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Dimensionality Reduction

A technique for transforming data from a high-dimensional
space into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the
original data.

? Crucial building block in most Machine Learning applications:
if there is a huge number of features then the predictor for the
target variable might be prohibitively slow.

High-dimensionality might mean hundreds, thousands, or even
millions of input variables.
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Applications

Classi�cation, pattern recognition.

Clustering.
Neural networks.
Neuroscience (maximally informative dimensions)
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Dimensionality Reduction

Given vectors x1, x2, . . . , xn ∈ Rd it is an algorithm C which
transforms those vectors to y1, y2, . . . , yn ∈ Rm for m� d, such
that properties of the initial vectors (dataset) are preserved.

One example being Euclidean or some other distance (very
useful in classi�cation tasks).
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Music compression and classification
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One of the cornerstones of Dimensionality
Reduction

The Johnshon-Lindenstrauss (JL) Lemma
Let vectors x1, x2, . . . xn ∈ Rd. Then there exists a linear map
Π : Rd → Rm, where m = O(log n/ε2), such that

(1− ε)‖xi − xj‖2 ≤ ‖Πxi − Πxj‖2 ≤ (1+ ε)‖xi − xj‖2.

Pairwise distances are approximately preserved by projecting to
O(log n/ε)2 dimensions...How’s that even possible?
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One of the cornerstones of Dimensionality
Reduction

The Johnshon-Lindenstrauss (JL) Lemma, Version 2
Let vectors x1, x2, . . . xn ∈ Rd. Then there exists a linear map
Π : Rd → Rm, where m = O(log n/ε2), such that

(1− ε)‖xi − xj‖22 ≤ ‖Πxi − Πxj‖22 ≤ (1+ ε)‖xi − xj‖22.

since (1± ε)2 = 1± 2ε+ ε2 = 1±Θ(ε), for ε < 1/3.
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Some high-dimensional geometry

Recall that 〈x, y〉 =
∑d

i=1 xiyi = ‖x‖2 · ‖y‖2 · cos(θ), where θ is the
angle between x and y.

Question: How many pairwise orthogonal unit vectors can we
pack in d dimensions?
Answer: d.

Question: How many pairwise almost orthogonal unit vectors
(magnitude of inner product |〈x, y〉| ≤ ε) can we pack in d
dimension?
Answer: 2Θ(ε2d).
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An ε slack gives you exponential space to pack vectors with
pairwise inner product at most ε.
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The Probabilistic Method

Method I: Choose 2Θ(ε2d) random points on the d-dimensional
sphere B = {x ∈ Rn : ‖x‖2 = 1}. If with some probability > 0
those points have small inner product, then we can infer the
existence of such a collection of vectors!

Method II (the proof of which we shall see): Choose 2Θ(ε2d)

vectors such that each coordinates of x equals 1√
d
with

probability 1
2 and xi = − 1√

d
otherwise, i.e. the i-th coordinate is

of the form σi√
d
for a random sign σi.

‖x‖2 =
√

1
d + . . .+ 1

d = 1,∀x.

E(〈x, y〉) = E(
∑

i(σ
(x)
i )/
√
d · (σ(x)

i )/
√
d) =∑

i E(σ
(x)
i ) · E(σ

(x)
i ) · 1d = 0.
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P (|〈x, y〉| > ε) = P(
1
d

d∑
i=1

|σ(x)
i · σ

(y)
i | > ε) =

P

(
|
d∑
i=1

σ′i | > ε · d
)

=

P

(
|
d∑
i=1

σ′i − E(
d′∑
i=1

σi)| > ε · d
)
≤

Pg∼N (0,d) (|g| > ε · d) ≤ e−cε2d2/d = e−cε2d.

(alternatively,
∑d

i=1 σ
′
i can be transformed to a sum of 0− 1

random variables and then the Cherno� bound can be applied).
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What does this mean?

For random x, y generated by the above process we have that
|〈x, y〉| > ε with probability at most e−cε2d.

Let N := 2−cε2d/4, and for i, j ∈ [N] let Eij be the event that the i-th
and the j-th vectors created by this process have inner product
in magnitude larger than ε.

union− bound

P(∃i, j : Eij) ≤
∑
i,j∈[N]

P(Eij) ≤
(
N
2

)
e−cε2d ≤ e−cε2d/2

Thus, with probability 1− e−cε2d/2 none of the "bad" events hold,
so all the pairwise inner products are small!
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Back to Dimensionality Reduction

In fact, the abundance of pairwise almost orthogonal vectors is
very tied to the Johnson-Lindenstrauss Lemma!

The Johnshon-Lindenstrauss (JL) Lemma
Let vectors x1, x2, . . . xn ∈ Rd. Then there exists a linear map
Π : Rd → Rm, where m = O(log n/ε2), such that

(1− ε)‖xi − xj‖2 ≤ ‖Πxi − Πxj‖2 ≤ (1+ ε)‖xi − xj‖2.

If we apply JL on vectors {0, e1, e2, . . . , eN}, then the obtained
vectors y1, y2, . . . , yN+1 live in dimension m = O(logN/ε2) and
have pairwise product at most ε; thus they are an enormous
collection of pairwise almost orthogonal vectors in dimension m.
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Construction of Johnson-Lindenstauss
embeddings

All constructions are oblivious to the dataset, i.e. do not even
need to look at x1, x2, . . .

(Dense Gaussian matrix) Πij ∼ N (0, 1m).

(Dense random sign matrix) Πij ∼
σij√
m .

(Achlioptas sign matrix, 2001, implemented in Matlab) Only
1/3 of the matrix is non-zero and the non-zero (i, j) entries
satisfy Πij ∼

σi√
m

(Sparse JL, Nelson-Kane) Each column in Π has exactly
s = O(ε−1 log n) non-zeros, and those are σij√

s .

(Ailon-Chazelle) Π = PFD, where D is a diagonal matrix with
random signs, F is the Discrete Fourier transform, and P is a
matrix with only one non-zero per column.
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The Distributional JL Lemma

DJL
There exist distributions over matrix Π ∈ Rm×n, where
m = O(ε−2 log(1/δ)) such that

∀x ∈ Rn : P(‖Πx‖22 /∈ [1− ε, 1+ ε] · ‖x‖22) ≤ δ.

From DJL one can obtain JL by setting δ = 1
2(n2)

and applying the
union-bound (exercise!).In the previous constructions you may
think of n as ≈ 1

δ .
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Dense Gaussian Matrix Πij ∼ N (0, 1m)

The i-th entry of the low-dimensional version is

n∑
i=1

Πij · xj ∼ N (0, 1m‖x‖
2
2).

2-stability of gausians: N (0, σ2) +N (0, τ 2) ∼ N (0, σ2 + τ 2)

Prg∼N (0,σ2)(|g| ≥ λ) ≤ e−c·
λ2
σ2 .

In other words, if we want failure probability δ we can ensure
that |g| can be at most O(

√
log(1/δ) · σ).
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We need
Pr(|‖Πx‖22 − E(‖Πx‖22)| ≥ ε · ‖x‖22) ≤ δ.

Recall that ‖Πx‖22 =
∑m

i=1 g2i ,gi ∼ N(0, 1m‖x‖
2
2) is a sum of squared

normal random variables, following a χ2 distribution.

It can be proved using the same technique as in the Cherno�
bound proof (exercise) that if we pick m = O(ε−1 log(1/δ)) the
desired inequality holds, hence the DJL Lemma.
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It can be proved using the same technique as in the Cherno�
bound proof (exercise) that if we pick m = O(ε−1 log(1/δ)) the
desired inequality holds, hence the DJL Lemma.
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Johnson-Lindenstrauss and Python libraries
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We’ve only scratched the surface of dimensionality reduction.
Thousands of papers and work on the topic the past decade.
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Thank you!
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