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Streaming algorithms

Algorithms for processing a stream of elements and maintaining
statistics in sublinear space about the elements in the stream.

Alternatively, low-space data structures for big data
computation.
? Compress data "on-the-�y": store a small piece of information
su�cient to answer approximate answer for the data set.
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Applications

Tra�c Monitoring in networks.

Very large Databases, i.e. estimating the size of a join.
Manipulation of astronomical (satellite imagery), �nancial
data.
GPS or seismometer readings to detect geological
anomalies, sensor networks etc
Training Machine Learning models when the training data
set is huge.
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Distinct Elements

Input: A sequence of elements x1, x2, . . . ,⊆ [n], where you can
think of n as 264.
Output: Number of distinct elements in x

Distinct users hitting a webpage.
Distinct values in a column of a database
Number of distinct queries to a search engine.
Distinct patterns in DNA sequence.

Implementations used by Google (Sawzall, Dremel, PowerDrill),
Yahoo, Twitter, Facebook Presto, etc.
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F2 moment estimation

Input: Vector x ∈ Rn, updates (i,∆) causing xi ← xi + ∆.

Output: An approximate answer to
∑n

i=1 x2i .

Anomaly detection in tra�c monitoring.
Detect DoS attacks.
Database optimization engine to estimate self join size.
Subroutine in many other streaming algorithms.
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Architecture of a streaming algorithm

Implements two routines, Update() and Query() using space S
usually sublinear in the size of the input, i.e. does not store the
whole input.

Distinct elements: O( log log nε2 + log n) bits of space to estimate
number of distinct elements up to (1+ ε)

F2 estimation: O( log nε2 ) bits of space to estimate the F2
moment up to 1+ ε, i.e. �nd V such that

(1− ε)
n∑
i=1

x2i ≤ V ≤ (1+ ε)
n∑
i=1

x2i .

Streaming algorithms are almost always randomized and
approximate.
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Probability Toolkit

Let X be a discrete random variable that takes values on
{. . . ,−1,0, 1 . . .}. Then

(expectation) E(X) :=
∑∞

i=−∞ i · Pr[X = i]
(variance) Var(X) := E(X2)− E(X)2

(linearity of expecation) E(X + Y) = E(X) + E(Y).
(Markov’s inequality) For a variable X that takes only
positive values we have Pr[X ≥ x] ≤ E(X)

x .

(Chebyshev’s inequality) Pr[|X − E(X)| ≥ λ] ≤ Var(X)
λ2 .

Chebyshev’s inequality is very useful in the design of
randomized algorithms, showing that an estimator concentrates
around its expected value.
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Question: How tight is Chebyshev’s inequality?

Follow the "68-95-99 rule" for Gaussian bell-curve N (0, σ2).

Chebyshev’s inequality versus true value.
Pr[|X − E(X)| ≥ 1σ] ≤ 100% vs Pr[|X − E(X)| ≥ 1σ] ≈ 32%

Pr[|X − E(X)| ≥ 2σ] ≤ 25% vs Pr[|X − E(X)| ≥ 1σ] ≈ 5%

Pr[|X − E(X)| ≥ 3σ] ≤ 11% vs Pr[|X − E(X)| ≥ 1σ] ≈ 1%
Pr[|X − E(X)| ≥ 4σ] ≤ 6% vs Pr[|X − E(X)| ≥ 1σ] ≈ 0.01%

7 28



Question: How tight is Chebyshev’s inequality?

Follow the "68-95-99 rule" for Gaussian bell-curve N (0, σ2).

Chebyshev’s inequality versus true value.
Pr[|X − E(X)| ≥ 1σ] ≤ 100% vs Pr[|X − E(X)| ≥ 1σ] ≈ 32%

Pr[|X − E(X)| ≥ 2σ] ≤ 25% vs Pr[|X − E(X)| ≥ 1σ] ≈ 5%

Pr[|X − E(X)| ≥ 3σ] ≤ 11% vs Pr[|X − E(X)| ≥ 1σ] ≈ 1%
Pr[|X − E(X)| ≥ 4σ] ≤ 6% vs Pr[|X − E(X)| ≥ 1σ] ≈ 0.01%

7 28



Question: How tight is Chebyshev’s inequality?

Follow the "68-95-99 rule" for Gaussian bell-curve N (0, σ2).

Chebyshev’s inequality versus true value.
Pr[|X − E(X)| ≥ 1σ] ≤ 100% vs Pr[|X − E(X)| ≥ 1σ] ≈ 32%

Pr[|X − E(X)| ≥ 2σ] ≤ 25% vs Pr[|X − E(X)| ≥ 1σ] ≈ 5%

Pr[|X − E(X)| ≥ 3σ] ≤ 11% vs Pr[|X − E(X)| ≥ 1σ] ≈ 1%
Pr[|X − E(X)| ≥ 4σ] ≤ 6% vs Pr[|X − E(X)| ≥ 1σ] ≈ 0.01%

7 28



Back to Distinct Elements

Input: A sequence of elements x1, x2, . . . ,⊆ [n], where you can
think of n as 264.

Output: Number of distinct elements D in x. Example:
0, 1,0,0,0, 1, 2→ 3

The (idealized) Flajolet-Martin algorithm:
Choose a random hash function h : [n]→ [0, 1]
S =∞
For every element e set S← min {S,h(e)}.
Output 1

S − 1.
We must store S and a description of h . . .
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So what is V?

S is the minimum hash value ever seen so far.

If an element comes many times, it will be always mapped to the
same position. We return 1

S − 1.
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Lemma
E(S) = 1

D+1 .

E(S) =

∫ 1

0
Pr[S ≥ λ]dλ =∫ 1

0
(1− λ)Ddλ =

1
D+ 1
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We know that E(S) = 1
D+1 . Estimate D̃ = 1

S − 1.

Note that it does not hold that E(D̃) = D.

However,

|S− E(S)| ≤ ε · E(S)⇒ (1− 4ε)D ≤ D̃ ≤ (1+ 4ε)D.

Thus, precise estimation of D reduces to showing that S
concentrates around its value→ Chebyshev’s inequality!
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Let’s compute the variance.

Lemma
Var(S) = E(S2)− E(S)2 = 2

(D+1)(D+2) −
1

(D+1)2 ≤
1

(D+1)2 .

Similarly as before,

E(S2) =

∫ 1

0
Pr[S2 ≥ λ]dλ =∫ 1

0
Pr[S ≥

√
λ]dλ =∫ 1

0
(1−

√
λ)Ddλ =

2
(D+ 1)(D+ 2)
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Let’s see what we get

E(S) = 1
D+1

Var(S) ≤ 1
(D+1)2

Pr[|S− E(S)| ≥ ε
√

Var(S)] ≤ 1
ε2 (too large!)
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The boosting of independent repetitions

Consider identicaly distributed random variables S1, S2, . . . Sr,
and let

S̄ :=
1
r (S1 + S2 + . . .+ Sr).

E(S) = E( 1r (S1 + S2 + . . .+ Sr)) =
1
r (E(S)1 + E(S)2 + . . .+ E(S)r) = E(S).

Var(S) = 1
r ·Var(S), since

1. For random variables X, Y we have
Var(X + Y) = Var(X) + Var(y), and

2. Var(aX) = a2Var(X).

Thus, in our case take r = O( 1ε2 ) di�erent instantiations of the
algorithm, and output the average!
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The (idealized) Flajolet-Martin algorithm:
r := 3

ε2

Choose random hash function hr : [n]→ [0, 1] for all j ∈ [r].
For every j ∈ [r] set Sj =∞
For every element e set and every j ∈ [r] set
Sj ← min

{
Sj,hj(e)

}
.

S := 1
r (S1 + S2 + . . .+ Sr).

Output 1
S − 1.
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What happens

We have E(S) = 1
D+1 ,Var(S) < 1

(D+1)2r , so applying Chebyshev’s
inequality yields

Pr[|S− E(S)| ≥ ε

D+ 1 ] ≤ 1
3 .

Thus, with probability 2
3 our estimator will satisfy

(1− 4ε)D ≤ D̃ ≤ (1+ 4ε)D.

So we need to run the algorith with ε′ := ε
4 .
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How to boost the success probability?

Idea I: For target probability δ, we can set r = 16
ε2δ and obtain an

estimate satisfying

(1− ε)D ≤ D̃ ≤ (1+ ε)D.

with probability 1− δ.

Why? Var(S) becomes ε2δ
16·(D+1)2 , so the same analysis yields

Pr[|S− E(S)| ≥ ε

4(D+ 1) ] ≤ δ.

But we can do waaay better!
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Trick of the medians

For each t ∈ [2 log(1/δ)], keep a distinct elements data structures
Dt with O( 1ε2 ) counters, and let S(t) be the estimate produced by
each data structure.

Then the quantity
S := mediantS(t)

satis�es the desired inequality with probability 1− δ. Good, huh?
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What happened?

We began with an unbiased estimator which has large variance,
and

for a multiplicative cost of O( 1ε2 ) we reduced the variance to
the desired one (trick of the means).

for a multiplicative cost of O(log(1/δ)) we reduced the failure
probability to δ (trick of the medians).

Space complexity (besides storing the hash functions):
O(log(1/δ) · 1ε2 · log n) bits or O(log(1/δ)/ε2) words. Compare with
the trivial space of O(D) words.
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Avoiding taking h : [n]→ [0, 1]

In the practical version of Flajolet-Martin (HyperLogLog) we
estimate distinct elements based on maximum number of

trailing zeros.

Pr[h(x) has logD trailing zeros] =
1
D .
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What happens for the practical Flajolet-Martin?

Total space: O(log logD/ε2 + logD) for an ε approximation with
constant probability.

Quote from "Loglog Counting of Large Cardinalities
"Using an auxiliary memory smaller than the size of this
abstract, the LogLog algorithm makes it possible to estimate in a
single pass and within a few percents the number of di�erent
words in the whole of Shakespeare’s works." - Flajolet, Durand.

Using HyperLogLog to approximate 1 billion distinct items to 2%
accuracy can be in approximately 1.6KB = 12800 bits!
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Distinct Elements in the Distributed Setting

The Flajolet-Martin algorithm is totally distributed: why share
lists of distinct elements when you can only share a bunch of
minimum hash values seen?

Estimate spam rate: Count number of distinct subject lines in
emails sent by users that have registered in the last week, in
comparison to number of emails sent overall.

Good news: Answering the above query can be done in 2
seconds in Google’s distributed implementations!

22 28
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F2 estimation

Input: A vector x ∈ Rn and updates (i,∆) causing xi ← xi + ∆.

Output: A value V satisfying (1− ε) ·
∑n

i=1 x2i ≤ V ≤ (1+ ε) ·
∑n

i=1 x2i .

Alon-Mattias-Szegedy (AMS) sketch
There exists an algorithm which uses O( log nε2 ) bits of space and
returns an estimator as above with constant probability.

The algorithm and proof is just a couple of lines, yet the authors
received the Goedel prize for that!
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AMS sketch

V ← 0
Pick hash function σ : [n]→ {−1, 1} (random signs)

Upon update (i,∆) set V ← V + σ(i) ·∆
Output V2

Note that V =
∑n

i=1 σ(i)xi and

V2 =
∑
i,j

σ(i)σ(j)xixj.

Let X := V2.
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So what about E(X)?

It holds that

E(V2) = E(
∑
i,j

σ(i)σ(j)xixj) =

∑
i,j

E(σ(i) · σ(j)) · xixj =

∑
i6=j

E(σ(i)) · E(σ(j)) · xixj +
∑
i

x2i =

∑
i 6=j

0 · 0 · xixj +
∑
i

x2i =
∑
i

x2i .

25 28



And what about Var(X2)?

Var(X) = E(X2)− (E(X))2 = E(V4)− (E(V2))2 =

E

 ∑
i1,i2,i3,i4

σ(i1)σ(i2)σ(i3)σ(i4)xi1xi2xi3xi4

 =

 ∑
i1,i2,i3,i4

E(σ(i1)σ(i2)σ(i3)σ(i4))xi1xi2xi3xi4

 =

n∑
i=1

x4i +
∑
i,j

6x2i x
2
j ≤ 3 ·

n∑
i=1

x2i = 3E(X).

If we apply Chebyshev’s inequality, we run into the same issue as
before (too large variance), so let’s take 1

ε2 di�erent estimator
and average them!
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AMS sketch

r := Θ( 1ε2 )

Vj ← 0 for all j ∈ [r]
Pick hash functions σj : [n]→ {−1, 1} (random signs) for all
j ∈ [n]

Upon update (i,∆) set Vj ← Vj + σj(i) ·∆ for all j ∈ [r]
Output 1r

∑r
j=1 V2j

To store each Vj we need O(log n) bits of space, for a total of all
O( log nε2 ) overall. Storing a compact representations of the hash
functions can also be done in the same space.
Update time: O( 1ε2 ) assuming operations in happen constant
time.
Query time: O( 1ε2 ) assuming operations happen in constant time.
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What we’ve seen in this lecture.

The abstract architecture of a streaming algorithm.
Applications of streaming algorithms.
Distinct elements and the power of randomness.
Estimating the F2 moment.

Next lecture: Sketching and the foundations of Dimensionality
Reduction.
Thank you!
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