Dynamic Epistemic Logic

Graduate Course

ALMA / Corelab National Technical University of Athens

Spring semester 2021

2 Systems of modal logic

Let ϕ be a modal formula and \mathcal{F} a class of frames. We say that ϕ defines \mathcal{F} if for all frames F we have that

 $F \in F$ if and only if $F \models \phi$

Graduate Course (NTUA)

Property	Modal formula
1 Reflexive: $\forall w (wRw)$	$T: \Box p \rightarrow p$
2 Symmetric: $\forall w \forall v (wRv \rightarrow vRw)$	$B: p \to \Box \Diamond p$
Serial: ∀w∃v(wRv)	$D: \Box p \rightarrow \Diamond p$
	$4\colon \Box p \to \Box \Box p$
③ Euclidean: $\forall w \forall v \forall u (wRv \land wRu \rightarrow vRu)$	5: $\Diamond p \rightarrow \Box \Diamond p$

Property	Modal formula
3 Reflexive: $\forall w (wRw)$	$T\colon \Box p o p$
2 Symmetric: $\forall w \forall v (wRv \rightarrow vRw)$	$B: p \to \Box \Diamond p$
3 Serial: ∀w∃v(wRv)	$D: \Box p \rightarrow \Diamond p$
) $4: \Box p \rightarrow \Box \Box p$
) 5: $\Diamond p \rightarrow \Box \Diamond p$
• Partially functional: $\forall w \forall v \forall u (wRv \land wR)$	$Ru \to v = u) \qquad DC: \Diamond p \to \Box p$

	Property	Modal formula
1	Reflexive: $\forall w (wRw)$	$T: \Box p \rightarrow p$
2	Symmetric: $\forall w \forall v (wRv \rightarrow vRw)$	$B: p \to \Box \Diamond p$
3	Serial: $\forall w \exists v (wRv)$	$D: \Box p \rightarrow \Diamond p$
4	Transitive: $\forall w \forall v \forall u (wRv \land vRu \rightarrow wRu)$	$4\colon \Box p \to \Box \Box p$
5	Euclidean: $\forall w \forall v \forall u (wRv \land wRu \rightarrow vRu)$	5: $\Diamond p \rightarrow \Box \Diamond p$
6	Partially functional: $\forall w \forall v \forall u (wRv \land wRu \rightarrow v = u)$	$DC: \Diamond p \rightarrow \Box p$
7	Functional: $\forall w \exists ! v (wRv)$	$D \& DC: \Diamond p \leftrightarrow \Box p$

	Property	Modal formula
1	Reflexive: $\forall w (wRw)$	$T: \Box p \rightarrow p$
2	Symmetric: $\forall w \forall v (wRv \rightarrow vRw)$	$B: p \to \Box \Diamond p$
3	Serial: $\forall w \exists v (wRv)$	$D: \Box p \rightarrow \Diamond p$
4	Transitive: $\forall w \forall v \forall u (wRv \land vRu \rightarrow wRu)$	$4: \ \Box p \to \Box \Box p$
5	Euclidean: $\forall w \forall v \forall u (wRv \land wRu \rightarrow vRu)$	5: $\Diamond p \rightarrow \Box \Diamond p$
6	Partially functional: $\forall w \forall v \forall u (wRv \land wRu \rightarrow v = u)$	$DC: \Diamond p \rightarrow \Box p$
7	Functional: $\forall w \exists ! v (w R v)$	$D \& DC: \Diamond p \leftrightarrow \Box p$
8	Dense: $\forall w \forall v (wRv \rightarrow \exists u (wRu \land uRv))$	$4C: \Box \Box p \to \Box p$

Axioms

 \bullet (P) all instances of propositional tautologies in the language \mathcal{L}_{\square}

• (K)
$$\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$$

Rules

- (MP) from $\vdash \phi$ and $\vdash \phi \rightarrow \psi$ infer $\vdash \psi$
- (NC) from $\vdash \phi$ infer $\vdash \Box \phi$

System of modal logic A set of formulas Σ is a system of modal logic iff it contains all propositional tautologies (PL) and is closed under modus ponens (MP) and uniform substitution (US).

Uniform substitution: from $\vdash \phi$, infer $\vdash \theta$, where θ is obtained from ϕ by uniformly replacing proposition variables in ϕ by arbitrary formulas.

We will usually just say '**logic**' or sometimes '**system**' instead of 'system of modal logic'.

The **theorems** of a logic are just the formulas in it. We write $\vdash_{\Sigma} A$ to mean that A is a theorem of Σ . Given a set of formulas Γ and a set of rules of inference R, define Σ to be the smallest system of modal logic containing Γ and closed under R.

Equivalently, given the definition of 'system of modal logic', the smallest set of formulas containing PL and Γ , and closed under R, modus ponens (MP), and uniform substitution (US).

 Γ and R are sometimes called '**axioms**' of Σ .

$$T: \Box p \to p \iff T_{\Diamond}: p \to \Diamond p$$

$$B: p \to \Box \Diamond p \iff \Diamond \Box p \to p$$

$$D: \Box p \to \Diamond p$$

$$4: \Box p \to \Box \Box p$$

$$5: \neg \Box p \to \Box \neg \Box p \iff \Diamond p \to \Box \Diamond p \iff \Diamond \Box p \to \Box p$$

For example,

$$\Box p \to p \iff$$
$$\neg p \to \neg \Box p \iff$$
$$\neg p \to \Diamond \neg p \iff$$
$$q \to \Diamond q$$

More systems

$$T: \Box p \to p \iff T_{\Diamond}: p \to \Diamond p$$

$$B: p \to \Box \Diamond p \iff \Diamond \Box p \to p$$

$$D: \Box p \to \Diamond p$$

$$4: \Box p \to \Box \Box p \iff 4_{\Diamond}: \Diamond \Diamond p \to \Diamond p$$

$$5: \neg \Box p \to \Box \neg \Box p \iff \Diamond p \to \Box \Diamond p \iff \Diamond \Box p \to \Box p$$

Systems of modal logic

- K+T is called T
- K+B is called KB
- K+D is called KD
- K+4 is called K4

More systems

$$T: \Box p \to p \iff T_{\Diamond}: p \to \Diamond p$$

$$B: p \to \Box \Diamond p \iff \Diamond \Box p \to p$$

$$D: \Box p \to \Diamond p$$

$$4: \Box p \to \Box \Box p \iff 4_{\Diamond}: \Diamond \Diamond p \to \Diamond p$$

$$5: \neg \Box p \to \Box \neg \Box p \iff \Diamond p \to \Box \Diamond p \iff \Diamond \Box p \to \Box p$$

Systems of modal logic

- K+T is called T
- K+B is called KB
- K+D is called KD
- K+4 is called K4
- K+T+4 is called S4
- K+T+4+5 is called S5
- K+D+4+5 is called KD45

$T \subseteq S4$ R	eminder: $K + T \subseteq K + T + 4$
--------------------	--------------------------------------

T ⊆ S4	Reminder: $K + T \subseteq K + T + 4$
K4 ⊆ S4	

T ⊆ S4	Reminder: $K + T \subseteq K + T + 4$
K4 ⊆ S4	
S4 ⊆ S5	

T ⊆ S4	Reminder: $K + T \subseteq K + T + 4$
K4 ⊆ S4	
S4 ⊆ S5	

 $\mathsf{K} \subseteq \Sigma \text{ for every } \Sigma \in \{\mathsf{T},\mathsf{KB},\mathsf{KD},\mathsf{K4},\mathsf{S4},\mathsf{S5},\mathsf{KD45}\}$

 $\mathsf{KD}\subseteq\mathsf{T}$

Proof: We prove that $\vdash_T D$.

1. $\Box p \rightarrow p$	Axiom T
2. $p \rightarrow \Diamond p$	Axiom T_{\Diamond}
3. $\Box p \rightarrow \Diamond p$	1,2, Prop. reasoning, MP

S5 = KT5 = KT45 = KT4B = KDB4 = KDB5

Graduate Course (NTUA)

S5 = KT5 = KT45 = KT4B = KDB4 = KDB5

Proof sketch: $KT5 \subseteq KT45 \subseteq KT4B \subseteq KDB4 \subseteq KDB5 \subseteq KT5$

S5 = KT5 = KT45 = KT4B = KDB4 = KDB5

Proof sketch: $KT5 \subseteq KT45 \subseteq KT4B \subseteq KDB4 \subseteq KDB5 \subseteq KT5$ For example, $KT4B \subseteq KDB4$, as $\vdash_{KDB4} T$:

S5 = KT5 = KT45 = KT4B = KDB4 = KDB5

Proof sketch: $KT5 \subseteq KT45 \subseteq KT4B \subseteq KDB4 \subseteq KDB5 \subseteq KT5$ For example, $KT4B \subseteq KDB4$, as $\vdash_{KDB4} T$:

1. $\Box p \rightarrow \Box \Box p$

Axiom 4

S5 = KT5 = KT45 = KT4B = KDB4 = KDB5

Proof sketch: $KT5 \subseteq KT45 \subseteq KT4B \subseteq KDB4 \subseteq KDB5 \subseteq KT5$ For example, $KT4B \subseteq KDB4$, as $\vdash_{KDB4} T$:

1. $\Box p \rightarrow \Box \Box p$ Axiom 42. $\Box \Box p \rightarrow \Diamond \Box p$ Axiom D, US

S5 = KT5 = KT45 = KT4B = KDB4 = KDB5

Proof sketch: $KT5 \subseteq KT45 \subseteq KT4B \subseteq KDB4 \subseteq KDB5 \subseteq KT5$ For example, $KT4B \subseteq KDB4$, as $\vdash_{KDB4} T$:

1. $\Box p \rightarrow \Box \Box p$ Axiom 42. $\Box \Box p \rightarrow \Diamond \Box p$ Axiom D, US3. $\Diamond \Box p \rightarrow p$ Axiom B

S5 = KT5 = KT45 = KT4B = KDB4 = KDB5

Proof sketch: $KT5 \subseteq KT45 \subseteq KT4B \subseteq KDB4 \subseteq KDB5 \subseteq KT5$ For example, $KT4B \subseteq KDB4$, as $\vdash_{KDB4} T$:

1. $\Box p \rightarrow \Box \Box p$	Axiom 4
2. $\Box \Box p \rightarrow \Diamond \Box p$	Axiom D, US
3. $\Diamond \Box p \rightarrow p$	Axiom B
4. $\Box p \rightarrow p$	1,2,3, Prop. reasoning, MP

We define the following classes of frames:

- \mathcal{K} = the class of all frames
- 2 \mathcal{KD} = the class of serial frames
- T =the class of reflexive frames
- $\mathcal{K}4 = \text{the class of transitive frames}$
- \mathcal{KB} = the class of symmetric frames
- **(5)** $\mathcal{KD}45$ = the class of serial, transitive and euclidean frames
- S_5 = the class of reflexive, transitive and symmetric frames = the class of frames where the accessibility relation is an equivalence relation

- Think of a frame as a model $M = \langle S, R, V \rangle$ without the valuation V. A frame is the underlying graph of a model.
- We say that a formula φ is valid with respect to a class of frames F, symb. F ⊨ φ, if φ is valid on every frame F in F.

Definition of soundness

An axiomatic system Σ is **sound** with respect to a class \mathcal{F} of frames if every formula provable from Σ is valid with respect to \mathcal{F} .

Definition of completeness

An axiomatic system Σ is **complete** with respect to a class \mathcal{F} of frames if every formula that is valid with respect to \mathcal{F} is provable from Σ .

We think of an axiom system as **characterizing a class of frames** exactly if it provides a sound and complete axiomatization of that class.

K is a sound and complete axiomatization with respect to ${\cal K}$ (the class of all frames).

T is a sound and complete axiomatization with respect to \mathcal{T} (the class of reflexive frames).

KB is a sound and complete axiomatization with respect to \mathcal{KB} (the class of symmetric frames).

KD is a sound and complete axiomatization with respect to \mathcal{KD} (the class of serial frames).

K4 is a sound and complete axiomatization with respect to $\mathcal{K}4$ (the class of transitive frames).

KD45 is a sound and complete axiomatization with respect to \mathcal{KD} 45 (the class of serial, transitive and euclidean frames).

S5 is a sound and complete axiomatization with respect to S5 (the class of reflexive, transitive and symmetric frames).

K is a sound axiomatization with respect to ${\cal K}$ (the class of all frames).

Proof: Every K-provable formula is valid in \mathcal{K} . Let $F \in \mathcal{K}$.

- 1. If ϕ is a propositional tautology, then $F \vDash \phi$.
- 2. If $\mathcal{K} \vDash \phi$ and $\mathcal{K} \vDash \phi \rightarrow \psi$, then for any frame $F \in \mathcal{K}$ it holds that $F \vDash \psi$.
- 3. $F \vDash \Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$.
- 4. If $\mathcal{K} \vDash \phi$, then for any frame $F \in \mathcal{K}$ it holds that $F \vDash \Box \phi$.
Definition

1. A set of formulas Σ is **consistent** iff there is no ϕ such that both $\vdash_{\Sigma} \phi$ and $\vdash_{\Sigma} \neg \phi$ hold.

2. A formula ψ is Σ -consistent iff $\Sigma \cup \{\psi\}$ is consistent.

Fact 1 A formula ψ is Σ -consistent iff $\neq_{\Sigma} \neg \psi$.

Proposition

 Σ is complete with respect to a class of frames \mathcal{F} iff every Σ -consistent formula is satisfiable on some frame $F \in \mathcal{F}$.

Proof: 1. (\Leftarrow) We argue by contraposition. Suppose Σ is not complete with respect to \mathcal{F} . Then there is a formula ϕ such that $\mathcal{F} \vDash \phi$ but $\not\models_{\Sigma} \phi$. The formula $\neg \phi$ is Σ -consistent, but not satisfiable on any frame in \mathcal{F} .

(⇒) We argue by contraposition. Suppose there is a Σ -consistent formula ϕ that is not satisfiable on any frame in \mathcal{F} . Then, $\neg \phi$ is valid with respect to \mathcal{F} . But $\not\models_{\Sigma} \neg \phi$, since ϕ is Σ -consistent. So Σ is not complete with respect to \mathcal{F} .

K is a complete axiomatization with respect to ${\cal K}$ (the class of all frames).

Every K-consistent formula is satisfiable on some frame $F \in \mathcal{K}$.

- We are going to build a model M^c such that every K-consistent formula is satisfiable on M^c.
- Each state of the model M^c corresponds to a maximal K-consistent set of formulas. And conversely, every maximal K-consistent set of formulas corresponds to a state in M^c. There is a one-to-one correspodence between the set of states and the set of maximal K-consistent sets.
- A K-consistent formula φ is satisfiable on every state that corresponds to a maximal K-consistent set containing φ.
- This model is called the canonical model.

The canonical model

э

(日) (四) (日) (日) (日)

Definition

A set Γ of formulas is a **maximal consistent** set if it is consistent and for every $\phi \notin \Gamma$, the set $\Gamma \cup \{\phi\}$ is inconsistent.

Deduction Theorem

If $\Gamma \cup \{\phi\} \vdash \psi$, then $\Gamma \vdash \phi \rightarrow \psi$.

The converse of the Deduction Theorem also holds and it is essentially an application of Modus Ponens.

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set Γ^+ .

In addition, if Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

2
$$\phi \land \psi \in \Gamma^+$$
 iff $\phi \in \Gamma^+$ and $\psi \in \Gamma^+$

③ if
$$\phi \in \Gamma^+$$
 and $\phi \rightarrow \psi \in \Gamma^+$, then $\psi \in \Gamma^+$,

• if ϕ is K provable, then $\phi \in \Gamma^+$.

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set Γ^+ .

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

Proof:

• Let Γ be a consistent set and $\phi \in \mathcal{L}_{\Box}$.

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set Γ^+ .

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

- Let Γ be a consistent set and $\phi \in \mathcal{L}_{\Box}$.
- Then, (at least) one of $\Gamma \cup \{\phi\}$ or $\Gamma \cup \{\neg\phi\}$ is consistent.

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set $\Gamma^+.$

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

- Let Γ be a consistent set and $\phi \in \mathcal{L}_{\Box}$.
- Then, (at least) one of $\Gamma \cup \{\phi\}$ or $\Gamma \cup \{\neg\phi\}$ is consistent.
- Assume that $\Gamma \cup \{\neg\phi\}$ is inconsistent.

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set $\Gamma^+.$

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

- Let Γ be a consistent set and $\phi \in \mathcal{L}_{\Box}$.
- Then, (at least) one of $\Gamma \cup \{\phi\}$ or $\Gamma \cup \{\neg\phi\}$ is consistent.
- Assume that $\Gamma \cup \{\neg\phi\}$ is inconsistent.
- Then, $\vdash_{\Gamma} \phi$ (by Fact 1).

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set $\Gamma^+.$

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

- Let Γ be a consistent set and $\phi \in \mathcal{L}_{\Box}$.
- Then, (at least) one of $\Gamma \cup \{\phi\}$ or $\Gamma \cup \{\neg\phi\}$ is consistent.
- Assume that $\Gamma \cup \{\neg\phi\}$ is inconsistent.
- Then, $\vdash_{\Gamma} \phi$ (by Fact 1).
- So there is a proof of ϕ from Γ (and Γ is consistent).

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set Γ^+ .

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

- Let Γ be a consistent set and $\phi \in \mathcal{L}_{\Box}$.
- Then, (at least) one of $\Gamma \cup \{\phi\}$ or $\Gamma \cup \{\neg\phi\}$ is consistent.
- Assume that $\Gamma \cup \{\neg\phi\}$ is inconsistent.
- Then, $\vdash_{\Gamma} \phi$ (by Fact 1).
- So there is a proof of ϕ from Γ (and Γ is consistent).
- Therefore, $\Gamma \cup \{\phi\}$ is consistent.

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set $\Gamma^+.$

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

Proof: Let $\phi_0, \phi_1, \phi_2, ...$ be an enumeration of formulas in \mathcal{L}_{\Box} . We define the set Γ^+ as follows:

$$\Gamma_0 = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{\phi_n\}, & \text{if this is K-consistent} \\ \Gamma_n \cup \{\neg \phi_n\}, & \text{otherwise} \end{cases}$$

Every K-consistent set Γ of formulas can be extended to a K-maximal consistent set $\Gamma^+.$

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

Proof: Let $\phi_0, \phi_1, \phi_2, ...$ be an enumeration of formulas in \mathcal{L}_{\Box} . We define the set Γ^+ as follows:

$$\Gamma_0 = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{\phi_n\}, & \text{if this is K-consistent} \\ \Gamma_n \cup \{\neg \phi_n\}, & \text{otherwise} \end{cases}$$

$$\Gamma^+ = \bigcup_{n \ge 0} \Gamma_n$$

If Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• for every formula ϕ , exactly one of ϕ and $\neg \phi$ is in Γ^+ ,

Proof: Let Γ^+ be a maximal consistent set and $\phi \in \mathcal{L}_{\Box}$. Then,

- either $\Gamma^+ \cup \{\phi\}$ is consistent and so $\phi \in \Gamma^+$, since Γ^+ is maximal,
- or $\Gamma^+ \cup \{\phi\}$ is inconsistent, which implies that $\Gamma^+ \cup \{\neg\phi\}$ is consistent and so $\neg\phi \in \Gamma^+$, since Γ^+ is maximal.

In addition, if Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• $\phi \land \psi \in \Gamma^+$ iff $\phi \in \Gamma^+$ and $\psi \in \Gamma^+$,

Proof: (\Rightarrow) Let Γ^+ be a maximal consistent set and $\phi \land \psi \in \Gamma^+$. Then,

- $\phi \in \Gamma^+$. For otherwise, we would have $\neg \phi \in \Gamma^+$ and Γ^+ would be inconsistent.
- $\psi \in \Gamma^+$ for the same reason.

 (\Leftarrow) Similarly.

In addition, if Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• if $\phi \in \Gamma^+$ and $\phi \rightarrow \psi \in \Gamma^+$, then $\psi \in \Gamma^+$,

Proof: Let Γ^+ be a maximal consistent set and $\phi \in \Gamma^+$ and $\phi \to \psi \in \Gamma^+$. Then,

• $\vdash_{\Gamma^+} \psi$, since K is closed under Modus Ponens. So it holds that $\Gamma^+ \cup \{\psi\}$ is consistent and $\psi \in \Gamma^+$.

In addition, if Γ^+ is a K-maximal consistent set, then it satisfies the following properties:

• if ϕ is K provable, then $\phi \in \Gamma^+$.

Proof: Let Γ^+ be a maximal consistent set and ϕ is K provable. Then, • $\vdash_{\Gamma^+} \phi$. So it holds that $\Gamma^+ \cup \{\phi\}$ is consistent and $\phi \in \Gamma^+$. Every K-consistent formula is satisfiable on some frame $F \in \mathcal{K}$.

Proof:

We construct a special model \mathcal{M}^c in which every K-consistent formula is satisfiable!

 \mathcal{M}^{c} is called the *canonical* model.

 \mathcal{M}^c has a state \textit{s}_{Γ} corresponding to every maximal consistent set $\Gamma.$

Every K-consistent formula is satisfiable on some frame $F \in \mathcal{K}$.

Proof: $\mathcal{M}^c \text{ has a state } s_{\Gamma} \text{ corresponding to every maximal consistent set } \Gamma.$

We will show that:

$$\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \vDash \phi \text{ iff } \phi \in \Gamma. \quad (*)$$

It suffices to prove (*). Why?

Proof of completeness

We define the canonical model \mathcal{M}^c for K to be the triple (W^c, R^c, V^c) , where:

• $W^c = \{s_{\Gamma} | \Gamma \text{ is a maximal consistent set} \}$

Proof of completeness

We define the canonical model \mathcal{M}^c for K to be the triple (W^c, R^c, V^c) , where:

- $W^c = \{s_{\Gamma} | \Gamma \text{ is a maximal consistent set} \}$
- $s_{\Gamma}R^{c}s_{\Delta} \iff \text{if } \Box \phi \in \Gamma$, then $\phi \in \Delta$, for every $\phi \in \mathcal{L}_{\Box}$

We define the canonical model \mathcal{M}^c for K to be the triple (W^c, R^c, V^c) , where:

•
$$s_{\Gamma}R^{c}s_{\Delta} \iff \text{if } \Box \phi \in \Gamma$$
, then $\phi \in \Delta$, for every $\phi \in \mathcal{L}_{\Box}$

We define $\Gamma_{\Box} = \{\phi \mid \Box \phi \in \Gamma\}$. The definition of R^c becomes:

- $s_{\Gamma}R^{c}s_{\Delta} \iff \Gamma_{\Box} \subseteq \Delta$ or
- $R^c = \{(s_{\Gamma}, s_{\Delta}) | \Gamma_{\Box} \subseteq \Delta\}$

We define the canonical model \mathcal{M}^c for K to be the triple (W^c, R^c, V^c) , where:

- $W^c = \{ s_{\Gamma} | \Gamma \text{ is a maximal consistent set} \}$
- $s_{\Gamma}R^{c}s_{\Delta} \iff \text{if } \Box \phi \in \Gamma$, then $\phi \in \Delta$, for every $\phi \in \mathcal{L}_{\Box}$
- $V^c(p) = \{s_{\Gamma} \mid p \in \Gamma\}$

We show by induction on the structure of ϕ that for all Γ , we have that:

$$\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \vDash \phi \text{ iff } \phi \in \Gamma. \quad (*)$$

For all
$$\Gamma$$
, \mathcal{M}^{c} , $s_{\Gamma} \models \phi$ iff $\phi \in \Gamma$. (*)

 If φ is a propositional variable, then from the definition of V^c, it holds that s_Γ ⊨ p iff p ∈ Γ.

Recall that we defined $V^{c}(p) = \{s_{\Gamma} | p \in \Gamma\}.$

• $\phi = \neg \psi$ Let $s_{\Gamma} \in W^c$.

Image: Image:

э

- $\phi = \neg \psi$
- Let $s_{\Gamma} \in W^{c}$.

By inductive hypothesis, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

- $\phi = \neg \psi$
- Let $s_{\Gamma} \in W^{c}$.

By inductive hypothesis, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

Equivalently, $\mathcal{M}^{c}, s_{\Gamma} \neq \psi$ iff $\psi \notin \Gamma$.

- $\phi = \neg \psi$
- Let $s_{\Gamma} \in W^{c}$.

By inductive hypothesis, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

Equivalently, $\mathcal{M}^{c}, s_{\Gamma} \neq \psi$ iff $\psi \notin \Gamma$.

By the definition of truth, $\mathcal{M}^c, s_{\Gamma} \vDash \neg \psi$ iff $\psi \notin \Gamma$.

- $\phi = \neg \psi$
- Let $s_{\Gamma} \in W^{c}$.

By inductive hypothesis, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

Equivalently, $\mathcal{M}^{c}, s_{\Gamma} \neq \psi$ iff $\psi \notin \Gamma$.

By the definition of truth, $\mathcal{M}^c, s_{\Gamma} \vDash \neg \psi$ iff $\psi \notin \Gamma$.

Since Γ is maximal consistent, $\mathcal{M}^c, s_{\Gamma} \vDash \neg \psi$ iff $\neg \psi \in \Gamma$ by the Lemma.

• $\phi = \neg \psi$

Let $s_{\Gamma} \in W^{c}$.

By inductive hypothesis, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

Equivalently, $\mathcal{M}^{c}, s_{\Gamma} \neq \psi$ iff $\psi \notin \Gamma$.

By the definition of truth, $\mathcal{M}^c, s_{\Gamma} \models \neg \psi$ iff $\psi \notin \Gamma$.

Since Γ is maximal consistent, $\mathcal{M}^c, s_{\Gamma} \vDash \neg \psi$ iff $\neg \psi \in \Gamma$ by the Lemma.

So,
$$\mathcal{M}^{c}, s_{\Gamma} \vDash \phi$$
 iff $\phi \in \Gamma$.

• $\phi = \psi_1 \wedge \psi_2$ Let $s_{\Gamma} \in W^c$.

Image: Image:

э

• $\phi = \psi_1 \wedge \psi_2$

Let $s_{\Gamma} \in W^c$.

By inductive hypothesis, $\mathcal{M}^c, s_{\Gamma} \models \psi_1$ iff $\psi_1 \in \Gamma$ and $\mathcal{M}^c, s_{\Gamma} \models \psi_2$ iff $\psi_2 \in \Gamma$.
• $\phi = \psi_1 \wedge \psi_2$

Let $s_{\Gamma} \in W^c$.

By inductive hypothesis, $\mathcal{M}^c, s_{\Gamma} \models \psi_1$ iff $\psi_1 \in \Gamma$ and $\mathcal{M}^c, s_{\Gamma} \models \psi_2$ iff $\psi_2 \in \Gamma$.

 $\mathcal{M}^{c}, s_{\Gamma} \models \psi_{1} \land \psi_{2}$ $\Leftrightarrow \mathcal{M}^{c}, s_{\Gamma} \models \psi_{1} \text{ and } \mathcal{M}^{c}, s_{\Gamma} \models \psi_{2} \text{ (by the definition of truth)}$ $\Leftrightarrow \psi_{1} \in \Gamma \text{ and } \psi_{2} \in \Gamma \text{ (by inductive hypothesis)}$ $\Leftrightarrow \psi_{1} \land \psi_{2} \in \Gamma \text{ (by Lemma)}$

So, $\mathcal{M}^{c}, s_{\Gamma} \vDash \phi$ iff $\phi \in \Gamma$.

• $\phi = \Box \psi$ Let $s_{\Gamma} \in W^c$.

Image: Image:

э

• $\phi = \Box \psi$

Let $s_{\Gamma} \in W^c$.

By inductive hypothesis, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

(⇐) Let $\phi \in \Gamma$. Since $\Box \psi \in \Gamma$, for every s_Δ such that $s_\Gamma R^c s_\Delta$, we have that $\psi \in \Delta$ (by the definition of R^c).

• $\phi = \Box \psi$

Let $s_{\Gamma} \in W^c$.

By inductive hypothesis, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

(⇐) Let $\phi \in \Gamma$. Since $\Box \psi \in \Gamma$, for every s_Δ such that $s_\Gamma R^c s_\Delta$, we have that $\psi \in \Delta$ (by the definition of R^c).

So, for every s_{Δ} such that $s_{\Gamma}R^{c}s_{\Delta}$, it holds that $\mathcal{M}^{c}, s_{\Delta} \models \psi$ (by inductive hypothesis).

• $\phi = \Box \psi$

Let $s_{\Gamma} \in W^c$.

By inductive hypothesis, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

(⇐) Let $\phi \in \Gamma$. Since $\Box \psi \in \Gamma$, for every s_Δ such that $s_\Gamma R^c s_\Delta$, we have that $\psi \in \Delta$ (by the definition of R^c).

So, for every s_{Δ} such that $s_{\Gamma}R^{c}s_{\Delta}$, it holds that $\mathcal{M}^{c}, s_{\Delta} \models \psi$ (by inductive hypothesis).

This means that $\mathcal{M}^c, s_{\Gamma} \models \Box \psi$ (by the definition of truth).

• $\phi = \Box \psi$

Let $s_{\Gamma} \in W^c$.

By inductive hypothesis, $\mathcal{M}^c, \mathbf{s}_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

(⇐) Let $\phi \in \Gamma$. Since $\Box \psi \in \Gamma$, for every s_Δ such that $s_\Gamma R^c s_\Delta$, we have that $\psi \in \Delta$ (by the definition of R^c).

So, for every s_{Δ} such that $s_{\Gamma}R^{c}s_{\Delta}$, it holds that $\mathcal{M}^{c}, s_{\Delta} \models \psi$ (by inductive hypothesis).

This means that $\mathcal{M}^c, s_{\Gamma} \models \Box \psi$ (by the definition of truth).

So, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \models \phi$.

Intuition

It is not hard to prove that if "all maximal consistent sets accessible from Γ contain ψ ", then s_{Γ} satisfies $\Box \psi$.

It is a little harder to prove that if $\Box \psi$ is true on s_{Γ} , then $\Box \psi$ belongs to the maximal consistent set Γ .

• $\phi = \Box \psi$

Let $s_{\Gamma} \in W^c$. We are going to show that $\phi \in \Gamma$.

• $\phi = \Box \psi$

Let $s_{\Gamma} \in W^{c}$. We are going to show that $\phi \in \Gamma$. By inductive hypothesis, $\mathcal{M}^{c}, s_{\Gamma} \models \psi$ iff $\psi \in \Gamma$.

 (\Rightarrow) Let $\mathcal{M}^{c}, s_{\Gamma} \vDash \phi$.

(⇒) $\mathcal{M}^{c}, s_{\Gamma} \vDash \Box \psi$. We are going to show that $\Box \psi \in \Gamma$.

We are going to prove the following facts:

1. The set $\Gamma_{\Box} \cup \{\neg\psi\}$ is inconsistent.

2. A finite subset $\{\phi_1, ..., \phi_k, \neg\psi\}$ of $\Gamma_{\Box} \cup \{\neg\psi\}$ is inconsistent.

3. The set $\{\Box \phi_1, ..., \Box \phi_k, \neg \Box \psi\}$ is inconsistent.

4. □ψ ∈ Γ.

Recall that $\Gamma_{\Box} = \{\phi \mid \Box \phi \in \Gamma\}.$

Fact 1. The set $\Gamma_{\Box} \cup \{\neg\psi\}$ is inconsistent.

Proof of Fact 1: Suppose that $\Gamma_{\Box} \cup \{\neg\psi\}$ is consistent.

- $\bullet\,$ Then, it can be extended to a maximal consistent set, let's say $\Theta.$
- Since, $\Gamma_{\Box} \subseteq \Theta$, we have that $s_{\Gamma} R^c s_{\Theta}$, by definition of R^c .
- It holds that $\neg \psi \in \Theta$, so by inductive hypothesis $\mathcal{M}^{c}, s_{\Theta} \vDash \neg \psi$.
- Therefore, $\mathcal{M}^{c}, \mathbf{s}_{\Gamma} \vDash \neg \Box \psi$.

Contradiction!

Recall that we know $\mathcal{M}^c, s_{\Gamma} \models \Box \psi$ and we are going to show that $\Box \psi \in \Gamma$.

Fact 2. A finite subset $\{\phi_1, ..., \phi_k, \neg\psi\}$ of $\Gamma_{\Box} \cup \{\neg\psi\}$ is inconsistent. *Proof of Fact 2:* Since every proof is finite, for any inconsistent set, there is a finite subset of that set which is inconsistent.

Proof of completeness

Fact 3. The set $\{\Box \phi_1, ..., \Box \phi_k, \neg \Box \psi\}$ is inconsistent.

Proof of Fact 3:

Since $\{\phi_1, ..., \phi_k\} \cup \{\neg\psi\}$ is inconsistent, it holds that $\{\phi_1, ..., \phi_k\} \vdash \psi$. By the Deduction Theorem, $\vdash (\phi_1 \rightarrow (\phi_2 \rightarrow (....(\phi_k \rightarrow \psi)....)).$

Proof of Fact 3:

- Since {φ₁,...,φ_k} ∪ {¬ψ} is inconsistent, it holds that {φ₁,...,φ_k} ⊢ ψ. By the Deduction Theorem, ⊢ (φ₁ → (φ₂ → (....(φ_k → ψ)....)).
- ② By the Necessitation Rule, we have that ⊢ □($\phi_1 \rightarrow (\phi_2 \rightarrow (..., (\phi_k \rightarrow \psi)....))$.

Proof of Fact 3:

- Since $\{\phi_1, ..., \phi_k\} \cup \{\neg\psi\}$ is inconsistent, it holds that $\{\phi_1, ..., \phi_k\} \vdash \psi$. By the Deduction Theorem, $\vdash (\phi_1 \rightarrow (\phi_2 \rightarrow (....(\phi_k \rightarrow \psi)....)).$
- **2** By the Necessitation Rule, we have that $\vdash \Box(\phi_1 \rightarrow (\phi_2 \rightarrow (..., (\phi_k \rightarrow \psi)....))).$
- **③** By the axiom (K) and propositional reasoning we have that ⊢ □($\phi_1 \rightarrow (\phi_2 \rightarrow (..., (\phi_k \rightarrow \psi)...)) \rightarrow (\Box \phi_1 \rightarrow (\Box \phi_2 \rightarrow (..., (\Box \phi_k \rightarrow \Box \psi)...))).$

Proof of Fact 3:

- Since $\{\phi_1, ..., \phi_k\} \cup \{\neg\psi\}$ is inconsistent, it holds that $\{\phi_1, ..., \phi_k\} \vdash \psi$. By the Deduction Theorem, $\vdash (\phi_1 \rightarrow (\phi_2 \rightarrow (....(\phi_k \rightarrow \psi)....)).$
- ② By the Necessitation Rule, we have that ⊢ □($\phi_1 \rightarrow (\phi_2 \rightarrow (..., (\phi_k \rightarrow \psi)...))$).
- **3** By the axiom (K) and propositional reasoning we have that $\vdash \Box(\phi_1 \rightarrow (\phi_2 \rightarrow (....(\phi_k \rightarrow \psi)....)) \rightarrow (\Box \phi_1 \rightarrow (\Box \phi_2 \rightarrow (....(\Box \phi_k \rightarrow \Box \psi)....)).$
- By 2, 3 and Modus Ponens we have that $\vdash (\Box \phi_1 \rightarrow (\Box \phi_2 \rightarrow (..., (\Box \phi_k \rightarrow \Box \psi)....)).$

Proof of Fact 3:

- Since $\{\phi_1, ..., \phi_k\} \cup \{\neg\psi\}$ is inconsistent, it holds that $\{\phi_1, ..., \phi_k\} \vdash \psi$. By the Deduction Theorem, $\vdash (\phi_1 \rightarrow (\phi_2 \rightarrow (....(\phi_k \rightarrow \psi)....)).$
- ② By the Necessitation Rule, we have that ⊢ □($\phi_1 \rightarrow (\phi_2 \rightarrow (..., (\phi_k \rightarrow \psi)....))$.
- **3** By the axiom (K) and propositional reasoning we have that $\vdash \Box(\phi_1 \rightarrow (\phi_2 \rightarrow (....(\phi_k \rightarrow \psi)....)) \rightarrow (\Box \phi_1 \rightarrow (\Box \phi_2 \rightarrow (....(\Box \phi_k \rightarrow \Box \psi)....)).$
- By 2, 3 and Modus Ponens we have that $\vdash (\Box \phi_1 \rightarrow (\Box \phi_2 \rightarrow (..., (\Box \phi_k \rightarrow \Box \psi)....)).$
- So, it holds that $\{\Box \phi_1, ..., \Box \phi_k\} \vdash \Box \psi$ which means that $\{\Box \phi_1, ..., \Box \phi_k, \neg \Box \psi\}$ is inconsistent.

э

< 日 > < 同 > < 三 > < 三 >

Fact 4. $\Box \psi \in \Gamma$.

Proof of Fact 4:

• Since $\phi_1, ..., \phi_k \in \Gamma_{\Box}$, we have that $\Box \phi_1, ..., \Box \phi_k \in \Gamma$ (by definition of Γ_{\Box}).

э

Fact 4. $\Box \psi \in \Gamma$.

Proof of Fact 4:

- Since $\phi_1, ..., \phi_k \in \Gamma_{\Box}$, we have that $\Box \phi_1, ..., \Box \phi_k \in \Gamma$ (by definition of Γ_{\Box}).
- Since Γ is consistent, $\neg \Box \psi \notin \Gamma$ (by Fact 3).

Fact 4. $\Box \psi \in \Gamma$.

Proof of Fact 4:

- Since $\phi_1, ..., \phi_k \in \Gamma_{\Box}$, we have that $\Box \phi_1, ..., \Box \phi_k \in \Gamma$ (by definition of Γ_{\Box}).
- Since Γ is consistent, $\neg \Box \psi \notin \Gamma$ (by Fact 3).
- But since Γ is maximal, exactly one of □ψ and ¬□ψ must be in Γ (by Lemma).
- So, □ψ ∈ Γ.

K4 is sound and complete with respect to $\mathcal{K}4$ (the class of transitive frames).

Proof: **Soundness**: Easy. **Completeness**:

- We define the canonical model \mathcal{M}^c for K4 as before but now W^c is the set of K4-maximal consistent sets of formulas.
- Every K4-consistent formula ϕ is satisfiable on the canonical model \mathcal{M}^c for K4.
- \mathcal{M}^{c} is a transitive model, i.e. R^{c} is transitive.

 \mathcal{M}^{c} is a transitive model, i.e. R^{c} is transitive.

Proof: Let $s_{\Gamma}, s_{\Delta}, s_{\Theta} \in W^c$ such that $s_{\Gamma}R^cs_{\Delta}$ and $s_{\Delta}R^cs_{\Theta}$. We are going to show that $s_{\Gamma}R^cs_{\Theta}$.

We are going to show that $\Box \phi \in \Gamma$ implies $\phi \in \Theta$. Then, by the definition of R^c , we have that $s_{\Gamma} R^c s_{\Theta}$.

Let $\Box \phi \in \Gamma$. Also, $\Box \phi \rightarrow \Box \Box \phi \in \Gamma$, since Γ is K4-maximal consistent. So, by Modus Ponens, $\Box \Box \phi \in \Gamma$.

Since $s_{\Gamma}R^{c}s_{\Delta}$, we have that $\Box \phi \in \Delta$. Finally, since $s_{\Delta}R^{c}s_{\Theta}$, we have that $\phi \in \Theta$.