conjecture holds $\Rightarrow P \neq N P$

Sparse Languages

Definition

A set A is called sparse, if there is exist a polynomial p such that

$$
\mid\{x \in A:|x| \leq n, \text { where } n \in \mathbb{N}\} \mid \leq p(n)
$$

Sparse Languages

Definition

A set A is called sparse, if there is exist a polynomial p such that

$$
\mid\{x \in A:|x| \leq n, \text { where } n \in \mathbb{N}\} \mid \leq p(n)
$$

Remarks:
(1) The SAT is not sparse, since there are constants $\epsilon>0$ and $\delta>0$ such that at least $\epsilon 2^{\delta n}$ strings of length at most n belong to SAT .

Sparse Languages

Definition

A set A is called sparse, if there is exist a polynomial p such that

$$
\mid\{x \in A:|x| \leq n, \text { where } n \in \mathbb{N}\} \mid \leq p(n)
$$

Remarks:
(1) The SAT is not sparse, since there are constants $\epsilon>0$ and $\delta>0$ such that at least $\epsilon 2^{\delta n}$ strings of length at most n belong to SAT.
(2) No sparse language can be P-isomorphic to SAT.

Mahaney's Theorem

We can show something stronger than that:

Mahaney's Theorem

We can show something stronger than that:

Theorem (Mahaney's Theorem)

If $P \neq N P$, then no $N P$-complete language can be sparse.

