
Algorithms for Data Science: Lec-
ture 6

Vasileios Nakos

National Technical University of Athens

April 17, 2021

Basics of Continuous Optimization

Minimize or maximize e�ciently a function over a domain.

Most Machine Learning problems under a particular formulation
can be solved as optimization problems.

The interplay between optimization and ML is one of the
most important developments in modern computational
science.
Deep neural networks.
Reinforcement learning.
Meta Learning.
Variational inference.
Markov chain Monte Carlo.
Federated Learning.

1 31

Basics of Continuous Optimization

Minimize or maximize e�ciently a function over a domain.
Most Machine Learning problems under a particular formulation
can be solved as optimization problems.

The interplay between optimization and ML is one of the
most important developments in modern computational
science.
Deep neural networks.
Reinforcement learning.
Meta Learning.
Variational inference.
Markov chain Monte Carlo.
Federated Learning.

1 31

Basics of Continuous Optimization

Minimize or maximize e�ciently a function over a domain.
Most Machine Learning problems under a particular formulation
can be solved as optimization problems.

The interplay between optimization and ML is one of the
most important developments in modern computational
science.
Deep neural networks.
Reinforcement learning.
Meta Learning.
Variational inference.
Markov chain Monte Carlo.
Federated Learning.

1 31

Given function f : Rd → R �nd x? such that

f (x?) = minxf (x),

or at least x′ such that f (x′) ≤ f (x?) + ε.
Often additional constraints:

xi > 0,∀i ∈ [d].
‖x2‖ ≤ R, ‖x‖1 ≤ R (`2, `1 balls).
wTx ≤ c (hyperplane).
Φx = b (linear constraint)

2 31

Given function f : Rd → R �nd x? such that

f (x?) = minxf (x),

or at least x′ such that f (x′) ≤ f (x?) + ε.

Often additional constraints:
xi > 0,∀i ∈ [d].
‖x2‖ ≤ R, ‖x‖1 ≤ R (`2, `1 balls).
wTx ≤ c (hyperplane).
Φx = b (linear constraint)

2 31

Given function f : Rd → R �nd x? such that

f (x?) = minxf (x),

or at least x′ such that f (x′) ≤ f (x?) + ε.
Often additional constraints:

xi > 0, ∀i ∈ [d].
‖x2‖ ≤ R, ‖x‖1 ≤ R (`2, `1 balls).
wTx ≤ c (hyperplane).
Φx = b (linear constraint)

2 31

3 31

Supervised Learning

In supervised learning, we want to learn a model that maps
inputs

numerical data vectors
images, video
text documents

to predictions

numerical value (probability of mutation)
label (is the image a human or a dragon?)
decision (move bishop to G4)

4 31

Supervised Learning

In supervised learning, we want to learn a model that maps
inputs

numerical data vectors
images, video
text documents

to predictions

numerical value (probability of mutation)
label (is the image a human or a dragon?)
decision (move bishop to G4)

4 31

Mathematical abstraction of supervised
learning

Let Mx be a model with parameters x = {x1, . . . , xk} which takes
as input a vector a and outputs a prediction.

For example, Mx(a) = sign(aTx).

In supervised learning we want to �nd a model that agrees with
the data that you already have the answer for, i.e. datasets a(i)
with output y(i), i ∈ [n].

Find x′ such that Mx′(a(i)) ≈ y(i),∀i ∈ [n].
Where is the optimization in all of these?

5 31

Mathematical abstraction of supervised
learning

Let Mx be a model with parameters x = {x1, . . . , xk} which takes
as input a vector a and outputs a prediction.
For example, Mx(a) = sign(aTx).

In supervised learning we want to �nd a model that agrees with
the data that you already have the answer for, i.e. datasets a(i)
with output y(i), i ∈ [n].

Find x′ such that Mx′(a(i)) ≈ y(i),∀i ∈ [n].
Where is the optimization in all of these?

5 31

Mathematical abstraction of supervised
learning

Let Mx be a model with parameters x = {x1, . . . , xk} which takes
as input a vector a and outputs a prediction.
For example, Mx(a) = sign(aTx).

In supervised learning we want to �nd a model that agrees with
the data that you already have the answer for, i.e. datasets a(i)
with output y(i), i ∈ [n].

Find x′ such that Mx′(a(i)) ≈ y(i),∀i ∈ [n].
Where is the optimization in all of these?

5 31

Mathematical abstraction of supervised
learning

Let Mx be a model with parameters x = {x1, . . . , xk} which takes
as input a vector a and outputs a prediction.
For example, Mx(a) = sign(aTx).

In supervised learning we want to �nd a model that agrees with
the data that you already have the answer for, i.e. datasets a(i)
with output y(i), i ∈ [n].

Find x′ such that Mx′(a(i)) ≈ y(i), ∀i ∈ [n].

Where is the optimization in all of these?

5 31

Mathematical abstraction of supervised
learning

Let Mx be a model with parameters x = {x1, . . . , xk} which takes
as input a vector a and outputs a prediction.
For example, Mx(a) = sign(aTx).

In supervised learning we want to �nd a model that agrees with
the data that you already have the answer for, i.e. datasets a(i)
with output y(i), i ∈ [n].

Find x′ such that Mx′(a(i)) ≈ y(i), ∀i ∈ [n].
Where is the optimization in all of these?

5 31

Loss functions

The loss function L(·, ·) is used as a measure of distance:
L(Mx(a), y) counts how far away is the prediction Mx(a) from y.

squared `2 loss: |Mx(a)− y|2

absolute devation: |Mx(a)− y|
Hinge loss: 1− y ·Mx(a)

cross-entropy loss

6 31

Loss functions

The loss function L(·, ·) is used as a measure of distance:
L(Mx(a), y) counts how far away is the prediction Mx(a) from y.

squared `2 loss: |Mx(a)− y|2

absolute devation: |Mx(a)− y|

Hinge loss: 1− y ·Mx(a)

cross-entropy loss

6 31

Loss functions

The loss function L(·, ·) is used as a measure of distance:
L(Mx(a), y) counts how far away is the prediction Mx(a) from y.

squared `2 loss: |Mx(a)− y|2

absolute devation: |Mx(a)− y|
Hinge loss: 1− y ·Mx(a)

cross-entropy loss

6 31

Loss functions

The loss function L(·, ·) is used as a measure of distance:
L(Mx(a), y) counts how far away is the prediction Mx(a) from y.

squared `2 loss: |Mx(a)− y|2

absolute devation: |Mx(a)− y|
Hinge loss: 1− y ·Mx(a)

cross-entropy loss

6 31

Loss functions

The loss function L(·, ·) is used as a measure of distance:
L(Mx(a), y) counts how far away is the prediction Mx(a) from y.

squared `2 loss: |Mx(a)− y|2

absolute devation: |Mx(a)− y|
Hinge loss: 1− y ·Mx(a)

cross-entropy loss

6 31

Empirical Risk Minimization

Minimize the function

n∑
i=1

L(Mx(a(i)), y(i)).

7 31

Linear Regression

For Mx(a) = xTa and L(z, y) = |z− y|2 we have

f (x) =
n∑
i=1

|xTa(i) − y(i)|2 = ‖Ax − y‖22,

where A is a matrix with a(i) as its i-th row and
y = [y(1), y(2), . . . , y(n)]T .

8 31

Linear Regression

For Mx(a) = xTa and L(z, y) = |z− y|2 we have

f (x) =
n∑
i=1

|xTa(i) − y(i)|2 = ‖Ax − y‖22,

where A is a matrix with a(i) as its i-th row and
y = [y(1), y(2), . . . , y(n)]T .

8 31

Gradient Descent

Gradient descent is a method for minimizing convex functions,
but which also works surprisingly well in many practical
scenarios.

9 31

Basic Calculus

Partial derivative:

∂f
∂xi

= limt→0
f (x + t · e(i))− f (x)

t

Directional derivative:

Dvf (x) = limt→0
f (x + tv)− f (x)

t

10 31

Basic Calculus

Partial derivative:

∂f
∂xi

= limt→0
f (x + t · e(i))− f (x)

t

Directional derivative:

Dvf (x) = limt→0
f (x + tv)− f (x)

t

10 31

More Basic Calculus

Gradient:

∇f (x) =

[
∂f
∂x1

(x),
∂f
∂x2

(x), . . . ,
∂f
∂xi

(x)

]T

and its connection to directional derivative:

Dvf (x) = ∇f (x)Tv

11 31

More Basic Calculus

Gradient:

∇f (x) =

[
∂f
∂x1

(x),
∂f
∂x2

(x), . . . ,
∂f
∂xi

(x)

]T
and its connection to directional derivative:

Dvf (x) = ∇f (x)Tv

11 31

First order optimization

Given a function f to be minimized, we shall perform
minimization by making

1. function accesses: evaluations of f (x) for any x.

2. gradient accesses: evaluations of ∇f (x) for any x.

We will treat the evaluations as black boxes but depending on
the problem they might be computationally expensive to
implement.

12 31

First order optimization

Given a function f to be minimized, we shall perform
minimization by making

1. function accesses: evaluations of f (x) for any x.
2. gradient accesses: evaluations of ∇f (x) for any x.

We will treat the evaluations as black boxes but depending on
the problem they might be computationally expensive to
implement.

12 31

First order optimization

Given a function f to be minimized, we shall perform
minimization by making

1. function accesses: evaluations of f (x) for any x.
2. gradient accesses: evaluations of ∇f (x) for any x.

We will treat the evaluations as black boxes but depending on
the problem they might be computationally expensive to
implement.

12 31

Gradient in Linear Regression

Recall that we are given a(1), . . . ,a(n) ∈ Rd and y(1), . . . , y(n) ∈ R
and want to minimize

f (x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ‖Ax − y‖22.

∂f
∂xj

=
n∑
i=1

2 · (xTa(i) − y(i)) · a(i)j = 2(Ax − y)T · Aej︸︷︷︸
j−th column of A

∇f (x) = 2AT(Ax − y).

13 31

Gradient in Linear Regression

Recall that we are given a(1), . . . ,a(n) ∈ Rd and y(1), . . . , y(n) ∈ R
and want to minimize

f (x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ‖Ax − y‖22.

∂f
∂xj

=
n∑
i=1

2 · (xTa(i) − y(i)) · a(i)j = 2(Ax − y)T · Aej︸︷︷︸
j−th column of A

∇f (x) = 2AT(Ax − y).

13 31

Gradient in Linear Regression

Recall that we are given a(1), . . . ,a(n) ∈ Rd and y(1), . . . , y(n) ∈ R
and want to minimize

f (x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ‖Ax − y‖22.

∂f
∂xj

=
n∑
i=1

2 · (xTa(i) − y(i)) · a(i)j = 2(Ax − y)T · Aej︸︷︷︸
j−th column of A

∇f (x) = 2AT(Ax − y).

13 31

Gradient Descent

Taylor approximation: f (x + δ) = f (x) + f (x)Tδ + o(‖δ‖22).

Gradient descent is THE algorithm.

For i = 0 to T (number of iterations)
I x(i+1) = x(i) − η · ∇f (x(i)) (η is the step)

Return argminix(i)

14 31

Gradient Descent

Taylor approximation: f (x + δ) = f (x) + f (x)Tδ + o(‖δ‖22).

Gradient descent is THE algorithm.

For i = 0 to T (number of iterations)
I x(i+1) = x(i) − η · ∇f (x(i)) (η is the step)

Return argminix(i)

14 31

What happens?

When f is convex for su�ciently small η and su�ciently large T,
gradient descent will converge to a global minimum:

f (x(T)) ≤ f (x?) + ε.

See least squares regression, logistic and kernel regression,
support vector machines etc

When f is non-convex for su�ciently small η and su�ciently
large T, gradient descent will converge to a near stationary point:

‖∇f (x(T))‖2 ≤ ε.

The latter happens in neural networks.

15 31

What happens?

When f is convex for su�ciently small η and su�ciently large T,
gradient descent will converge to a global minimum:

f (x(T)) ≤ f (x?) + ε.

See least squares regression, logistic and kernel regression,
support vector machines etc

When f is non-convex for su�ciently small η and su�ciently
large T, gradient descent will converge to a near stationary point:

‖∇f (x(T))‖2 ≤ ε.

The latter happens in neural networks.

15 31

Running time of gradient descent

Of course we are interested in the rate of convergence.

Bounding the number of iteration in terms of ε, the starting
point x(0) and the complexity of f .

Depending on the assumptions on f , you get di�erent
convergence rates.

16 31

Running time of gradient descent

Of course we are interested in the rate of convergence.

Bounding the number of iteration in terms of ε, the starting
point x(0) and the complexity of f .
Depending on the assumptions on f , you get di�erent
convergence rates.

16 31

Convex Function

A function f : Rd → R is convex if for any x, y ∈ Rd and any
λ ∈ [0, 1] we have

(1− λ)f (x) + λf (y) ≥ f ((1− λ)x + λy)).

17 31

Alternative definition of convexity

Convex function
A function f is convex if and only if for all x, y we have

f (x + z) ≥ f (x) +∇f (x)Tz.

Equivalently

f (x)− f (y) ≤ ∇f (x)T(x − y).

1D analogue: f (x)− f (y) ≤ f ′(x)(x − y).

18 31

Alternative definition of convexity

Convex function
A function f is convex if and only if for all x, y we have

f (x + z) ≥ f (x) +∇f (x)Tz.

Equivalently

f (x)− f (y) ≤ ∇f (x)T(x − y).

1D analogue: f (x)− f (y) ≤ f ′(x)(x − y).

18 31

Alternative definition of convexity

Convex function
A function f is convex if and only if for all x, y we have

f (x + z) ≥ f (x) +∇f (x)Tz.

Equivalently

f (x)− f (y) ≤ ∇f (x)T(x − y).

1D analogue: f (x)− f (y) ≤ f ′(x)(x − y).

18 31

Back to gradient descent

f is convex

f is Lipschitz, i.e. ∀x‖∇f (x)‖2 ≤ G.
good starting point x0 s.t. ‖x? − x(0)‖2 ≤ R.

η = R
G
√
T

For i = 0 to T (number of iterations)
I x(i+1) = x(i) − η · ∇f (x(i))

Return argminix(i)

19 31

Back to gradient descent

f is convex
f is Lipschitz, i.e. ∀x‖∇f (x)‖2 ≤ G.

good starting point x0 s.t. ‖x? − x(0)‖2 ≤ R.

η = R
G
√
T

For i = 0 to T (number of iterations)
I x(i+1) = x(i) − η · ∇f (x(i))

Return argminix(i)

19 31

Back to gradient descent

f is convex
f is Lipschitz, i.e. ∀x‖∇f (x)‖2 ≤ G.
good starting point x0 s.t. ‖x? − x(0)‖2 ≤ R.

η = R
G
√
T

For i = 0 to T (number of iterations)
I x(i+1) = x(i) − η · ∇f (x(i))

Return argminix(i)

19 31

Back to gradient descent

f is convex
f is Lipschitz, i.e. ∀x‖∇f (x)‖2 ≤ G.
good starting point x0 s.t. ‖x? − x(0)‖2 ≤ R.

η = R
G
√
T

For i = 0 to T (number of iterations)
I x(i+1) = x(i) − η · ∇f (x(i))

Return argminix(i)

19 31

Main Claim of Convergence

Convergence Bound
If T ≥ R2G2

ε2 and η = R
G
√
T then f (x

(T)) ≤ f (x?) + ε.

The “progress” claim: For all i = 0, 1, . . . , T we have

f (x(i))− f (x?) ≤ ‖x
(i) − x?‖22 − ‖x(i+1) − x?‖22

2η +
ηG2
2 .

20 31

Main Claim of Convergence

Convergence Bound
If T ≥ R2G2

ε2 and η = R
G
√
T then f (x

(T)) ≤ f (x?) + ε.

The “progress” claim: For all i = 0, 1, . . . , T we have

f (x(i))− f (x?) ≤ ‖x
(i) − x?‖22 − ‖x(i+1) − x?‖22

2η +
ηG2
2 .

20 31

Let’s telescope

The “progress” claim: For all i = 0, 1, . . . , T we have

f (x(i) − f (x?) ≤ ‖x
(i) − x?‖22 − ‖x(i+1) − x?‖22

2η +
ηG2
2 .

T−1∑
i=0

[f (x(i) − f (x?)] ≤ ‖x
(0) − x?‖22 − ‖x(T) − x?‖22

2η +
TηG2
2 .

1
T

T−1∑
i=0

[f (x(i) − f (x?)] ≤ R2
2Tη +

ηG2
2

21 31

Let’s telescope

The “progress” claim: For all i = 0, 1, . . . , T we have

f (x(i) − f (x?) ≤ ‖x
(i) − x?‖22 − ‖x(i+1) − x?‖22

2η +
ηG2
2 .

T−1∑
i=0

[f (x(i) − f (x?)] ≤ ‖x
(0) − x?‖22 − ‖x(T) − x?‖22

2η +
TηG2
2 .

1
T

T−1∑
i=0

[f (x(i) − f (x?)] ≤ R2
2Tη +

ηG2
2

21 31

Let’s telescope

The “progress” claim: For all i = 0, 1, . . . , T we have

f (x(i) − f (x?) ≤ ‖x
(i) − x?‖22 − ‖x(i+1) − x?‖22

2η +
ηG2
2 .

T−1∑
i=0

[f (x(i) − f (x?)] ≤ ‖x
(0) − x?‖22 − ‖x(T) − x?‖22

2η +
TηG2
2 .

1
T

T−1∑
i=0

[f (x(i) − f (x?)] ≤ R2
2Tη +

ηG2
2

21 31

Convergence Bound
If T ≥ R2G2

ε2 and η = R
G
√
T then f (x

(T)) ≤ f (x?) + ε.

By our setting of parameters we have

argminix(i) ≤
1
T

T−1∑
i=0

[f (x(i) − f (x?)] ≤ ε

22 31

Convergence Bound
If T ≥ R2G2

ε2 and η = R
G
√
T then f (x

(T)) ≤ f (x?) + ε.

By our setting of parameters we have

argminix(i) ≤
1
T

T−1∑
i=0

[f (x(i) − f (x?)] ≤ ε

22 31

Convergence Bound
If T ≥ R2G2

ε2 and η = R
G
√
T then f (x

(T)) ≤ f (x?) + ε.

By our setting of parameters we have

argminix(i) ≤
1
T

T−1∑
i=0

[f (x(i) − f (x?)] ≤ ε

22 31

Convexity

Convex Set
A set S ⊆ Rd is convex if and only

∀x, y ∈ S, ∀λ ∈ [0, 1] : λx + (1− λ)y ∈ S.

Any line segment the endpoints of which are in S belongs totally
into S.

23 31

Projection

Usually we are not interested in optimizing f over the whole
space but rather over a convex domain.

For example minf (x) subject to Πx = b, where Π ∈ Rm×d,b ∈ Rm.

From the points which satisfy a particular set of linear
constraints, �nding the one with the minimum f (x).
The set S := {x : Πx = b} is convex, since
Π(λx + (1− λ)y) = λΠx + (1− λ)Πy = λb+ (1− λ)y = 1
The `1 ball S : {x : ‖x‖ ≤ 1} is a convex set.
The classical max-�ow problem can be cast as optimizing
f (x) = ‖x‖∞ over a linear system (the �ow constraints).

24 31

Projection

Usually we are not interested in optimizing f over the whole
space but rather over a convex domain.

For example minf (x) subject to Πx = b, where Π ∈ Rm×d,b ∈ Rm.

From the points which satisfy a particular set of linear
constraints, �nding the one with the minimum f (x).
The set S := {x : Πx = b} is convex, since
Π(λx + (1− λ)y) = λΠx + (1− λ)Πy = λb+ (1− λ)y = 1
The `1 ball S : {x : ‖x‖ ≤ 1} is a convex set.
The classical max-�ow problem can be cast as optimizing
f (x) = ‖x‖∞ over a linear system (the �ow constraints).

24 31

Projection

Usually we are not interested in optimizing f over the whole
space but rather over a convex domain.

For example minf (x) subject to Πx = b, where Π ∈ Rm×d,b ∈ Rm.

From the points which satisfy a particular set of linear
constraints, �nding the one with the minimum f (x).

The set S := {x : Πx = b} is convex, since
Π(λx + (1− λ)y) = λΠx + (1− λ)Πy = λb+ (1− λ)y = 1
The `1 ball S : {x : ‖x‖ ≤ 1} is a convex set.
The classical max-�ow problem can be cast as optimizing
f (x) = ‖x‖∞ over a linear system (the �ow constraints).

24 31

Projection

Usually we are not interested in optimizing f over the whole
space but rather over a convex domain.

For example minf (x) subject to Πx = b, where Π ∈ Rm×d,b ∈ Rm.

From the points which satisfy a particular set of linear
constraints, �nding the one with the minimum f (x).
The set S := {x : Πx = b} is convex, since

Π(λx + (1− λ)y) = λΠx + (1− λ)Πy = λb+ (1− λ)y = 1
The `1 ball S : {x : ‖x‖ ≤ 1} is a convex set.
The classical max-�ow problem can be cast as optimizing
f (x) = ‖x‖∞ over a linear system (the �ow constraints).

24 31

Projection

Usually we are not interested in optimizing f over the whole
space but rather over a convex domain.

For example minf (x) subject to Πx = b, where Π ∈ Rm×d,b ∈ Rm.

From the points which satisfy a particular set of linear
constraints, �nding the one with the minimum f (x).
The set S := {x : Πx = b} is convex, since
Π(λx + (1− λ)y) = λΠx + (1− λ)Πy = λb+ (1− λ)y = 1

The `1 ball S : {x : ‖x‖ ≤ 1} is a convex set.
The classical max-�ow problem can be cast as optimizing
f (x) = ‖x‖∞ over a linear system (the �ow constraints).

24 31

Projection

Usually we are not interested in optimizing f over the whole
space but rather over a convex domain.

For example minf (x) subject to Πx = b, where Π ∈ Rm×d,b ∈ Rm.

From the points which satisfy a particular set of linear
constraints, �nding the one with the minimum f (x).
The set S := {x : Πx = b} is convex, since
Π(λx + (1− λ)y) = λΠx + (1− λ)Πy = λb+ (1− λ)y = 1
The `1 ball S : {x : ‖x‖ ≤ 1} is a convex set.

The classical max-�ow problem can be cast as optimizing
f (x) = ‖x‖∞ over a linear system (the �ow constraints).

24 31

Projection

Usually we are not interested in optimizing f over the whole
space but rather over a convex domain.

For example minf (x) subject to Πx = b, where Π ∈ Rm×d,b ∈ Rm.

From the points which satisfy a particular set of linear
constraints, �nding the one with the minimum f (x).
The set S := {x : Πx = b} is convex, since
Π(λx + (1− λ)y) = λΠx + (1− λ)Πy = λb+ (1− λ)y = 1
The `1 ball S : {x : ‖x‖ ≤ 1} is a convex set.
The classical max-�ow problem can be cast as optimizing
f (x) = ‖x‖∞ over a linear system (the �ow constraints).

24 31

What is inherently wrong with GD here?

For i = 0 to T (number of iterations)
I x(i+1) = x(i) − η · ∇f (x(i))

Return argminix(i)

It could be that x(i) do not belong inside the convex set S.

25 31

What is inherently wrong with GD here?

For i = 0 to T (number of iterations)
I x(i+1) = x(i) − η · ∇f (x(i))

Return argminix(i)

It could be that x(i) do not belong inside the convex set S.

25 31

Projected Gradient Descent

Force x(i) to be in S by projecting onto it.
For i = 0 to T (number of iterations)
I y(i+1) = x(i) − η · ∇f (x(i))
I x(i+1) = argminz∈S‖z− y(i+1)‖22

Return argminix(i)

The projection operator ΠS(y) = argminz∈S‖z− y‖22.

26 31

Projected Gradient Descent

Force x(i) to be in S by projecting onto it.
For i = 0 to T (number of iterations)
I y(i+1) = x(i) − η · ∇f (x(i))
I x(i+1) = argminz∈S‖z− y(i+1)‖22

Return argminix(i)

The projection operator ΠS(y) = argminz∈S‖z− y‖22.

26 31

Demands of First order projected GD

Given a function f to be minimized over a (usually convex) set,
we shall perform minimization by making

1. function accesses: evaluations of f (x) for any x.

2. gradient accesses: evaluations of ∇f (x) for any x.
3. projection accesses: �nding ΠS(y).

27 31

Demands of First order projected GD

Given a function f to be minimized over a (usually convex) set,
we shall perform minimization by making

1. function accesses: evaluations of f (x) for any x.
2. gradient accesses: evaluations of ∇f (x) for any x.

3. projection accesses: �nding ΠS(y).

27 31

Demands of First order projected GD

Given a function f to be minimized over a (usually convex) set,
we shall perform minimization by making

1. function accesses: evaluations of f (x) for any x.
2. gradient accesses: evaluations of ∇f (x) for any x.
3. projection accesses: �nding ΠS(y).

27 31

What happens?

Analysis the roughly the same with a catch:

Projection does not increase distances from points in S
If S is a convex set, then for any y ∈ S we have

‖y − ΠS(x)‖2 ≤ ‖y − x‖2.

Proof using the separating hyperplane theorem.

28 31

What happens?

Analysis the roughly the same with a catch:

Projection does not increase distances from points in S
If S is a convex set, then for any y ∈ S we have

‖y − ΠS(x)‖2 ≤ ‖y − x‖2.

Proof using the separating hyperplane theorem.

28 31

Projected Gradient Descent Analysis

PGD Convergence Bound
If f , S are convex and T ≥ R2G2

ε2 then f (x′) ≤ f (x?) + ε.

29 31

Recap

Gradient descent is a �rst-order method for minimizing
convex functions.

Projected Gradient descent is a �rst-order method for
minimizing convex functions over convex domains.
To achieve acurracy ε what we’ve seen in class needs
1. E�cient ways to evaluate f (x),∇f (x).
2. An upper bound on ‖∇f (x)‖2.
3. A good initial point.
4. A way to project (in case of PGD) onto S.
5. Then ≈ 1

ε2 iterations su�ce.

30 31

Recap

Gradient descent is a �rst-order method for minimizing
convex functions.
Projected Gradient descent is a �rst-order method for
minimizing convex functions over convex domains.

To achieve acurracy ε what we’ve seen in class needs
1. E�cient ways to evaluate f (x),∇f (x).
2. An upper bound on ‖∇f (x)‖2.
3. A good initial point.
4. A way to project (in case of PGD) onto S.
5. Then ≈ 1

ε2 iterations su�ce.

30 31

Recap

Gradient descent is a �rst-order method for minimizing
convex functions.
Projected Gradient descent is a �rst-order method for
minimizing convex functions over convex domains.
To achieve acurracy ε what we’ve seen in class needs
1. E�cient ways to evaluate f (x),∇f (x).

2. An upper bound on ‖∇f (x)‖2.
3. A good initial point.
4. A way to project (in case of PGD) onto S.
5. Then ≈ 1

ε2 iterations su�ce.

30 31

Recap

Gradient descent is a �rst-order method for minimizing
convex functions.
Projected Gradient descent is a �rst-order method for
minimizing convex functions over convex domains.
To achieve acurracy ε what we’ve seen in class needs
1. E�cient ways to evaluate f (x),∇f (x).
2. An upper bound on ‖∇f (x)‖2.

3. A good initial point.
4. A way to project (in case of PGD) onto S.
5. Then ≈ 1

ε2 iterations su�ce.

30 31

Recap

Gradient descent is a �rst-order method for minimizing
convex functions.
Projected Gradient descent is a �rst-order method for
minimizing convex functions over convex domains.
To achieve acurracy ε what we’ve seen in class needs
1. E�cient ways to evaluate f (x),∇f (x).
2. An upper bound on ‖∇f (x)‖2.
3. A good initial point.

4. A way to project (in case of PGD) onto S.
5. Then ≈ 1

ε2 iterations su�ce.

30 31

Recap

Gradient descent is a �rst-order method for minimizing
convex functions.
Projected Gradient descent is a �rst-order method for
minimizing convex functions over convex domains.
To achieve acurracy ε what we’ve seen in class needs
1. E�cient ways to evaluate f (x),∇f (x).
2. An upper bound on ‖∇f (x)‖2.
3. A good initial point.
4. A way to project (in case of PGD) onto S.

5. Then ≈ 1
ε2 iterations su�ce.

30 31

Recap

Gradient descent is a �rst-order method for minimizing
convex functions.
Projected Gradient descent is a �rst-order method for
minimizing convex functions over convex domains.
To achieve acurracy ε what we’ve seen in class needs
1. E�cient ways to evaluate f (x),∇f (x).
2. An upper bound on ‖∇f (x)‖2.
3. A good initial point.
4. A way to project (in case of PGD) onto S.
5. Then ≈ 1

ε2 iterations su�ce.

30 31

Thank you!

31 / 31

