
Algorithms for Data Science: Lec-
ture 5

Vasileios Nakos

National Technical University of Athens

April 17, 2021

Dimensionality Reduction

A technique for transforming data from a high-dimensional
space into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the
original data.

? Crucial building block in most Machine Learning applications:
if there is a huge number of features then the predictor for the
target variable might be prohibitively slow.

High-dimensionality might mean hundreds, thousands, or even
millions of input variables.

1 20

Dimensionality Reduction

A technique for transforming data from a high-dimensional
space into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the
original data.

? Crucial building block in most Machine Learning applications:
if there is a huge number of features then the predictor for the
target variable might be prohibitively slow.

High-dimensionality might mean hundreds, thousands, or even
millions of input variables.

1 20

Dimensionality Reduction

A technique for transforming data from a high-dimensional
space into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the
original data.

? Crucial building block in most Machine Learning applications:
if there is a huge number of features then the predictor for the
target variable might be prohibitively slow.

High-dimensionality might mean hundreds, thousands, or even
millions of input variables.

1 20

Applications

Classi�cation, pattern recognition.

Clustering.
Neural networks.
Neuroscience (maximally informative dimensions)

2 20

Applications

Classi�cation, pattern recognition.
Clustering.

Neural networks.
Neuroscience (maximally informative dimensions)

2 20

Applications

Classi�cation, pattern recognition.
Clustering.
Neural networks.

Neuroscience (maximally informative dimensions)

2 20

Applications

Classi�cation, pattern recognition.
Clustering.
Neural networks.
Neuroscience (maximally informative dimensions)

2 20

Applications

Classi�cation, pattern recognition.
Clustering.
Neural networks.
Neuroscience (maximally informative dimensions)

2 20

Dimensionality Reduction

Given vectors x1, x2, . . . , xn ∈ Rd it is an algorithm C which
transforms those vectors to y1, y2, . . . , yn ∈ Rm for m� d, such
that properties of the initial vectors (dataset) are preserved.

One example being Euclidean or some other distance (very
useful in classi�cation tasks).

3 20

Dimensionality Reduction

Given vectors x1, x2, . . . , xn ∈ Rd it is an algorithm C which
transforms those vectors to y1, y2, . . . , yn ∈ Rm for m� d, such
that properties of the initial vectors (dataset) are preserved.

One example being Euclidean or some other distance (very
useful in classi�cation tasks).

3 20

Dimensionality Reduction

Given vectors x1, x2, . . . , xn ∈ Rd it is an algorithm C which
transforms those vectors to y1, y2, . . . , yn ∈ Rm for m� d, such
that properties of the initial vectors (dataset) are preserved.

One example being Euclidean or some other distance (very
useful in classi�cation tasks).

3 20

Music compression and classification

4 20

One of the cornerstones of Dimensionality
Reduction

The Johnshon-Lindenstrauss (JL) Lemma
Let vectors x1, x2, . . . xn ∈ Rd. Then there exists a linear map
Π : Rd → Rm, where m = O(log n/ε2), such that

(1− ε)‖xi − xj‖2 ≤ ‖Πxi − Πxj‖2 ≤ (1+ ε)‖xi − xj‖2.

Pairwise distances are approximately preserved by projecting to
O(log n/ε)2 dimensions...How’s that even possible?

5 20

One of the cornerstones of Dimensionality
Reduction

The Johnshon-Lindenstrauss (JL) Lemma, Version 2
Let vectors x1, x2, . . . xn ∈ Rd. Then there exists a linear map
Π : Rd → Rm, where m = O(log n/ε2), such that

(1− ε)‖xi − xj‖22 ≤ ‖Πxi − Πxj‖22 ≤ (1+ ε)‖xi − xj‖22.

since (1± ε)2 = 1± 2ε+ ε2 = 1±Θ(ε), for ε < 1/3.

6 20

One of the cornerstones of Dimensionality
Reduction

The Johnshon-Lindenstrauss (JL) Lemma, Version 2
Let vectors x1, x2, . . . xn ∈ Rd. Then there exists a linear map
Π : Rd → Rm, where m = O(log n/ε2), such that

(1− ε)‖xi − xj‖22 ≤ ‖Πxi − Πxj‖22 ≤ (1+ ε)‖xi − xj‖22.

since (1± ε)2 = 1± 2ε+ ε2 = 1±Θ(ε), for ε < 1/3.

6 20

Some high-dimensional geometry

Recall that 〈x, y〉 =
∑d

i=1 xiyi = ‖x‖2 · ‖y‖2 · cos(θ), where θ is the
angle between x and y.

Question: How many pairwise orthogonal unit vectors can we
pack in d dimensions?
Answer: d.

Question: How many pairwise almost orthogonal unit vectors
(magnitude of inner product |〈x, y〉| ≤ ε) can we pack in d
dimension?
Answer: 2Θ(ε2d).

7 20

Some high-dimensional geometry

Recall that 〈x, y〉 =
∑d

i=1 xiyi = ‖x‖2 · ‖y‖2 · cos(θ), where θ is the
angle between x and y.

Question: How many pairwise orthogonal unit vectors can we
pack in d dimensions?

Answer: d.

Question: How many pairwise almost orthogonal unit vectors
(magnitude of inner product |〈x, y〉| ≤ ε) can we pack in d
dimension?
Answer: 2Θ(ε2d).

7 20

Some high-dimensional geometry

Recall that 〈x, y〉 =
∑d

i=1 xiyi = ‖x‖2 · ‖y‖2 · cos(θ), where θ is the
angle between x and y.

Question: How many pairwise orthogonal unit vectors can we
pack in d dimensions?
Answer: d.

Question: How many pairwise almost orthogonal unit vectors
(magnitude of inner product |〈x, y〉| ≤ ε) can we pack in d
dimension?
Answer: 2Θ(ε2d).

7 20

Some high-dimensional geometry

Recall that 〈x, y〉 =
∑d

i=1 xiyi = ‖x‖2 · ‖y‖2 · cos(θ), where θ is the
angle between x and y.

Question: How many pairwise orthogonal unit vectors can we
pack in d dimensions?
Answer: d.

Question: How many pairwise almost orthogonal unit vectors
(magnitude of inner product |〈x, y〉| ≤ ε) can we pack in d
dimension?

Answer: 2Θ(ε2d).

7 20

Some high-dimensional geometry

Recall that 〈x, y〉 =
∑d

i=1 xiyi = ‖x‖2 · ‖y‖2 · cos(θ), where θ is the
angle between x and y.

Question: How many pairwise orthogonal unit vectors can we
pack in d dimensions?
Answer: d.

Question: How many pairwise almost orthogonal unit vectors
(magnitude of inner product |〈x, y〉| ≤ ε) can we pack in d
dimension?
Answer: 2Θ(ε2d).

7 20

An ε slack gives you exponential space to pack vectors with
pairwise inner product at most ε.

8 20

The Probabilistic Method

Method I: Choose 2Θ(ε2d) random points on the d-dimensional
sphere B = {x ∈ Rn : ‖x‖2 = 1}. If with some probability > 0
those points have small inner product, then we can infer the
existence of such a collection of vectors!

Method II (the proof of which we shall see): Choose 2Θ(ε2d)

vectors such that each coordinates of x equals 1√
d
with

probability 1
2 and xi = − 1√

d
otherwise, i.e. the i-th coordinate is

of the form σi√
d
for a random sign σi.

‖x‖2 =
√

1
d + . . .+ 1

d = 1,∀x.

E(〈x, y〉) = E(
∑

i(σ
(x)
i)/
√
d · (σ(x)

i)/
√
d) =∑

i E(σ
(x)
i) · E(σ

(x)
i) · 1d = 0.

9 20

The Probabilistic Method

Method I: Choose 2Θ(ε2d) random points on the d-dimensional
sphere B = {x ∈ Rn : ‖x‖2 = 1}. If with some probability > 0
those points have small inner product, then we can infer the
existence of such a collection of vectors!

Method II (the proof of which we shall see): Choose 2Θ(ε2d)

vectors such that each coordinates of x equals 1√
d
with

probability 1
2 and xi = − 1√

d
otherwise, i.e. the i-th coordinate is

of the form σi√
d
for a random sign σi.

‖x‖2 =
√

1
d + . . .+ 1

d = 1,∀x.

E(〈x, y〉) = E(
∑

i(σ
(x)
i)/
√
d · (σ(x)

i)/
√
d) =∑

i E(σ
(x)
i) · E(σ

(x)
i) · 1d = 0.

9 20

The Probabilistic Method

Method I: Choose 2Θ(ε2d) random points on the d-dimensional
sphere B = {x ∈ Rn : ‖x‖2 = 1}. If with some probability > 0
those points have small inner product, then we can infer the
existence of such a collection of vectors!

Method II (the proof of which we shall see): Choose 2Θ(ε2d)

vectors such that each coordinates of x equals 1√
d
with

probability 1
2 and xi = − 1√

d
otherwise, i.e. the i-th coordinate is

of the form σi√
d
for a random sign σi.

‖x‖2 =
√

1
d + . . .+ 1

d = 1, ∀x.

E(〈x, y〉) = E(
∑

i(σ
(x)
i)/
√
d · (σ(x)

i)/
√
d) =∑

i E(σ
(x)
i) · E(σ

(x)
i) · 1d = 0.

9 20

The Probabilistic Method

Method I: Choose 2Θ(ε2d) random points on the d-dimensional
sphere B = {x ∈ Rn : ‖x‖2 = 1}. If with some probability > 0
those points have small inner product, then we can infer the
existence of such a collection of vectors!

Method II (the proof of which we shall see): Choose 2Θ(ε2d)

vectors such that each coordinates of x equals 1√
d
with

probability 1
2 and xi = − 1√

d
otherwise, i.e. the i-th coordinate is

of the form σi√
d
for a random sign σi.

‖x‖2 =
√

1
d + . . .+ 1

d = 1, ∀x.

E(〈x, y〉) = E(
∑

i(σ
(x)
i)/
√
d · (σ(x)

i)/
√
d) =∑

i E(σ
(x)
i) · E(σ

(x)
i) · 1d = 0.

9 20

P (|〈x, y〉| > ε) = P(
1
d

d∑
i=1

|σ(x)
i · σ

(y)
i | > ε) =

P

(
|
d∑
i=1

σ′i | > ε · d
)

=

P

(
|
d∑
i=1

σ′i − E(
d′∑
i=1

σi)| > ε · d
)
≤

Pg∼N (0,d) (|g| > ε · d) ≤ e−cε2d2/d = e−cε2d.

(alternatively,
∑d

i=1 σ
′
i can be transformed to a sum of 0− 1

random variables and then the Cherno� bound can be applied).

10 20

P (|〈x, y〉| > ε) = P(
1
d

d∑
i=1

|σ(x)
i · σ

(y)
i | > ε) =

P

(
|
d∑
i=1

σ′i | > ε · d
)

=

P

(
|
d∑
i=1

σ′i − E(
d′∑
i=1

σi)| > ε · d
)
≤

Pg∼N (0,d) (|g| > ε · d) ≤ e−cε2d2/d = e−cε2d.

(alternatively,
∑d

i=1 σ
′
i can be transformed to a sum of 0− 1

random variables and then the Cherno� bound can be applied).

10 20

What does this mean?

For random x, y generated by the above process we have that
|〈x, y〉| > ε with probability at most e−cε2d.

Let N := 2−cε2d/4, and for i, j ∈ [N] let Eij be the event that the i-th
and the j-th vectors created by this process have inner product
in magnitude larger than ε.

union− bound

P(∃i, j : Eij) ≤
∑
i,j∈[N]

P(Eij) ≤
(
N
2

)
e−cε2d ≤ e−cε2d/2

Thus, with probability 1− e−cε2d/2 none of the "bad" events hold,
so all the pairwise inner products are small!

11 20

What does this mean?

For random x, y generated by the above process we have that
|〈x, y〉| > ε with probability at most e−cε2d.
Let N := 2−cε2d/4, and for i, j ∈ [N] let Eij be the event that the i-th
and the j-th vectors created by this process have inner product
in magnitude larger than ε.

union− bound

P(∃i, j : Eij) ≤
∑
i,j∈[N]

P(Eij) ≤
(
N
2

)
e−cε2d ≤ e−cε2d/2

Thus, with probability 1− e−cε2d/2 none of the "bad" events hold,
so all the pairwise inner products are small!

11 20

What does this mean?

For random x, y generated by the above process we have that
|〈x, y〉| > ε with probability at most e−cε2d.
Let N := 2−cε2d/4, and for i, j ∈ [N] let Eij be the event that the i-th
and the j-th vectors created by this process have inner product
in magnitude larger than ε.

union− bound

P(∃i, j : Eij) ≤
∑
i,j∈[N]

P(Eij) ≤
(
N
2

)
e−cε2d ≤ e−cε2d/2

Thus, with probability 1− e−cε2d/2 none of the "bad" events hold,
so all the pairwise inner products are small!

11 20

Back to Dimensionality Reduction

In fact, the abundance of pairwise almost orthogonal vectors is
very tied to the Johnson-Lindenstrauss Lemma!

The Johnshon-Lindenstrauss (JL) Lemma
Let vectors x1, x2, . . . xn ∈ Rd. Then there exists a linear map
Π : Rd → Rm, where m = O(log n/ε2), such that

(1− ε)‖xi − xj‖2 ≤ ‖Πxi − Πxj‖2 ≤ (1+ ε)‖xi − xj‖2.

If we apply JL on vectors {0, e1, e2, . . . , eN}, then the obtained
vectors y1, y2, . . . , yN+1 live in dimension m = O(logN/ε2) and
have pairwise product at most ε; thus they are an enormous
collection of pairwise almost orthogonal vectors in dimension m.

12 20

Back to Dimensionality Reduction

In fact, the abundance of pairwise almost orthogonal vectors is
very tied to the Johnson-Lindenstrauss Lemma!

The Johnshon-Lindenstrauss (JL) Lemma
Let vectors x1, x2, . . . xn ∈ Rd. Then there exists a linear map
Π : Rd → Rm, where m = O(log n/ε2), such that

(1− ε)‖xi − xj‖2 ≤ ‖Πxi − Πxj‖2 ≤ (1+ ε)‖xi − xj‖2.

If we apply JL on vectors {0, e1, e2, . . . , eN}, then the obtained
vectors y1, y2, . . . , yN+1 live in dimension m = O(logN/ε2) and
have pairwise product at most ε; thus they are an enormous
collection of pairwise almost orthogonal vectors in dimension m.

12 20

Construction of Johnson-Lindenstauss
embeddings

All constructions are oblivious to the dataset, i.e. do not even
need to look at x1, x2, . . .

(Dense Gaussian matrix) Πij ∼ N (0, 1m).

(Dense random sign matrix) Πij ∼
σij√
m .

(Achlioptas sign matrix, 2001, implemented in Matlab) Only
1/3 of the matrix is non-zero and the non-zero (i, j) entries
satisfy Πij ∼

σi√
m

(Sparse JL, Nelson-Kane) Each column in Π has exactly
s = O(ε−1 log n) non-zeros, and those are σij√

s .

(Ailon-Chazelle) Π = PFD, where D is a diagonal matrix with
random signs, F is the Discrete Fourier transform, and P is a
matrix with only one non-zero per column.

13 20

Construction of Johnson-Lindenstauss
embeddings

All constructions are oblivious to the dataset, i.e. do not even
need to look at x1, x2, . . .

(Dense Gaussian matrix) Πij ∼ N (0, 1m).
(Dense random sign matrix) Πij ∼

σij√
m .

(Achlioptas sign matrix, 2001, implemented in Matlab) Only
1/3 of the matrix is non-zero and the non-zero (i, j) entries
satisfy Πij ∼

σi√
m

(Sparse JL, Nelson-Kane) Each column in Π has exactly
s = O(ε−1 log n) non-zeros, and those are σij√

s .

(Ailon-Chazelle) Π = PFD, where D is a diagonal matrix with
random signs, F is the Discrete Fourier transform, and P is a
matrix with only one non-zero per column.

13 20

Construction of Johnson-Lindenstauss
embeddings

All constructions are oblivious to the dataset, i.e. do not even
need to look at x1, x2, . . .

(Dense Gaussian matrix) Πij ∼ N (0, 1m).
(Dense random sign matrix) Πij ∼

σij√
m .

(Achlioptas sign matrix, 2001, implemented in Matlab) Only
1/3 of the matrix is non-zero and the non-zero (i, j) entries
satisfy Πij ∼

σi√
m

(Sparse JL, Nelson-Kane) Each column in Π has exactly
s = O(ε−1 log n) non-zeros, and those are σij√

s .

(Ailon-Chazelle) Π = PFD, where D is a diagonal matrix with
random signs, F is the Discrete Fourier transform, and P is a
matrix with only one non-zero per column.

13 20

Construction of Johnson-Lindenstauss
embeddings

All constructions are oblivious to the dataset, i.e. do not even
need to look at x1, x2, . . .

(Dense Gaussian matrix) Πij ∼ N (0, 1m).
(Dense random sign matrix) Πij ∼

σij√
m .

(Achlioptas sign matrix, 2001, implemented in Matlab) Only
1/3 of the matrix is non-zero and the non-zero (i, j) entries
satisfy Πij ∼

σi√
m

(Sparse JL, Nelson-Kane) Each column in Π has exactly
s = O(ε−1 log n) non-zeros, and those are σij√

s .

(Ailon-Chazelle) Π = PFD, where D is a diagonal matrix with
random signs, F is the Discrete Fourier transform, and P is a
matrix with only one non-zero per column.

13 20

Construction of Johnson-Lindenstauss
embeddings

All constructions are oblivious to the dataset, i.e. do not even
need to look at x1, x2, . . .

(Dense Gaussian matrix) Πij ∼ N (0, 1m).
(Dense random sign matrix) Πij ∼

σij√
m .

(Achlioptas sign matrix, 2001, implemented in Matlab) Only
1/3 of the matrix is non-zero and the non-zero (i, j) entries
satisfy Πij ∼

σi√
m

(Sparse JL, Nelson-Kane) Each column in Π has exactly
s = O(ε−1 log n) non-zeros, and those are σij√

s .

(Ailon-Chazelle) Π = PFD, where D is a diagonal matrix with
random signs, F is the Discrete Fourier transform, and P is a
matrix with only one non-zero per column.

13 20

The Distributional JL Lemma

DJL
There exist distributions over matrix Π ∈ Rm×n, where
m = O(ε−2 log(1/δ)) such that

∀x ∈ Rn : P(‖Πx‖22 /∈ [1− ε, 1+ ε] · ‖x‖22) ≤ δ.

From DJL one can obtain JL by setting δ = 1
2(n2)

and applying the
union-bound (exercise!).In the previous constructions you may
think of n as ≈ 1

δ .

14 20

The Distributional JL Lemma

DJL
There exist distributions over matrix Π ∈ Rm×n, where
m = O(ε−2 log(1/δ)) such that

∀x ∈ Rn : P(‖Πx‖22 /∈ [1− ε, 1+ ε] · ‖x‖22) ≤ δ.

From DJL one can obtain JL by setting δ = 1
2(n2)

and applying the
union-bound (exercise!).

In the previous constructions you may
think of n as ≈ 1

δ .

14 20

The Distributional JL Lemma

DJL
There exist distributions over matrix Π ∈ Rm×n, where
m = O(ε−2 log(1/δ)) such that

∀x ∈ Rn : P(‖Πx‖22 /∈ [1− ε, 1+ ε] · ‖x‖22) ≤ δ.

From DJL one can obtain JL by setting δ = 1
2(n2)

and applying the
union-bound (exercise!).In the previous constructions you may
think of n as ≈ 1

δ .

14 20

Dense Gaussian Matrix Πij ∼ N (0, 1m)

The i-th entry of the low-dimensional version is

n∑
i=1

Πij · xj ∼ N (0, 1m‖x‖
2
2).

2-stability of gausians: N (0, σ2) +N (0, τ 2) ∼ N (0, σ2 + τ 2)

Prg∼N (0,σ2)(|g| ≥ λ) ≤ e−c·
λ2
σ2 .

In other words, if we want failure probability δ we can ensure
that |g| can be at most O(

√
log(1/δ) · σ).

15 20

Dense Gaussian Matrix Πij ∼ N (0, 1m)

The i-th entry of the low-dimensional version is

n∑
i=1

Πij · xj ∼ N (0, 1m‖x‖
2
2).

2-stability of gausians: N (0, σ2) +N (0, τ 2) ∼ N (0, σ2 + τ 2)

Prg∼N (0,σ2)(|g| ≥ λ) ≤ e−c·
λ2
σ2 .

In other words, if we want failure probability δ we can ensure
that |g| can be at most O(

√
log(1/δ) · σ).

15 20

Dense Gaussian Matrix Πij ∼ N (0, 1m)

The i-th entry of the low-dimensional version is

n∑
i=1

Πij · xj ∼ N (0, 1m‖x‖
2
2).

2-stability of gausians: N (0, σ2) +N (0, τ 2) ∼ N (0, σ2 + τ 2)

Prg∼N (0,σ2)(|g| ≥ λ) ≤ e−c·
λ2
σ2 .

In other words, if we want failure probability δ we can ensure
that |g| can be at most O(

√
log(1/δ) · σ).

15 20

Dense Gaussian Matrix Πij ∼ N (0, 1m)

The i-th entry of the low-dimensional version is

n∑
i=1

Πij · xj ∼ N (0, 1m‖x‖
2
2).

2-stability of gausians: N (0, σ2) +N (0, τ 2) ∼ N (0, σ2 + τ 2)

Prg∼N (0,σ2)(|g| ≥ λ) ≤ e−c·
λ2
σ2 .

In other words, if we want failure probability δ we can ensure
that |g| can be at most O(

√
log(1/δ) · σ).

15 20

Dense Gaussian Matrix Πij ∼ N (0, 1m)

The i-th entry of the low-dimensional version is
n∑
i=1

Πij · xj ∼ N (0, 1m‖x‖
2
2).

Thus,

‖Πx‖22 =
m∑
i=1

g2i , gi ∼ N(0, 1m‖x‖
2
2)

E(‖Πx‖22) = E(
m∑
i=1

g2i) =
m∑
i=1

E(g2i) =

m · 1m‖x‖
2
2 = ‖x‖22.

Pr(|‖Πx‖22 − E(‖Πx‖22)| ≥ ε · ‖x‖22) =?

16 20

Dense Gaussian Matrix Πij ∼ N (0, 1m)

The i-th entry of the low-dimensional version is
n∑
i=1

Πij · xj ∼ N (0, 1m‖x‖
2
2).

Thus,

‖Πx‖22 =
m∑
i=1

g2i , gi ∼ N(0, 1m‖x‖
2
2)

E(‖Πx‖22) = E(
m∑
i=1

g2i) =
m∑
i=1

E(g2i) =

m · 1m‖x‖
2
2 = ‖x‖22.

Pr(|‖Πx‖22 − E(‖Πx‖22)| ≥ ε · ‖x‖22) =?

16 20

Dense Gaussian Matrix Πij ∼ N (0, 1m)

The i-th entry of the low-dimensional version is
n∑
i=1

Πij · xj ∼ N (0, 1m‖x‖
2
2).

Thus,

‖Πx‖22 =
m∑
i=1

g2i , gi ∼ N(0, 1m‖x‖
2
2)

E(‖Πx‖22) = E(
m∑
i=1

g2i) =
m∑
i=1

E(g2i) =

m · 1m‖x‖
2
2 = ‖x‖22.

Pr(|‖Πx‖22 − E(‖Πx‖22)| ≥ ε · ‖x‖22) =?

16 20

We need
Pr(|‖Πx‖22 − E(‖Πx‖22)| ≥ ε · ‖x‖22) ≤ δ.

Recall that ‖Πx‖22 =
∑m

i=1 g2i ,gi ∼ N(0, 1m‖x‖
2
2) is a sum of squared

normal random variables, following a χ2 distribution.

It can be proved using the same technique as in the Cherno�
bound proof (exercise) that if we pick m = O(ε−1 log(1/δ)) the
desired inequality holds, hence the DJL Lemma.

17 20

We need
Pr(|‖Πx‖22 − E(‖Πx‖22)| ≥ ε · ‖x‖22) ≤ δ.

Recall that ‖Πx‖22 =
∑m

i=1 g2i ,gi ∼ N(0, 1m‖x‖
2
2) is a sum of squared

normal random variables, following a χ2 distribution.

It can be proved using the same technique as in the Cherno�
bound proof (exercise) that if we pick m = O(ε−1 log(1/δ)) the
desired inequality holds, hence the DJL Lemma.

17 20

We need
Pr(|‖Πx‖22 − E(‖Πx‖22)| ≥ ε · ‖x‖22) ≤ δ.

Recall that ‖Πx‖22 =
∑m

i=1 g2i ,gi ∼ N(0, 1m‖x‖
2
2) is a sum of squared

normal random variables, following a χ2 distribution.

It can be proved using the same technique as in the Cherno�
bound proof (exercise) that if we pick m = O(ε−1 log(1/δ)) the
desired inequality holds, hence the DJL Lemma.

17 20

Johnson-Lindenstrauss and Python libraries

18 20

We’ve only scratched the surface of dimensionality reduction.
Thousands of papers and work on the topic the past decade.

19 20

Thank you!

20 / 20

