ALGORITHMS FOR DATA SCIENCE: LECTURE 6

VASILEIOS NAKOS
National Technical University of Athens
APRIL 17, 2021

Basics of Continuous Optimization

Minimize or maximize efficiently a function over a domain.

Basics of Continuous Optimization

Minimize or maximize efficiently a function over a domain. Most Machine Learning problems under a particular formulation can be solved as optimization problems.

BASICS OF CONTINUOUS OPTIMIZATION

Minimize or maximize efficiently a function over a domain.
Most Machine Learning problems under a particular formulation can be solved as optimization problems.

- The interplay between optimization and ML is one of the most important developments in modern computational science.
- Deep neural networks.
- Reinforcement learning.
- Meta Learning.
- Variational inference.
- Markov chain Monte Carlo.
- Federated Learning.

Given function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x^{\star} such that

$$
f\left(x^{\star}\right)=\min _{x} f(x),
$$

Given function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x^{\star} such that

$$
f\left(x^{\star}\right)=\min _{x} f(x)
$$

or at least x^{\prime} such that $f\left(x^{\prime}\right) \leq f\left(x^{\star}\right)+\epsilon$.

Given function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x^{\star} such that

$$
f\left(x^{\star}\right)=\min _{x} f(x)
$$

or at least x^{\prime} such that $f\left(x^{\prime}\right) \leq f\left(x^{\star}\right)+\epsilon$. Often additional constraints:

- $x_{i}>0, \forall i \in[d]$.

■ $\left\|x_{2}\right\| \leq R,\|x\|_{1} \leq R\left(\ell_{2}, \ell_{1}\right.$ balls).

- $w^{\top} x \leq c$ (hyperplane).

■ $\Phi x=b$ (linear constraint)

Dimension $d=1$:

Dimension $d=2$:

SUPERVISED LEARNING

In supervised learning, we want to learn a model that maps inputs

- numerical data vectors
- images, video

■ text documents

Supervised Learning

In supervised learning, we want to learn a model that maps inputs

■ numerical data vectors

- images, video

■ text documents
to predictions

- numerical value (probability of mutation)
- label (is the image a human or a dragon?)
- decision (move bishop to G4)

MATHEMATICAL ABSTRACTION OF SUPERVISED

 LEARNINGLet M_{x} be a model with parameters $x=\left\{x_{1}, \ldots, x_{k}\right\}$ which takes as input a vector a and outputs a prediction.

MATHEMATICAL ABSTRACTION OF SUPERVISED

 LEARNINGLet M_{x} be a model with parameters $x=\left\{x_{1}, \ldots, x_{k}\right\}$ which takes as input a vector a and outputs a prediction.
For example, $M_{x}(a)=\operatorname{sign}\left(a^{\top} x\right)$.

MATHEMATICAL ABSTRACTION OF SUPERVISED

LEARNING

Let M_{x} be a model with parameters $x=\left\{x_{1}, \ldots, x_{k}\right\}$ which takes as input a vector a and outputs a prediction.
For example, $M_{x}(a)=\operatorname{sign}\left(a^{\top} x\right)$.

In supervised learning we want to find a model that agrees with the data that you already have the answer for, i.e. datasets $a^{(i)}$ with output $y^{(i)}, i \in[n]$.

MATHEMATICAL ABSTRACTION OF SUPERVISED

LEARNING

Let M_{x} be a model with parameters $x=\left\{x_{1}, \ldots, x_{k}\right\}$ which takes as input a vector a and outputs a prediction.
For example, $M_{x}(a)=\operatorname{sign}\left(a^{\top} x\right)$.

In supervised learning we want to find a model that agrees with the data that you already have the answer for, i.e. datasets $a^{(i)}$ with output $y^{(i)}, i \in[n]$.

Find x^{\prime} such that $M_{x^{\prime}}\left(a^{(i)}\right) \approx y^{(i)}, \forall i \in[n]$.

MATHEMATICAL ABSTRACTION OF SUPERVISED

LEARNING

Let M_{x} be a model with parameters $x=\left\{x_{1}, \ldots, x_{k}\right\}$ which takes as input a vector a and outputs a prediction.
For example, $M_{x}(a)=\operatorname{sign}\left(a^{\top} x\right)$.

In supervised learning we want to find a model that agrees with the data that you already have the answer for, i.e. datasets $a^{(i)}$ with output $y^{(i)}, i \in[n]$.

Find x^{\prime} such that $M_{x^{\prime}}\left(a^{(i)}\right) \approx y^{(i)}, \forall i \in[n]$. Where is the optimization in all of these?

LOSS FUNCTIONS

The loss function $L(\cdot, \cdot)$ is used as a measure of distance: $L\left(M_{x}(a), y\right)$ counts how far away is the prediction $M_{x}(a)$ from y.

■ squared ℓ_{2} loss: $\left|M_{x}(a)-y\right|^{2}$

LOSS FUNCTIONS

The loss function $L(\cdot, \cdot)$ is used as a measure of distance: $L\left(M_{x}(a), y\right)$ counts how far away is the prediction $M_{x}(a)$ from y.
■ squared ℓ_{2} loss: $\left|M_{x}(a)-y\right|^{2}$
■ absolute devation: $\left|M_{x}(a)-y\right|$

LOSS FUNCTIONS

The loss function $L(\cdot, \cdot)$ is used as a measure of distance: $L\left(M_{x}(a), y\right)$ counts how far away is the prediction $M_{x}(a)$ from y.
■ squared ℓ_{2} loss: $\left|M_{x}(a)-y\right|^{2}$
■ absolute devation: $\left|M_{x}(a)-y\right|$
■ Hinge loss: $1-y \cdot M_{x}(a)$

LOSS FUNCTIONS

The loss function $L(\cdot, \cdot)$ is used as a measure of distance: $L\left(M_{x}(a), y\right)$ counts how far away is the prediction $M_{x}(a)$ from y.
■ squared ℓ_{2} loss: $\left|M_{x}(a)-y\right|^{2}$
■ absolute devation: $\left|M_{x}(a)-y\right|$
■ Hinge loss: $1-y \cdot M_{x}(a)$
■ cross-entropy loss

LOSS FUNCTIONS

The loss function $L(\cdot, \cdot)$ is used as a measure of distance: $L\left(M_{x}(a), y\right)$ counts how far away is the prediction $M_{x}(a)$ from y.
■ squared ℓ_{2} loss: $\left|M_{x}(a)-y\right|^{2}$
■ absolute devation: $\left|M_{x}(a)-y\right|$
■ Hinge loss: $1-y \cdot M_{x}(a)$
■ cross-entropy loss

Empirical Risk Minimization

Minimize the function

$$
\sum_{i=1}^{n} L\left(M_{x}\left(a^{(i)}\right), y^{(i)}\right) .
$$

LINEAR REGRESSION

For $M_{x}(a)=x^{\top} a$ and $L(z, y)=|z-y|^{2}$ we have

For $M_{x}(a)=x^{\top} a$ and $L(z, y)=|z-y|^{2}$ we have

$$
f(x)=\sum_{i=1}^{n}\left|x^{\top} a^{(i)}-y^{(i)}\right|^{2}=\|A x-y\|_{2}^{2},
$$

where A is a matrix with $a^{(i)}$ as its i-th row and $y=\left[y^{(1)}, y^{(2)}, \ldots, y^{(n)}\right]^{\top}$.

GRADIENT DESCENT

Gradient descent is a method for minimizing convex functions, but which also works surprisingly well in many practical scenarios.

BASIC CALCULUS

Partial derivative:

$$
\frac{\partial f}{\partial x_{i}}=\lim _{t \rightarrow 0} \frac{f\left(x+t \cdot e^{(i)}\right)-f(x)}{t}
$$

BASIC CALCULUS

Partial derivative:

$$
\frac{\partial f}{\partial x_{i}}=\lim _{t \rightarrow 0} \frac{f\left(x+t \cdot e^{(i)}\right)-f(x)}{t}
$$

Directional derivative:

$$
D_{v} f(x)=\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}
$$

More Basic Calculus

Gradient:

$$
\nabla f(x)=\left[\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{i}}(x)\right]^{T}
$$

More Basic Calculus

Gradient:

$$
\nabla f(x)=\left[\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{i}}(x)\right]^{T}
$$

and its connection to directional derivative:

$$
D_{v} f(x)=\nabla f(x)^{T} v
$$

FIRST ORDER OPTIMIZATION

Given a function f to be minimized, we shall perform minimization by making

1. function accesses: evaluations of $f(x)$ for any x.

FIRST ORDER OPTIMIZATION

Given a function f to be minimized, we shall perform minimization by making

1. function accesses: evaluations of $f(x)$ for any x.
2. gradient accesses: evaluations of $\nabla f(x)$ for any x.

FIRST ORDER OPTIMIZATION

Given a function f to be minimized, we shall perform minimization by making

1. function accesses: evaluations of $f(x)$ for any x.
2. gradient accesses: evaluations of $\nabla f(x)$ for any x.

We will treat the evaluations as black boxes but depending on the problem they might be computationally expensive to implement.

GRadient in Linear Regression

Recall that we are given $a^{(1)}, \ldots, a^{(n)} \in \mathbb{R}^{d}$ and $y^{(1)}, \ldots, y^{(n)} \in \mathbb{R}$ and want to minimize

Gradient in Linear Regression

Recall that we are given $a^{(1)}, \ldots, a^{(n)} \in \mathbb{R}^{d}$ and $y^{(1)}, \ldots, y^{(n)} \in \mathbb{R}$ and want to minimize

$$
\begin{gathered}
f(x)=\sum_{i=1}^{n}\left(x^{\top} a^{(i)}-y^{(i)}\right)^{2}=\|A x-y\|_{2}^{2} . \\
\frac{\partial f}{\partial x_{j}}=\sum_{i=1}^{n} 2 \cdot\left(x^{T} a^{(i)}-y^{(i)}\right) \cdot a_{j}^{(i)}=2(A x-y)^{T} \cdot \underbrace{A e_{j}}_{j-\text { th column of A }}
\end{gathered}
$$

GRadient in Linear Regression

Recall that we are given $a^{(1)}, \ldots, a^{(n)} \in \mathbb{R}^{d}$ and $y^{(1)}, \ldots, y^{(n)} \in \mathbb{R}$ and want to minimize

$$
\begin{gathered}
f(x)=\sum_{i=1}^{n}\left(x^{T} a^{(i)}-y^{(i)}\right)^{2}=\|A x-y\|_{2}^{2} \\
\frac{\partial f}{\partial x_{j}}=\sum_{i=1}^{n} 2 \cdot\left(x^{T} a^{(i)}-y^{(i)}\right) \cdot a_{j}^{(i)}=2(A x-y)^{T} \cdot \underbrace{A e_{j}}_{j-\text { th column of } A} \\
\nabla f(x)=2 A^{T}(A x-y) .
\end{gathered}
$$

GRADIENT DESCENT

Taylor approximation: $f(x+\delta)=f(x)+f(x)^{\top} \delta+o\left(\|\delta\|_{2}^{2}\right)$.

GRadient Descent

Taylor approximation: $f(x+\delta)=f(x)+f(x)^{\top} \delta+o\left(\|\delta\|_{2}^{2}\right)$.

Gradient descent is THE algorithm.

- For $i=0$ to T (number of iterations)
- $x^{(i+1)}=x^{(i)}-\eta \cdot \nabla f\left(x^{(i)}\right)(\eta$ is the step)
- Return $\operatorname{argmin}_{i} x^{(i)}$

WHAT HAPPENS?

When f is convex for sufficiently small η and sufficiently large T, gradient descent will converge to a global minimum:

$$
f\left(x^{(T)}\right) \leq f\left(x^{\star}\right)+\epsilon .
$$

See least squares regression, logistic and kernel regression, support vector machines etc

What happens?

When f is convex for sufficiently small η and sufficiently large T, gradient descent will converge to a global minimum:

$$
f\left(x^{(T)}\right) \leq f\left(x^{\star}\right)+\epsilon .
$$

See least squares regression, logistic and kernel regression, support vector machines etc

When f is non-convex for sufficiently small η and sufficiently large T, gradient descent will converge to a near stationary point:

$$
\left\|\nabla f\left(x^{(T)}\right)\right\|_{2} \leq \epsilon .
$$

The latter happens in neural networks.

RUNNING TIME OF GRADIENT DESCENT

Of course we are interested in the rate of convergence.

- Bounding the number of iteration in terms of ϵ, the starting point $x^{(0)}$ and the complexity of f.

Running time of gradient descent

Of course we are interested in the rate of convergence.

- Bounding the number of iteration in terms of ϵ, the starting point $x^{(0)}$ and the complexity of f.
■ Depending on the assumptions on f, you get different convergence rates.

Convex Function

A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for any $x, y \in \mathbb{R}^{d}$ and any $\lambda \in[0,1]$ we have

$$
(1-\lambda) f(x)+\lambda f(y) \geq f((1-\lambda) x+\lambda y))
$$

ALTERNATIVE DEFINITION OF CONVEXITY

Convex function

A function f is convex if and only if for all x, y we have

$$
f(x+z) \geq f(x)+\nabla f(x)^{\top} z .
$$

Alternative definition of convexity

Convex function

A function f is convex if and only if for all x, y we have

$$
f(x+z) \geq f(x)+\nabla f(x)^{T} z
$$

Equivalently

$$
f(x)-f(y) \leq \nabla f(x)^{\top}(x-y) .
$$

Alternative definition of convexity

Convex function

A function f is convex if and only if for all x, y we have

$$
f(x+z) \geq f(x)+\nabla f(x)^{\top} z .
$$

Equivalently

$$
f(x)-f(y) \leq \nabla f(x)^{\top}(x-y) .
$$

1D analogue: $f(x)-f(y) \leq f^{\prime}(x)(x-y)$.

BACK TO GRADIENT DESCENT

- f is convex

BACK TO GRADIENT DESCENT

- f is convex

■ f is Lipschitz, i.e. $\forall x\|\nabla f(x)\|_{2} \leq G$.

BACK TO GRADIENT DESCENT

- f is convex

■ f is Lipschitz, i.e. $\forall x\|\nabla f(x)\|_{2} \leq G$.
$■$ good starting point x_{0} s.t. $\left\|x^{\star}-x^{(0)}\right\|_{2} \leq R$.

BACK TO GRADIENT DESCENT

- f is convex

■ f is Lipschitz, i.e. $\forall x\|\nabla f(x)\|_{2} \leq G$.
\square good starting point x_{0} s.t. $\left\|x^{\star}-x^{(0)}\right\|_{2} \leq R$.

- $\eta=\frac{R}{G \sqrt{T}}$

■ For $i=0$ to T (number of iterations)

- $x^{(i+1)}=x^{(i)}-\eta \cdot \nabla f\left(x^{(i)}\right)$

■ Return $\operatorname{argmin}_{i} x^{(i)}$

Main CLAim of Convergence

Convergence Bound

If $T \geq \frac{R^{2} \sigma^{2}}{\epsilon^{2}}$ and $\eta=\frac{R}{G \sqrt{T}}$ then $f\left(x^{(T)}\right) \leq f\left(x^{\star}\right)+\epsilon$.

Main CLAIM of Convergence

Convergence Bound

If $T \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ and $\eta=\frac{R}{G \sqrt{T}}$ then $f\left(x^{(T)}\right) \leq f\left(x^{\star}\right)+\epsilon$.
The "progress" claim: For all $i=0,1, \ldots, T$ we have

$$
f\left(x^{(i)}\right)-f\left(x^{\star}\right) \leq \frac{\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i+1)}-x^{\star}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2} .
$$

LET'S TELESCOPE

The "progress" claim: For all $i=0,1, \ldots, T$ we have

$$
f\left(x^{(i)}-f\left(x^{\star}\right) \leq \frac{\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i+1)}-x^{\star}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2} .\right.
$$

LET'S TELESCOPE

The "progress" claim: For all $i=0,1, \ldots, T$ we have

$$
\begin{gathered}
f\left(x^{(i)}-f\left(x^{\star}\right) \leq \frac{\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i+1)}-x^{\star}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2} .\right. \\
\sum_{i=0}^{T-1}\left[f\left(x^{(i)}-f\left(x^{\star}\right)\right] \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(T)}-x^{\star}\right\|_{2}^{2}}{2 \eta}+\frac{T \eta G^{2}}{2} .\right.
\end{gathered}
$$

LET'S TELESCOPE

The "progress" claim: For all $i=0,1, \ldots, T$ we have

$$
\begin{gathered}
f\left(x^{(i)}-f\left(x^{\star}\right) \leq \frac{\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i+1)}-x^{\star}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2} .\right. \\
\sum_{i=0}^{T-1}\left[f\left(x^{(i)}-f\left(x^{\star}\right)\right] \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(T)}-x^{\star}\right\|_{2}^{2}}{2 \eta}+\frac{T \eta G^{2}}{2} .\right. \\
\frac{1}{T} \sum_{i=0}^{T-1}\left[f\left(x^{(i)}-f\left(x^{\star}\right)\right] \leq \frac{R^{2}}{2 T \eta}+\frac{\eta G^{2}}{2}\right.
\end{gathered}
$$

Convergence Bound

If $T \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ and $\eta=\frac{R}{G \sqrt{T}}$ then $f\left(x^{(T)}\right) \leq f\left(x^{\star}\right)+\epsilon$.

Convergence Bound

If $T \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ and $\eta=\frac{R}{G \sqrt{T}}$ then $f\left(x^{(T)}\right) \leq f\left(x^{\star}\right)+\epsilon$.
By our setting of parameters we have

$$
\operatorname{argmin}_{i} x^{(i)} \leq \frac{1}{T} \sum_{i=0}^{T-1}\left[f\left(x^{(i)}-f\left(x^{\star}\right)\right] \leq \epsilon\right.
$$

Convergence Bound

If $T \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ and $\eta=\frac{R}{G \sqrt{T}}$ then $f\left(x^{(T)}\right) \leq f\left(x^{\star}\right)+\epsilon$.
By our setting of parameters we have

$$
\operatorname{argmin}_{i} x^{(i)} \leq \frac{1}{T} \sum_{i=0}^{T-1}\left[f\left(x^{(i)}-f\left(x^{\star}\right)\right] \leq \epsilon\right.
$$

Convexity

Convex Set

A set $S \subseteq \mathbb{R}^{d}$ is convex if and only

$$
\forall x, y \in S, \forall \lambda \in[0,1]: \lambda x+(1-\lambda) y \in S .
$$

Any line segment the endpoints of which are in S belongs totally into S.

PROJECTION

Usually we are not interested in optimizing f over the whole
space but rather over a convex domain.

Projection

Usually we are not interested in optimizing f over the whole space but rather over a convex domain.

For example $\min f(x)$ subject to $\Pi x=b$, where $\Pi \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$.

Projection

Usually we are not interested in optimizing f over the whole space but rather over a convex domain.

For example $\min f(x)$ subject to $\Pi x=b$, where $\Pi \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$.
■ From the points which satisfy a particular set of linear constraints, finding the one with the minimum $f(x)$.

Projection

Usually we are not interested in optimizing f over the whole space but rather over a convex domain.

For example $\min f(x)$ subject to $\Pi x=b$, where $\Pi \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$.
■ From the points which satisfy a particular set of linear constraints, finding the one with the minimum $f(x)$.
\square The set $S:=\{x: \Pi x=b\}$ is convex, since

Projection

Usually we are not interested in optimizing f over the whole space but rather over a convex domain.

For example $\min f(x)$ subject to $\Pi x=b$, where $\Pi \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$.

- From the points which satisfy a particular set of linear constraints, finding the one with the minimum $f(x)$.
■ The set $S:=\{x: \Pi x=b\}$ is convex, since

$$
\Pi(\lambda x+(1-\lambda) y)=\lambda \Pi x+(1-\lambda) \Pi y=\lambda b+(1-\lambda) y=1
$$

Projection

Usually we are not interested in optimizing f over the whole space but rather over a convex domain.

For example $\min f(x)$ subject to $\Pi x=b$, where $\Pi \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$.

- From the points which satisfy a particular set of linear constraints, finding the one with the minimum $f(x)$.
- The set $S:=\{x: \Pi x=b\}$ is convex, since

$$
\Pi(\lambda x+(1-\lambda) y)=\lambda \Pi x+(1-\lambda) \Pi y=\lambda b+(1-\lambda) y=1
$$

- The ℓ_{1} ball $S:\{x:\|x\| \leq 1\}$ is a convex set.

Projection

Usually we are not interested in optimizing f over the whole space but rather over a convex domain.

For example $\min f(x)$ subject to $\Pi x=b$, where $\Pi \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$.

- From the points which satisfy a particular set of linear constraints, finding the one with the minimum $f(x)$.
- The set $S:=\{x: \Pi x=b\}$ is convex, since $\Pi(\lambda x+(1-\lambda) y)=\lambda \Pi x+(1-\lambda) \Pi y=\lambda b+(1-\lambda) y=1$
- The ℓ_{1} ball $S:\{x:\|x\| \leq 1\}$ is a convex set.
- The classical max-flow problem can be cast as optimizing $f(x)=\|x\|_{\infty}$ over a linear system (the flow constraints).

WHAT IS INHERENTLY WRONG WITH GD HERE?

■ For $i=0$ to T (number of iterations)

- $x^{(i+1)}=x^{(i)}-\eta \cdot \nabla f\left(x^{(i)}\right)$

■ Return $\operatorname{argmin}_{i} x^{(i)}$

WHAT IS INHERENTLY WRONG WITH GD HERE?

■ For $i=0$ to T (number of iterations)

- $x^{(i+1)}=x^{(i)}-\eta \cdot \nabla f\left(x^{(i)}\right)$

■ Return $\operatorname{argmin}_{i} x^{(i)}$
It could be that $x^{(i)}$ do not belong inside the convex set S.

Projected Gradient Descent

Force $x^{(i)}$ to be in S by projecting onto it.

- For $i=0$ to T (number of iterations)
- $y^{(i+1)}=x^{(i)}-\eta \cdot \nabla f\left(x^{(i)}\right)$
- $x^{(i+1)}=\operatorname{argmin}_{z \in S}\left\|z-y^{(i+1)}\right\|_{2}^{2}$

■ Return $\operatorname{argmin}_{i} x^{(i)}$

Projected Gradient Descent

Force $x^{(i)}$ to be in S by projecting onto it.

- For $i=0$ to T (number of iterations)
$\rightarrow y^{(i+1)}=x^{(i)}-\eta \cdot \nabla f\left(x^{(i)}\right)$
- $x^{(i+1)}=\operatorname{argmin}_{z \in S}\left\|z-y^{(i+1)}\right\|_{2}^{2}$

■ Return $\operatorname{argmin}_{i} x^{(i)}$
The projection operator $\Pi_{S}(y)=\operatorname{argmin}_{z \in S}\|z-y\|_{2}^{2}$.

Demands of First order projected GD

Given a function f to be minimized over a (usually convex) set, we shall perform minimization by making

1. function accesses: evaluations of $f(x)$ for any x.

Demands of First order projected GD

Given a function f to be minimized over a (usually convex) set, we shall perform minimization by making

1. function accesses: evaluations of $f(x)$ for any x.
2. gradient accesses: evaluations of $\nabla f(x)$ for any x.

Demands of First order projected GD

Given a function f to be minimized over a (usually convex) set, we shall perform minimization by making

1. function accesses: evaluations of $f(x)$ for any x.
2. gradient accesses: evaluations of $\nabla f(x)$ for any x.
3. projection accesses: finding $\Pi_{s}(y)$.

WHAT HAPPENS?

Analysis the roughly the same with a catch:
Projection does not increase distances from points in S
If S is a convex set, then for any $y \in S$ we have

$$
\left\|y-\Pi_{S}(x)\right\|_{2} \leq\|y-x\|_{2}
$$

WHAT HAPPENS?

Analysis the roughly the same with a catch:
Projection does not increase distances from points in S
If S is a convex set, then for any $y \in S$ we have

$$
\left\|y-\Pi_{S}(x)\right\|_{2} \leq\|y-x\|_{2}
$$

Proof using the separating hyperplane theorem.

Projected Gradient Descent Analysis

PGD Convergence Bound

If f, S are convex and $T \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ then $f\left(x^{\prime}\right) \leq f\left(x^{\star}\right)+\epsilon$.

- Gradient descent is a first-order method for minimizing convex functions.
- Gradient descent is a first-order method for minimizing convex functions.
- Projected Gradient descent is a first-order method for minimizing convex functions over convex domains.

Recap

■ Gradient descent is a first-order method for minimizing convex functions.
■ Projected Gradient descent is a first-order method for minimizing convex functions over convex domains.

- To achieve acurracy ϵ what we've seen in class needs

1. Efficient ways to evaluate $f(x), \nabla f(x)$.

Recap

■ Gradient descent is a first-order method for minimizing convex functions.
■ Projected Gradient descent is a first-order method for minimizing convex functions over convex domains.
■ To achieve acurracy ϵ what we've seen in class needs

1. Efficient ways to evaluate $f(x), \nabla f(x)$.
2. An upper bound on $\|\nabla f(x)\|_{2}$.

Recap

■ Gradient descent is a first-order method for minimizing convex functions.
■ Projected Gradient descent is a first-order method for minimizing convex functions over convex domains.
■ To achieve acurracy ϵ what we've seen in class needs

1. Efficient ways to evaluate $f(x), \nabla f(x)$.
2. An upper bound on $\|\nabla f(x)\|_{2}$.
3. A good initial point.

Recap

■ Gradient descent is a first-order method for minimizing convex functions.
■ Projected Gradient descent is a first-order method for minimizing convex functions over convex domains.
■ To achieve acurracy ϵ what we've seen in class needs

1. Efficient ways to evaluate $f(x), \nabla f(x)$.
2. An upper bound on $\|\nabla f(x)\|_{2}$.
3. A good initial point.
4. A way to project (in case of PGD) onto S.

Recap

- Gradient descent is a first-order method for minimizing convex functions.
- Projected Gradient descent is a first-order method for minimizing convex functions over convex domains.
- To achieve acurracy ϵ what we've seen in class needs

1. Efficient ways to evaluate $f(x), \nabla f(x)$.
2. An upper bound on $\|\nabla f(x)\|_{2}$.
3. A good initial point.
4. A way to project (in case of PGD) onto S.
5. Then $\approx \frac{1}{\epsilon^{e}}$ iterations suffice.

Thank you!

