

GAMES, DYNAMICS & LEARNING

Panayotis Mertikopoulos¹

joint with

A. Giannou² T. Lianeas² E. V. Vlatakis-Gkaragkounis³

¹French National Center for Scientific Research (CNRS) & Criteo AI Lab

2NTUA

³Columbia University

ECE-NTUA - May 14, 2021

Course outline 000

GAMES, DYNAMICS & LEARNING

BACKGROUND & MOTIVATION

Panayotis Mertikopoulos¹

joint with

A. Giannou² T. Lianeas² E. V. Vlatakis-Gkaragkounis³

¹French National Center for Scientific Research (CNRS) & Criteo AI Lab

2NTUA

³Columbia University

ECE-NTUA - May 14, 2021

Machine learnin

Course outline 000

Commuting

Machine learning

Course outline

2/15

C

Machine learni

Course outlin 000

Game 1: Congestion models

Planning your commute: not sure when to leave, nor who will be on the road

Figure: A game with a random set of players

0000

CINIS

Machine learning

Course outline

Game of roads

The city of Chicago

- 2,700,000 people
- 1,261,000 daily trips
- 933 nodes
- 2950 edges
- 870,000 o/d pairs
- $\approx 2 * 10^{16}$ paths

A very large game!

CNRS & Criteo Al Lab

Machine learning

Course outline

Commuting

Machine learning

Course outline

6/15

C

Machine learning 0●00000 Course outline

References

Game 2: A graphical Turing test

Which person is real?

C

Machine learning

Course outline

References

Game 2: A graphical Turing test

Which person is real?

[Spoiler: https://thispersondoesnotexist.com]

The deep learning revolution: breaking the human perception barrier (2010's)

Examples

- 1. Perceptron: binary inputs, step function activation
- 2. Sigmoid neuron: real inputs, tanh activation
- 3. *ReLU*: real inputs, rectified linear activation ($f(z) = [z]_+$)

		arning O	
cnrs	The schematics of GANs		
	Zi		

CIN

Machine learning

Course outlin

CIN

Machine learning

Course outlin

References

CNI

Machine learning

Course outlir

References

CIN

Machine learning 0000●00 Course outli 000 References

CINI

Machine learning 00000000

Course outlin

		Machine learning 00000●0		
cnrs	GAN training			
	How to find good ge	nerators (G) and discriminate	ors (D)?	
	Discriminator: maxim	nize (log-)likelihood estimatio	on	
		$\max_{D\in\mathcal{D}}\log L(G,D)$		
	Generator: minimize	the resulting divergence		
		$\min_{G \in \mathcal{G}} \max_{D \in \mathcal{D}} \log L(G, D)$))	
		A very complex zero-sun	n game!	
				11/15

Cli

Machine learning 000000

FailGAN

The face of failure in GANs:

[A StyleGAN after 8 days of training at Nvidia headquarters (!!!)]

	Course outline ●00	
Outline		

Machine learning

Course outline

13/15

		Course outline O●O	
cnrs	Many questions		

- 1. How should we model player interactions?
 - Urban traffic ≠ transit systems ≠ packet networks ≠ ...
 - Rational agents ≠ humans ≠ AI algorithms ≠ …
 - Competition ≠ congestion ≠ coordination ≠ ...

2. What is a desired operational state?

- Social optimum ≠ equilibrium ≠ ...
- Static (equilibrium, social optimum) ≠ Bayesian ≠ online (regret) ≠ ...

3. How to compute it?

- Calculation ≠ learning ≠ implementation
- Informational constraints: feedback, bounded rationality, uncertainty, ...

No single answer

	Course outline	
	000	
CORS		
Lecture plan		

- 1. Part 1: Basic concepts
 - What's in a game?
 - Nash equilibrium
 - Other notions of rationality

2. Part 2: Game dynamics

- Basic definitions
- The replicator dynamics
- Rationality analysis

3. Part 3: Learning in finite games

- Regret
- No-regret learning: dynamics and algorithms
- Equilibrium convergence properties

4. Part 4: Learning in continuous games

- Online convex optimization
- Algorithms and guarantees
- Equilibrium convergence properties

			References
CITS	References		

- Bubeck, Sébastien, Nicolò Cesa-Bianchi. 2012. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning 5(1) 1-122.
- [2] Cesa-Bianchi, Nicolò, Gábor Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press.
- [3] Fudenberg, Drew, David K. Levine. 1998. The Theory of Learning in Games, Economic learning and social evolution, vol. 2. MIT Press, Cambridge, MA.
- [4] Fudenberg, Drew, Jean Tirole. 1991. Game Theory. The MIT Press.
- [5] Hofbauer, Josef, Karl Sigmund. 1998. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UK.
- [6] Lattimore, Tor, Csaba Szepesvári. 2020. Bandit Algorithms. Cambridge University Press, Cambridge, UK.
- [7] Nisan, Noam, Tim Roughgarden, Éva Tardos, V. V. Vazirani, eds. 2007. Algorithmic Game Theory. Cambridge University Press.
- [8] Sandholm, William H. 2010. Population Games and Evolutionary Dynamics. MIT Press, Cambridge, MA.
- [9] Shalev-Shwartz, Shai. 2011. Online learning and online convex optimization. Foundations and Trends in Machine Learning 4(2) 107-194.
- [10] Weibull, Jörgen W. 1995. Evolutionary Game Theory. MIT Press, Cambridge, MA.