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Bird's eye view

Last time:

▸ Games, examples, taxonomy,…
▸ Congestion games (atomic / nonatomic, splittable / non-splittable,…)

Moving forward: playing day-by-day

▸ Lecture 2: population games↭ evolutionary dynamics
▸ Lecture 3: finite games↭multi-armed bandits
▸ Lecture 4: continuous games↭ online convex optimization

Caveats

▸ Big picture: Focus on concepts + selected deep dives
▸ Notation: losses (“ℓ”)↭ utilities (“u”),…; pure strategies↭ actions; etc.

P. Mertikopoulos CNRS & Criteo AI Lab
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Today: Playing day after day

A typical online decision process:

repeat
At each epoch t ≥ 

Choose action [focal player]

Incur loss / Receive reward [depends on context]

Get feedback [depends on context]

until end

Key considerations

▸ Time: continuous or discrete?
▸ Players: continuous or discrete?
▸ Actions: continuous or discrete?
▸ Payoffs / Losses: determined by other players or “Nature”?
▸ Feedback: full info / observation? payoff-based?

P. Mertikopoulos CNRS & Criteo AI Lab
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Population games

▸ Players: continuous, nonatomic populations i = , . . . ,N [species, types,…]

▸ Actions: finite action setAi per population [phenotypes, routes,…]

▸ Payoffs: depend only on the players’ distribution [anonymity]

▸ Population shares

xiai = relative frequency of ai ∈ Ai in population i
▸ Population states

xi = (xiai )ai∈Ai ∈ Xi ∶= ∆(Ai)
x = (x , . . . , xN) ∈ X ∶=∏i Xi

▸ Payoff functions uiai ∶X → R
uiai (x) = payoff to ai ∈ Ai when the population is at state x ∈ X

▸ Mean population payoff

ui(x) =∑ai∈Ai
xiai uiai (x)

P. Mertikopoulos CNRS & Criteo AI Lab
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Examples and more

Example 1: Multi-population randommatching [Maynard Smith and Price, 1973]▸ Given: finite N-player game Γ ≡ Γ(N ,A, u) [base game]▸ Given: N player populations, each with action setAi▸ During play:
▸ Players drawn uniformly at random from each population▸ Drawn players matched to play Γ [randommatching]▸ Mean payoffs

uiai (x) =∑a′∈A
⋯∑a′N∈AN

x,a′⋯δa′i a i⋯xN ,a′N ui(a′ , . . . , a′N)
▸ Caveat Single-population matching is different (quadratic) [why?]

Example 2: Nonatomic congestion games (“playing the field”)
▸ See Lecture 1

For more: Weibull [1995], Hofbauer and Sigmund [1998], Sandholm [2010, 2015]

P. Mertikopoulos CNRS & Criteo AI Lab
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Relations between classes

Porous boundaries:

Mixed Extensions

Random Matching Multilinear Games

Finite Games

Population Games Continuous Games

Mixi
ng = Po

p. S
hares

Mixing = Point in simplex

Important
▸ Randommatching ⊊ population games of interest
▸ (Multi)Linear games ⊊ continuous games of interest

P. Mertikopoulos CNRS & Criteo AI Lab
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Solution concepts

▸ Dominated strategies: ai ∈ Ai is dominated by a′i ∈ Ai (ai ≺ a′i ) if
uiai (x) < uia′i (x) for all x ∈ X
[Mixed version: pi ≺ qi ⇐⇒ ui(pi ; x−i) < ui(qi ; x−i) for all x ∈ X ]

▸ Nash equilibrium: no player has an incentive to switch strategies

uiai (x∗) ≥ uia′i (x∗) for all ai , a′i ∈ Ai with x∗i ai > 
▸ Support of x∗: supp(x∗) = {(a , . . . , aN) ∈ A ∶ x∗i ai >  for all i}
▸ Interior / Full support equilibria: supp(x∗) = A▸ Pure equilibria: supp(x∗) = singleton▸ Strict equilibria: “>” instead of “≥” when a′i ∉ supp(x∗i )

▸ Examples:▸ Rock-Paper-Scissors: unique, full support equilibrium▸ Prisoner’s dilemma: dominance-solvable, one strict equilibrium▸ Battle of the Sexes: one full support equilibrium; two strict equilibria

P. Mertikopoulos CNRS & Criteo AI Lab
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Go-to example: Rock-Paper-Scissors

R

ePeR

eS

R P

S

∆{R, P, S}
( 
 ,


 ,


 )

Equilibrium

▸ Players: N = {, }.

▸ Actions: Ai = {R, P, S}, i = , .
▸ Payoff matrix (win , lose −, tie ):

A =
R P S

R  − 
P   −
S −  

▸ Mixed strategies: xi ∈ ∆{R, P, S}.
▸ Payoff functions (-population):

u(x) = x⊺Ax

P. Mertikopoulos CNRS & Criteo AI Lab
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▸ Payoff matrix (win , lose −, tie ):

A =
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R  − 
P   −
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▸ Mixed strategies: xi ∈ ∆{R, P, S}.
▸ Payoff functions (multi-population):
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u(x) = x⊺Ax

Multi-population matching↭Mixed extension↭Multilinear game
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Rest of this lecture

Are game-theoretic solution concepts consistent with evolutionary models?

▸ Evolutionary models! dynamical systems (Lotka-Volterra, replicator, etc.)

▸ Do dominated strategies become extinct?

▸ Is equilibrium play stable/attracting?

▸ ⋯

P. Mertikopoulos CNRS & Criteo AI Lab
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A biologist's viewpoint

▸ Populations are species, strategies are phenotypes:

ziai = absolute population mass of type ai ∈ Ai

zi =∑ai
ziai = absolute population mass of i-th species

▸ Utilities measure fecundity / reproductive fitness:

uiai (x) = per capita growth rate of type ai

▸ Population evolution:
ż iai = ziai uiai

▸ Evolution of population shares (xiai = ziai /zi ):
ẋiai = d

dt
ziai
zi
= ż iai zi − ziai ∑a′i ż i a′i

zi
= ziai

zi
uiai − ziai

zi
∑a′i

zia′i
zi

uia′i

Replicator dynamics [Taylor and Jonker, 1978]

ẋiai = xiai [uiai (x) − ui(x)] (RD)

P. Mertikopoulos CNRS & Criteo AI Lab
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ż iai = ziai uiai

▸ Evolution of population shares (xiai = ziai /zi ):
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An economist's viewpoint

▸ Agents receive revision opportunities to switch strategies

ρaa′(x) = conditional switch rate from a to a′

[NB: dropping player index for simplicity]

▸ Pairwise proportional imitation:

ρaa′(x) = xa′[ua′(x) − ua(x)]+
[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

▸ Inflow/outflow:

Incoming toward a =∑a′ mass(a′ ! a) =∑a′∈A xa′ρa′a(x)
Outgoing from a =∑a′ mass(a ! a′) = xa∑a′∈A ρaa′(x)

▸ Detailed balance:

ẋa = in'owa(x) − out'owa(x) = ⋯ = xa[ua(x) − u(x)] (RD)

[Check: verify computation]

P. Mertikopoulos CNRS & Criteo AI Lab
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ẋa = in'owa(x) − out'owa(x) = ⋯ = xa[ua(x) − u(x)] (RD)

[Check: verify computation]

P. Mertikopoulos CNRS & Criteo AI Lab



P. Mertikopoulos CNRS & Criteo AI Lab

5()4&9&()., '/&96" K 8.=
U V= W X= B X. Y B?

G)>,(/ 9( . U W=Z[ J= >=.6JC
U W

= J= JJ W(\ BX=YB?

]79>,(/ >%(- [U T=" ^.== D.C U T= ^. J= W X= B 4. YB?

_#9 >,#/ `.U JJ W T= J= W&' B 7= Ya B T= bS T#= B#.9 Y
;9 c K ?de X=

U ^. W T=9 J= 57. B 7=Y a T=& J= Tf B 7=Y Y
^ B c K GfTX=

U JJ T= V= T\ B7= Y

U JJ W7' B T= J= X=Y U J. 576.1 B .6#'Y



14/35

Overview Preliminaries The replicator dynamics Rationality analysis References

An economist's viewpoint

▸ Agents receive revision opportunities to switch strategies

ρaa′(x) = conditional switch rate from a to a′

[NB: dropping player index for simplicity]

▸ Pairwise proportional imitation:

ρaa′(x) = xa′[ua′(x) − ua(x)]+
[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

▸ Inflow/outflow:

Incoming toward a =∑a′ mass(a′ ! a) =∑a′∈A xa′ρa′a(x)
Outgoing from a =∑a′ mass(a ! a′) = xa∑a′∈A ρaa′(x)

▸ Detailed balance:

ẋa = in'owa(x) − out'owa(x) = ⋯ = xa[ua(x) − u(x)] (RD)

[Check: verify computation]

P. Mertikopoulos CNRS & Criteo AI Lab



15/35

Overview Preliminaries The replicator dynamics Rationality analysis References

A learning viewpoint

Evolution of mixed strategies in a finite game:▸ Agents record cumulative payoff of each strategy

ya(t) = ∫ t


ua(τ) dτ

"⇒ propensity of choosing a strategy [Littlestone and Warmuth, 1994; Vovk, 1995]

▸ Choice probabilities! exponentially proportional to propensity scores

xa(t) = exp(ya(t))
∑a′ exp(ya′(t))

▸ Evolution of mixed strategies [Rustichini, 1999; Hofbauer et al., 2009]

ẋa = ⋅ ⋅ ⋅ = xa[ua(x) − u(x)] (RD)

[Check: verify computation]

P. Mertikopoulos CNRS & Criteo AI Lab
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Basic properties

Different viewpoints, same dynamics:

ẋiai = xai [uiai (x) − ui(x)] (RD)

[NB: all viewpoints will be useful later]

Structural properties [Weibull, 1995; Hofbauer and Sigmund, 1998]

▸ Well-posed: every initial condition x ∈ X admits unique solution trajectory
x(t) that exists for all time

[Assuming ui is Lipschitz]

▸ Consistent: x(t) ∈ X for all t ≥ 
[Assuming x() ∈ X ]

▸ Faces are forward invariant (“strategies breed true”):

xiai () >  ⇐⇒ xiai (t) >  for all t ≥ 
xiai () =  ⇐⇒ xiai (t) =  for all t ≥ 

P. Mertikopoulos CNRS & Criteo AI Lab
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Dynamics and rationality

Are game-theoretic solution concepts consistent with evolutionary models?

▸ Do dominated strategies die out in the long run?

▸ Are Nash equilibria stationary?

▸ Are they stable? Are they attracting?

▸ Do the replicator dynamics always converge?

▸ What other behaviors can we observe?

▸ ⋯

P. Mertikopoulos CNRS & Criteo AI Lab
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Phase portraits
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Dominated strategies

Suppose ai ∈ Ai is dominated by a′i ∈ Ai

▸ Consistent payoff gap:

uiai (x) ≤ uia′i (x) − ε for some ε > 

▸ Consistent difference in scores:

yiai (t) = ∫ t


uiai (x) dτ ≤ ∫ t


[uia′i (x) − ε] dτ = yia′i (t) − εt

▸ Consistent difference in choice probabilities

xiai (t)
xia′i (t) =

exp(yiai (t))
exp(yia′i (t)) ≤ exp(−εt)

▸ Dominated strategies become extinct [Samuelson and Zhang, 1992]

lim
t→∞ xiai (t) =  whenever ai is dominated

[Check #1: extend to iteratively / mixed dominated strategies]
[Check #2: what about weakly dominated strategies?]

P. Mertikopoulos CNRS & Criteo AI Lab
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▸ Consistent difference in choice probabilities

xiai (t)
xia′i (t) =

exp(yiai (t))
exp(yia′i (t)) ≤ exp(−εt)

▸ Dominated strategies become extinct [Samuelson and Zhang, 1992]

lim
t→∞ xiai (t) =  whenever ai is dominated

[Check #1: extend to iteratively / mixed dominated strategies]
[Check #2: what about weakly dominated strategies?]

P. Mertikopoulos CNRS & Criteo AI Lab
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Stationarity of equilibria

Nash equilibrium: uiai (x∗) ≥ uia′i (x∗) for all ai , a′i ∈ Ai with x∗i ai > 
▸ Supported strategies have equal payoffs:

uiai (x∗) = uia′i (x∗) for all ai , a′i ∈ supp(x∗i )
▸ Mean payoff equal to equilibrium payoff:

ui(x∗) = uiai (x∗) for all ai ∈ supp(x∗i )

▸ Replicator field vanishes at equilibria:

x∗i ai [uiai (x∗) − ui(x∗)] =  for all ai ∈ Ai

▸ Nash equilibria are stationary:

x() = x∗ ⇐⇒ x(t) = x∗ for all t ≥ 
▸ The converse does not hold (never used inequality)

[Check: All vertices are stationary – general statement?]

P. Mertikopoulos CNRS & Criteo AI Lab
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Stability

Are all stationary points created equal?

Definition
x∗ is (Lyapunov) stable if, for every neighborhood U of x∗ in X , there exists a
neighborhood U ′ of x∗ such that

x() ∈ U ′ ⇐⇒ x(t) ∈ U for all t ≥ 
[Trajectories that start close to x∗ remain close for all time]

x∗ is stable $⇒ x∗ is a Nash equilibrium

P. Mertikopoulos CNRS & Criteo AI Lab
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Asymptotic stability

Are all Nash equilibria created equal?

Definition
▸ x∗ is attracting if limt→∞ x(t) = x∗ whenever x() is close enough to x∗
▸ x∗ is asymptotically stable if it is stable and attracting

x∗ is a strict Nash equilibrium $⇒ x∗ is asymptotically stable

P. Mertikopoulos CNRS & Criteo AI Lab
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Asymptotic stability
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The "folk theorem" of evolutionary game theory

Theorem (Hofbauer and Sigmund, 2003; Cressman, 2003)
In multi-population randommatching games:

▸ x∗ is a Nash equilibrium $⇒ x∗ is stationary
▸ x∗ is the limit of an interior trajectory $⇒ x∗ is a Nash equilibrium

▸ x∗ is stable $⇒ x∗ is a Nash equilibrium

▸ x∗ is asymptotically stable ⇐⇒ x∗ is a strict Nash equilibrium

P. Mertikopoulos CNRS & Criteo AI Lab
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Attracting full-support equilibria

The replicator dynamics in “good” RPS (win > loss):
R

P S
P. Mertikopoulos CNRS & Criteo AI Lab
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Convergence in potential games

Potential games [Sandholm, 2001]

uiai = − ∂V
∂xiai

for some potential function V ∶X → R

NASC (Poincaré):

potential ⇐⇒ ∂uiai

∂xia′i
= ∂uia′i
∂xiai

Positive correlation / Lyapunov property:

dV
dt
≤  under (RD)

[Check: verify this]

Theorem (Sandholm, 2001)
▸ In potential games, (RD) converges to its set of stationary points
▸ In randommatching potential games, interior trajectories of (RD) converge

to Nash equilibrium

P. Mertikopoulos CNRS & Criteo AI Lab
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Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

x∗ is full-support equilibrium $⇒ (RD) admits constant of motion

KL divergence: DKL(x∗ , x) =∑i∑ai
x∗i ai log

x∗i ai
xiai

Theorem (Hofbauer et al., 2009)
Assume a bilinear zero-sum game admits an interior equilibrium. Then:

▸ Interior trajectories of (RD) do not converge (unless stationary)

▸ Time-averages x̄(t) = t− ∫ t
 x(τ) dτ converge to Nash equilibrium

P. Mertikopoulos CNRS & Criteo AI Lab
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Convergence of time-averages

The replicator dynamics in a game of Matching Pennies

H1, -1L

H-1, 1L

H-1, 1L

H1, -1L
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x 2

Time-Averaged Replicator Dynamics
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Poincaré recurrence in zero-sum games

Definition (Poincaré)
A dynamical system is Poincaré recurrent if almost all solution trajectories return
arbitrarily close to their starting point infinitely many times

Theorem (Piliouras and Shamma, 2014; M et al., 2018)
(RD) is recurrent in all bilinear zero-sum games with a full-support equilibrium

P. Mertikopoulos CNRS & Criteo AI Lab
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What's missing

▸ Evolutionary stability [Maynard Smith and Price, 1973]
▸ Other (classes of) dynamics:

▸ Fictitious play [Brown, 1951; Robinson, 1951]
▸ Best response dynamics [Gilboa and Matsui, 1991]
▸ Imitative / Innovative dynamics [Weibull, 1995; Sandholm, 2010]
▸ Higher-order dynamics [Laraki and M, 2013]

▸ Unexpected / Complex behaviors:
▸ Survival of dominated strategies [Hofbauer and Sandholm, 2011]
▸ Chaos [Sandholm, 2010]

▸ Evolution in the presence of uncertainty
[Fudenberg and Harris, 1992; Imhof, 2005; M & Moustakas, 2010; M & Viossat, 2016]

▸ ⋯

P. Mertikopoulos CNRS & Criteo AI Lab
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