Dynamic Epistemic Logic: Epistemic Actions

Christina Spiliopoulou

ALMA

INTER-INSTITUTIONAL GRADUATE PROGRAM "ALGORITHMS, LOGIC AND DISCRETE MATHE-MATICS"

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Overview

1 Introduction

2 The language $\mathcal{L}_!(A, P)$

3 The logic EA

4 References

Introduction	The language $\mathcal{L}_!(A,P)$	The logic <i>EA</i>	References
●0000	000000	000000000	00

Overview

1 Introduction

2 The language $\mathcal{L}_!(A, P)$

3 The logic *EA*

4 References

Let's recall public announcements...

 Public announcements are 'updates' that convey the same information for all agents.

- Public announcements are 'updates' that convey the same information for all agents.
- In general, there are various more complex 'updates', or, as we call them, epistemic actions.

- Public announcements are 'updates' that convey the same information for all agents.
- In general, there are various more complex 'updates', or, as we call them, epistemic actions.
- They may convey different information for different agents.

- Public announcements are 'updates' that convey the same information for all agents.
- In general, there are various more complex 'updates', or, as we call them, epistemic actions.
- They may convey different information for different agents.
- They may result even in the enlargement of the domain of the model (and its structure).

The language $\mathcal{L}_{!}(A, F)$

The logic EA

Motivating example: Buy or sell?

Motivating example: Buy or sell?

Consider two stockbrokers Anne and Bill, having a little break in a Wall Street bar, sitting at a table. A messenger comes in and delivers a letter to Anne. On the envelope is written "urgently requested data on United Agents".

Motivating example: Buy or sell?

Consider two stockbrokers Anne and Bill, having a little break in a Wall Street bar, sitting at a table. A messenger comes in and delivers a letter to Anne. On the envelope is written "urgently requested data on United Agents".

We model this by an epistemic state: Two states, one atom p for "United Agents is doing well".We assume that Anne (a) and Bill (b) are both uncertain about the value of p, and this is common knowledge.

Motivating example: Buy or sell?

Consider two stockbrokers Anne and Bill, having a little break in a Wall Street bar, sitting at a table. A messenger comes in and delivers a letter to Anne. On the envelope is written "urgently requested data on United Agents".

- We model this by an epistemic state: Two states, one atom p for "United Agents is doing well".We assume that Anne (a) and Bill (b) are both uncertain about the value of p, and this is common knowledge.
- In fact, p is true.

The epistemic model for this we call Letter.

• (tell) Anne reads the letter aloud. United Agents is doing well.

- (tell) Anne reads the letter aloud. United Agents is doing well.
- (read) Bill sees that Anne reads the letter. (United Agents is doing well.)

- (tell) Anne reads the letter aloud. United Agents is doing well.
- (read) Bill sees that Anne reads the letter. (United Agents is doing well.)
- (mayread) Bill leaves the table and orders a drink at the bar so that Anne may have read the letter while he was away. (She does not read the letter.) (United Agents is doing well.)

- (tell) Anne reads the letter aloud. United Agents is doing well.
- (read) Bill sees that Anne reads the letter. (United Agents is doing well.)
- (mayread) Bill leaves the table and orders a drink at the bar so that Anne may have read the letter while he was away. (She does not read the letter.) (United Agents is doing well.)
- (bothmayread) Bill orders a drink at the bar while Anne goes to the bathroom. Each may have read the letter while the other was away from the table. (Both read the letter.) (United Agents is doing well.)

References 00

Possible scenarios for "Buy or sell?" (2/2)

Can we model these actions in public announcement logic?

Possible scenarios for "Buy or sell?" (2/2)

Can we model these actions in public announcement logic?

Only tell action!

Can we model these actions in public announcement logic?

 Only tell action! (How?)

Can we model these actions in public announcement logic?

 Only tell action! (How?)

Let's introduce a language in which we are able to express *all* the above actions...

Introduction	The language L₁(A, P)	The logic <i>EA</i>	References
00000	●00000	000000000	00

Overview

2 The language $\mathcal{L}_!(A, P)$

3 The logic EA

4 References

Introduction 00000	The language $\mathcal{L}_1(A, P)$ $0 \bullet 0 0 0 0$	The logic <i>EA</i> 000000000	References 00
6			

Syntax of $\mathcal{L}_!(A, P)$ (1/2)

To the language \mathcal{L}_{KC} for multi-agent epistemic logic with common knowledge for a set A of agents and a set P of atomic propositions, we add dynamic modal operators for programs that are called epistemic actions or just actions.

Syntax of $\mathcal{L}_!(A, P)$ (1/2)

To the language \mathcal{L}_{KC} for multi-agent epistemic logic with common knowledge for a set A of agents and a set P of atomic propositions, we add dynamic modal operators for programs that are called epistemic actions or just actions.

Formulas, actions, group (1/2)

The language $\mathcal{L}_{!}(A, P)$ is the union of the formulas $\mathcal{L}_{!}^{stat}(A, P)$ and the actions $\mathcal{L}_{!}^{act}(A, P)$, defined by

• $\phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid K_a \phi \mid C_B \phi \mid [\alpha] \psi$

Syntax of $\mathcal{L}_!(A, P)$ (1/2)

To the language \mathcal{L}_{KC} for multi-agent epistemic logic with common knowledge for a set A of agents and a set P of atomic propositions, we add dynamic modal operators for programs that are called epistemic actions or just actions.

Formulas, actions, group (1/2)

The language $\mathcal{L}_{!}(A, P)$ is the union of the formulas $\mathcal{L}_{!}^{stat}(A, P)$ and the actions $\mathcal{L}_{!}^{act}(A, P)$, defined by

- $\bullet \phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid K_{\mathsf{a}}\phi \mid C_{\mathsf{B}}\phi \mid [\alpha]\psi$
- $\alpha ::= ?\phi \mid L_B\beta \mid (\alpha!\alpha) \mid (\alpha; \alpha) \mid (\alpha; \beta') \mid (\alpha \cup \alpha)$

Syntax of $\mathcal{L}_!(A, P)$ (1/2)

To the language \mathcal{L}_{KC} for multi-agent epistemic logic with common knowledge for a set A of agents and a set P of atomic propositions, we add dynamic modal operators for programs that are called epistemic actions or just actions.

Formulas, actions, group (1/2)

The language $\mathcal{L}_{!}(A, P)$ is the union of the formulas $\mathcal{L}_{!}^{stat}(A, P)$ and the actions $\mathcal{L}_{!}^{act}(A, P)$, defined by

$$\phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid K_{a}\phi \mid C_{B}\phi \mid [\alpha]\psi$$

where

 $p \in P$, $a \in A$, $B \subseteq A$,

Syntax of $\mathcal{L}_!(A, P)$ (1/2)

To the language \mathcal{L}_{KC} for multi-agent epistemic logic with common knowledge for a set A of agents and a set P of atomic propositions, we add dynamic modal operators for programs that are called epistemic actions or just actions.

Formulas, actions, group (1/2)

The language $\mathcal{L}_{!}(A, P)$ is the union of the formulas $\mathcal{L}_{!}^{stat}(A, P)$ and the actions $\mathcal{L}_{!}^{act}(A, P)$, defined by

$$\phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid K_{a}\phi \mid C_{B}\phi \mid [\alpha]\psi$$

where

$$p \in P$$
, $a \in A$, $B \subseteq A$,
 $\psi \in \mathcal{L}_{!}^{stat}(gr(\alpha), P)$, $\beta \in \mathcal{L}_{!}^{act}(B, P)$, $\beta' \in \mathcal{L}_{!}^{act}(gr(\alpha), P)$.

The language $\mathcal{L}_{!}(A, P)$ 000000

The logic *EA* 000000000

Syntax of $\mathcal{L}_!(A, P)$ (2/2)

Formulas, actions, group (2/2)

The group
$$gr(\alpha)$$
 of an action α is defined as:
 $gr(?\phi) = \emptyset$
 $gr(L_B\alpha) = B$
 $gr(\alpha!\alpha') = gr(\alpha)$
 $gr(\alpha;\alpha') = gr(\alpha')$
 $gr(\alpha;\alpha') = gr(\alpha')$
 $gr(\alpha \cup \alpha') = gr(\alpha) \cap gr(\alpha')$

Note: group gr keeps track of the agents occurring in learning operators in actions.

Introduction 00000	The language $\mathcal{L}_1(A, P)$ 000000	The logic <i>EA</i> 000000000	References 00
Examples			

Let's see the motivating example again. Now we are able to express those actions.

(How?)

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell

 $L_{a,b}?p$

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell

- $L_{a,b}?p$
- read

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell *L_{a,b}*?p read *L_{a,b}*(!*L_a*?p ∪ *L_a*?¬p)

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell

 L_{a,b}?p

 read

 L_{a,b}(!L_a?p ∪ L_a?¬p)

 mayread

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell

- $L_{a,b}$?p
- read

 $L_{a,b}(!L_a?p \cup L_a?\neg p)$

mayread

 $L_{a,b}(L_a?p\cup L_a?\neg p\cup !?\top)$

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell

- $L_{a,b}?p$
- read
 - $L_{a,b}(!L_a?p \cup L_a?\neg p)$
- mayread
 - $L_{a,b}(L_a?p \cup L_a?\neg p \cup !?\top)$
- bothmayread

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell

- $L_{a,b}$?p
- read
 - $L_{a,b}(!L_a?p \cup L_a?\neg p)$
- mayread

 $L_{a,b}(L_a?p \cup L_a?\neg p \cup !?\top)$

bothmayread

 $L_{a,b}(!L_a?p \cup L_a?\neg p \cup ?\top); L_{a,b}(!L_b?p \cup L_b?\neg p \cup ?\top)$

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Let's see the motivating example again. Now we are able to express those actions.

(How?)

tell

- $L_{a,b}$?p
- read
 - $L_{a,b}(!L_a?p \cup L_a?\neg p)$
- mayread

 $L_{a,b}(L_a?p \cup L_a?\neg p \cup !?\top)$

bothmayread

 $L_{a,b}(!L_a?p \cup L_a?\neg p \cup?\top); L_{a,b}(!L_b?p \cup L_b?\neg p \cup?\top)$

Note: When we have more than one options in a local choice, we are able to write them as many local choices between two options. So there is no problem in **mayread** and in **bothmayread** above.

Introduction	The language $\mathcal{L}_{!}(A, P)$	The logic <i>EA</i>	References
00000			

Type of an action

Definition

The type α_{\cup} of action α is the result of substituting \cup for all occurences of '!' and 'i' in α except when under the scope of '?'.

The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
000000		

Type of an action

Definition

The type α_{\cup} of action α is the result of substituting \cup for all occurences of '!' and 'i' in α except when under the scope of '?'.

Excercise: What are the types of the actions in the motivating example?

The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
000000		

Type of an action

Definition

The type α_{\cup} of action α is the result of substituting \cup for all occurences of '!' and 'i' in α except when under the scope of '?'.

Excercise: What are the types of the actions in the motivating example? (On board)

The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000		

Equivalence of epistemic states

Definition

Let $M, M' \in S5(\subseteq A)$, $s \in M$, $s' \in M'$ and $a \in A$. Then $(M, s) \sim_a (M', s')$ iff

•
$$a \notin gr(M) \cup gr(M')$$
 or

• there is a $t \in M$: $(M, t) \Leftrightarrow (M', s')$ and $s \sim_a t$.

The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000		

Equivalence of epistemic states

Definition

Let $M, M' \in S5(\subseteq A)$, $s \in M$, $s' \in M'$ and $a \in A$. Then $(M, s) \sim_a (M', s')$ iff $a \notin gr(M) \cup gr(M')$ or M = M' and $s \sim_a s'$ or \bullet there is a $t \in M$: $(M, t) \Leftrightarrow (M', s')$ and $s \sim_a t$.

Note: The epistemic states are the same from that agent's point of view.

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	●00000000	00

Overview

1 Introduction

2 The language $\mathcal{L}_!(A, P)$

3 The logic EA

4 References

Dynamic Epistemic Logic: Epistemic Actions

Semantics (1/3)

Definition (1/2)

Let $M = \langle S, \sim, V \rangle \in S5(A, P)$ and $s \in S$. The semantics of $\mathcal{L}_{!}^{stat}(A, P)$ formulas and $\mathcal{L}_{!}^{act}(A, P)$ actions is defined as follows:

$$M, s \models p \text{ iff } s \in V_p$$

•
$$M, s \models \neg \phi$$
 iff $M, s \nvDash \phi$

•
$$M, s \models \phi \land \psi$$
 iff $M, s \models \phi$ and $M, s \models \psi$

• $M, s \models K_a \phi$ iff for all $s' \in S : s \sim_a s'$ implies $M, s' \models \phi$

- $M, s \models C_B \phi$ iff for all $s' \in S : s \sim_B s'$ implies $M, s' \models \phi$
- $M, s \models [\alpha]\phi$ iff for all $M', s' : (M, s)[[\alpha]](M', s')$ implies $M', s' \models \phi$

The language $\mathcal{L}_!(A, F)$

The logic EA

References 00

Semantics (2/3)

Definition (2/2)

- $(M,s)[?\phi](M',s')$ iff $M' = \langle \llbracket \phi \rrbracket_M, \emptyset, V | \llbracket \phi \rrbracket_M \rangle$ and s = s'
- $(M, s) \llbracket L_B \alpha \rrbracket (M', s')$ iff $M' = \langle S', \sim', V' \rangle$ and $(M, s) \llbracket \alpha \rrbracket (M', s')$
- $\blacksquare \ \llbracket \alpha; \alpha' \rrbracket = \llbracket \alpha \rrbracket \circ \llbracket \alpha' \rrbracket$
- $\blacksquare \ \llbracket \alpha \cup \alpha' \rrbracket = \llbracket \alpha \rrbracket \cup \llbracket \alpha' \rrbracket$
- $\blacksquare \ \llbracket \alpha ! \alpha' \rrbracket = \llbracket \alpha \rrbracket$

IntroductionThe language $\mathcal{L}_{1}(A, P)$ The logic EAReferences00000000000000000000

Semantics (3/3): A few words of explanation

- In the clause for $[\alpha]_{\phi}$, $(M', s') \in \bullet S5 (\subseteq A, P)$.
- In the clause for $?\phi$, $(V|\llbracket\phi\rrbracket_M)_p = V_p \cap \llbracket\phi\rrbracket_M$.
- In the clause for $L_B \alpha$, $(M', s') \in \bullet \mathcal{S}5(B, P)$ such that
 - $S' = \{ (M'', s'') \mid \text{there is a } t \in S : (M, t) [\![\alpha_{\cup}]\!](M'', s'') \};$

IntroductionThe language $\mathcal{L}_{!}(A, P)$ The logic EAReferences00000000000000000000

Semantics (3/3): A few words of explanation

- In the clause for $[\alpha]_{\phi}$, $(M', s') \in \bullet S5 (\subseteq A, P)$.
- In the clause for $?\phi$, $(V|\llbracket\phi\rrbracket_M)_p = V_p \cap \llbracket\phi\rrbracket_M$.
- In the clause for $L_B\alpha$, $(M', s') \in \bullet S5(B, P)$ such that $S' = \{(M'', s'') \mid \text{there is a } t \in S : (M, t) \llbracket \alpha_{\cup} \rrbracket (M'', s'') \};$

if $(M, s)[\![\alpha_{\cup}]\!](M_1'', s'')$ and $(M, t)[\![\alpha_{\cup}]\!](M_2'', t'')$, then for all $a \in B$

 $(\textit{M}_1'', \textit{s}'') \sim_\textit{a}' (\textit{M}_2'', t'') \text{ iff } \textit{s} \sim_\textit{a} \textit{t} \text{ and } (\textit{M}_1'', \textit{s}'') \sim_\textit{a} (\textit{M}_2'', t'')$

where the rightmost \sim_a is equivalence of epistemic states;

 Introduction
 The language L1(A, P)
 The logic EA

 00000
 000000
 000000

Semantics (3/3): A few words of explanation

- In the clause for $[\alpha]_{\phi}$, $(M', s') \in \bullet S5 (\subseteq A, P)$.
- In the clause for $?\phi$, $(V|\llbracket\phi\rrbracket_M)_p = V_p \cap \llbracket\phi\rrbracket_M$.
- In the clause for $L_B\alpha$, $(M', s') \in \bullet S5(B, P)$ such that $S' = \{(M'', s'') \mid \text{there is a } t \in S : (M, t) \llbracket \alpha_{\cup} \rrbracket (M'', s'') \};$

if $(M, s)[\![\alpha_{\cup}]\!](M_1'', s'')$ and $(M, t)[\![\alpha_{\cup}]\!](M_2'', t'')$, then for all $a \in B$

$$(M_1'',s'')\sim_a'(M_2'',t'')$$
 iff $s\sim_a t$ and $(M_1'',s'')\sim_a (M_2'',t'')$

where the rightmost \sim_a is equivalence of epistemic states; and for an arbitrary atom p and state (M'', u) (with valuation V'') in the domain of M': $(M'', s'') \in V'_p$ iff $s'' \in V''_p$.

References

IntroductionThe language $\mathcal{L}_1(A, P)$ The logic EA000000000000000000

Semantics (3/3): A few words of explanation

- In the clause for $[\alpha]_{\phi}$, $(M', s') \in \bullet S5 (\subseteq A, P)$.
- In the clause for $?\phi$, $(V|\llbracket\phi\rrbracket_M)_p = V_p \cap \llbracket\phi\rrbracket_M$.
- In the clause for $L_B\alpha$, $(M', s') \in \bullet S5(B, P)$ such that $S' = \{(M'', s'') \mid \text{there is a } t \in S : (M, t) \llbracket \alpha_{\cup} \rrbracket (M'', s'') \};$

if $(M, s)[\![\alpha_{\cup}]\!](M_1'', s'')$ and $(M, t)[\![\alpha_{\cup}]\!](M_2'', t'')$, then for all $a \in B$

$$(M_1'',s'')\sim_a'(M_2'',t'')$$
 iff $s\sim_a t$ and $(M_1'',s'')\sim_a (M_2'',t'')$

where the rightmost \sim_a is equivalence of epistemic states; and for an arbitrary atom p and state (M'', u) (with valuation V'') in the domain of M': $(M'', s'') \in V'_p$ iff $s'' \in V''_p$.

We call all the validities under this semantics the logic EA.

Introduction 00000	The language $\mathcal{L}_!(A, P)$ 000000	The logic <i>EA</i> 0000●0000	References 00
Exercise			

Let's compute the interpretation of the action **read** for epistemic state (*Letter*, 1). (*Note*: State 1, is the state where the value of p is \top .)

Introduction 00000	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i> 0000●0000	References 00
Exercise			

Let's compute the interpretation of the action **read** for epistemic state (*Letter*, 1). (*Note*: State 1, is the state where the value of p is \top .)(On board.)

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000		0000●0000	00

Exercise

Let's compute the interpretation of the action **read** for epistemic state (*Letter*, 1). (*Note*: State 1, is the state where the value of p is \top .)(On board.)

Introduction 00000	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i> 00000●000	References 00
Examples $(1/2)$			
Let's now see a (tell , read , ma (<i>Letter</i> , 1).	nd discuss the result yread, bothmayrea	of execution of each action d) for epistemic state	I

00000	000000	000000000	
Examples (1/2	2)		
Let's now see (tell , read , m (<i>Letter</i> , 1).	and discuss the result ayread, bothmayrea	t of execution of each actic d) for epistemic state	on
0	a, b <u>1</u> bothmayread	$\begin{bmatrix} 0 & -\frac{a & 0}{1} \\ 0 & -\frac{a}{1} & b & -1 \end{bmatrix} = \begin{bmatrix} a & -\frac{1}{2} \\ b & -\frac{1}{2} \end{bmatrix}$	

Introduction	

The language $\mathcal{L}_1(A, P)$	The logic EA	References
	000000000	

Explanation of the above figure?

Explanation of the above figure?

• Notice that after execution of **mayread** and of **bothmayread** in epistemic state (*Letter*, 1) the resulting epistemic states are larger than the original.

The language $\mathcal{L}_{!}(A, P)$	The logic <i>EA</i>	References
	00000000	

The language $\mathcal{L}_1(A, P)$	The logic <i>EA</i>	References
	00000000	

Theorem (Bisimilarity implies modal equivalence)

Let $\phi \in \mathcal{L}_{!}^{stat}(A)$. Let $(M, s), (M', s') \in \bullet S5(A)$. If $(M, s) \cong (M', s')$, then $(M, s) \models \phi$ iff $(M', s') \models \phi$.

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	0000000●0	00

Theorem (Bisimilarity implies modal equivalence)

Let $\phi \in \mathcal{L}_{!}^{stat}(A)$. Let $(M, s), (M', s') \in \bullet S5(A)$. If $(M, s) \Leftrightarrow (M', s')$, then $(M, s) \models \phi$ iff $(M', s') \models \phi$.

(Proof: By induction on the structure of ϕ .)

The language $\mathcal{L}_1(A, P)$	The logic <i>EA</i>	References
	00000000	

Theorem (Bisimilarity implies modal equivalence)

Let $\phi \in \mathcal{L}_{!}^{stat}(A)$. Let $(M, s), (M', s') \in \bullet S5(A)$. If $(M, s) \Leftrightarrow (M', s')$, then $(M, s) \models \phi$ iff $(M', s') \models \phi$.

(Proof: By induction on the structure of ϕ .)

Theorem (Action execution preserves bisimilarity)

Let $\alpha \in \mathcal{L}_{!}^{act}(A)$ and $(M, s), (M', s') \in \bullet S5(A)$. If $(M, s) \Leftrightarrow (M', s')$ and there is a $(N, t) \in \bullet S5(\subseteq A)$ such that $(M, s)\llbracket \alpha \rrbracket (N, t)$ then there is a $(N', t') \in \bullet S5(\subseteq A)$ such that $(M', s')\llbracket \alpha \rrbracket (N', t')$ and $(N, t) \Leftrightarrow (N', t')$.

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	00

Theorem (Bisimilarity implies modal equivalence)

Let $\phi \in \mathcal{L}_{!}^{stat}(A)$. Let $(M, s), (M', s') \in \bullet S5(A)$. If $(M, s) \Leftrightarrow (M', s')$, then $(M, s) \models \phi$ iff $(M', s') \models \phi$.

(Proof: By induction on the structure of ϕ .)

Theorem (Action execution preserves bisimilarity)

Let $\alpha \in \mathcal{L}_{!}^{act}(A)$ and $(M, s), (M', s') \in \bullet S5(A)$. If $(M, s) \Leftrightarrow (M', s')$ and there is a $(N, t) \in \bullet S5(\subseteq A)$ such that $(M, s)\llbracket \alpha \rrbracket (N, t)$ then there is a $(N', t') \in \bullet S5(\subseteq A)$ such that $(M', s')\llbracket \alpha \rrbracket (N', t')$ and $(N, t) \Leftrightarrow (N', t')$.

(Proof: By induction on the ("complexity" of the) structure of α .)

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	00000000●	00

Notes

- The logic *EA* is useful in modeling card games and spreading gossip.
- The result of execution of an action could be a much more "complex" epistemic state than the original.
- Apparently, it is possible to execute an action for the resulting epistemic state of an execution of an action and so on.

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	●0

Overview

1 Introduction

2 The language $\mathcal{L}_!(A, P)$

3 The logic *EA*

Introduction	The language $\mathcal{L}_!(A, P)$	The logic <i>EA</i>	References
00000	000000	000000000	○●

Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic epistemic logic, volume 337. Springer Science & Business Media, 2007.