

GAMES, DYNAMICS & LEARNING

2. POPULATION GAMES AND EVOLUTIONARY DYNAMICS

Panayotis Mertikopoulos¹

joint with

A. Giannou² T. Lianeas² E. V. Vlatakis-Gkaragkounis³

¹French National Center for Scientific Research (CNRS) & Criteo AI Lab

2NTUA

³Columbia University

ECE-NTUA - May 21, 2021

Overvi ●00	iew		
CITS	Outline		

Preliminaries

The replicator dynamics

Rationality analysis

2/35

Overview O●O			
CITS Bird	s eye view		

Last time:

- Games, examples, taxonomy,...
- Congestion games (atomic / nonatomic, splittable / non-splittable,...)

Moving forward: playing day-by-day

- ▶ Lecture 2: population games ↔ evolutionary dynamics
- ▶ Lecture 3: finite games ↔ multi-armed bandits
- ▶ Lecture 4: continuous games ↔ online convex optimization

Overview 0●0			
CITS Bird	's eye view		

Last time:

- Games, examples, taxonomy,...
- Congestion games (atomic / nonatomic, splittable / non-splittable,...)

Moving forward: playing day-by-day

- Lecture 2: population games <> evolutionary dynamics
- ▶ Lecture 3: finite games ↔ multi-armed bandits
- Lecture 4: continuous games 4 online convex optimization

Caveats

- Big picture: Focus on concepts + selected deep dives
- Notation: losses (" ℓ ") \Leftrightarrow utilities ("u"),...; pure strategies \Leftrightarrow actions; etc.

Overview 000				
Toda	ay: Playing day aft	er day		
A typ	oical online decisio i	n process:		
rep	peat			
At	each epoch $t \ge 0$			
	Choose action		[foca	l player]
	Incur loss / Receive re	eward	[depends on	context]
	Incur loss / Receive re Get feedback	eward	[depends on [depends on	

- Time: continuous or discrete?
- Players: continuous or discrete?
- Actions: continuous or discrete?
- Payoffs / Losses: determined by other players or "Nature"?
- Feedback: full info / observation? payoff-based?

	Preliminaries ●000000		
CITS	Outline		

Preliminaries

The replicator dynamics

Rationality analysis

5/35

	ew Preliminaries		
	000000		
CITS	Population games		

- Players: continuous, nonatomic populations i = 1, ..., N [species, types,...]
- Actions: finite action set A_i per population
- Payoffs: depend only on the players' distribution
 - Population shares

 x_{ia_i} = relative frequency of $a_i \in A_i$ in population i

Population states

$$x_i = (x_{ia_i})_{a_i \in \mathcal{A}_i} \in \mathcal{X}_i \coloneqq \Delta(\mathcal{A}_i)$$
$$x = (x_1, \dots, x_N) \in \mathcal{X} \coloneqq \prod_i \mathcal{X}_i$$

Payoff functions $u_{ia_i}: \mathcal{X} \to \mathbb{R}$

 $u_{ia_i}(x)$ = payoff to $a_i \in A_i$ when the population is at state $x \in \mathcal{X}$

Mean population payoff

$$u_i(x) = \sum_{a_i \in \mathcal{A}_i} x_{ia_i} u_{ia_i}(x)$$

[phenotypes, routes,...]

[anonymity]

	ew Preliminaries			
CITS	Examples and more			
	 Example 1: Multi-popul Given: finite N-player Given: N player popul During play: 	0	-	e, 1973] e game]
	 Players drawn uniformly at random from e Drawn players matched to play Γ Mean payoffs u_{iai}(x) = Σ_{a'₁∈A₁}…Σ_{a'_N∈A_N}x_{1,4} 		· · · [random matching]	
	Caveat Single-	population matching is <mark>diffe</mark> r	r <mark>ent</mark> (quadratic)	[why?]

	ew Preliminaries 00●0000			
C	Examples and more			
	 Example 1: Multi-popula Given: finite N-player Given: N player popula During play: 	0		ee, 1973] ee game]
	Players drawn urDrawn players mMean payoffs	niformly at random from eac natched to play Γ	h population [random m	iatching]
	$u_{ia_i}(x)$	$= \sum_{a_1' \in \mathcal{A}_1} \cdots \sum_{a_N' \in \mathcal{A}_N} x_{1,a_1'} \cdots$	$\cdot \delta_{a'_i a_i} \cdots x_{N,a'_N} u_i(a'_1,\ldots,a'_N)$	
	Caveat Single-	population matching is <mark>diffe</mark>	e <mark>rent</mark> (quadratic)	[why?]
	Example 2: Nonatomic	congestion games ("play	ing the field")	

See Lecture 1

For more: Weibull [1995], Hofbauer and Sigmund [1998], Sandholm [2010, 2015]

Continuous Games

Multilinear Games

Important

- Random matching ⊊ population games of interest
- ▶ (Multi)Linear games ⊊ continuous games of interest

	iew Preliminaries		
cirs	Solution concepts		

• Dominated strategies: $a_i \in A_i$ is dominated by $a'_i \in A_i$ ($a_i \prec a'_i$) if

 $u_{ia_i}(x) < u_{ia'_i}(x)$ for all $x \in \mathcal{X}$

[Mixed version: $p_i \prec q_i \iff u_i(p_i; x_{-i}) < u_i(q_i; x_{-i})$ for all $x \in \mathcal{X}$]

The Prisoner's Dilemma Two villains, Robin and Charlie, are cought - "Rat on your compadre, and you go free" →"Stay loyal, face 10 years in jail" Charlie Charlie letrazs What is Lobia (-1, -1)(-10, 0) the outcome ci Pont Poble silent 2 be (0, -10) (-2, -2) betrays

	ew Preliminaries			
CITS	Solution concepts			
	Dominated strateg	ies: $a_i \in A_i$ is dominate	ed by $a_i' \in \mathcal{A}_i$ $(a_i \prec a_i')$ if	
		$u_{ia_i}(x) < u_{ia'_i}(x)$	for all $x \in \mathcal{X}$	
		[Mixed version: $p_i \prec q_i$	$\implies u_i(p_i; x_{-i}) < u_i(q_i; x_{-i})$ for a	$ x \in \mathcal{X}]$
	Nash equilibrium:	no player has an incent	ive to switch strategies	

$$u_{ia_i}(x^*) \ge u_{ia'_i}(x^*)$$
 for all $a_i, a'_i \in \mathcal{A}_i$ with $x^*_{ia_i} > 0$

- Support of x^* : supp $(x^*) = \{(a_1, \ldots, a_N) \in \mathcal{A} : x_{ia_i}^* > 0 \text{ for all } i\}$
- Interior / Full support equilibria: $supp(x^*) = A$
- Pure equilibria: $supp(x^*) = singleton$
- Strict equilibria: ">" instead of " \geq " when $a'_i \notin \operatorname{supp}(x^*_i)$

Overvi 000	ew Preliminaries	The replicator dy 00000	mamics	Rationality analysis	References
CITS	Solution concepts				
	Dominated strategi	es: $a_i \in \mathcal{A}_i$ is a	lominate	ed by $a_i' \in \mathcal{A}_i$ $(a_i \prec a_i')$ if	
		$u_{ia_i}(x) < u_{ia}$	$f_i(x)$	for all $x \in \mathcal{X}$	
		[Mixed version:	$p_i \prec q_i \prec$	$\implies u_i(p_i; x_{-i}) < u_i(q_i; x_{-i})$ for a	all $x \in \mathcal{X}$]
	Nash equilibrium: r	10 player has a	n incent	ive to switch strategies	
	$u_{ia_i}(x^*)$	$0 \ge u_{ia'_i}(x^*)$	for all <i>a</i>	$a_i, a_i' \in \mathcal{A}_i ext{ with } x_{ia_i}^* > 0$	
	Support of x*: su	$\operatorname{upp}(x^*) = \{(a_1, \ldots, a_n)\}$	$\ldots, a_N) \in$	$\mathcal{A}: x^*_{ia_i} > 0 \text{ for all } i \}$	

- Interior / Full support equilibria: $supp(x^*) = A$
- Pure equilibria: supp(x*) = singleton
- Strict equilibria: ">" instead of " \geq " when $a'_i \notin \operatorname{supp}(x^*_i)$

Examples:

- Rock-Paper-Scissors: unique, full support equilibrium
- Prisoner's dilemma: dominance-solvable, one strict equilibrium
- Battle of the Sexes: one full support equilibrium; two strict equilibria

▶ Players:
$$\mathcal{N} = \{1, 2\}.$$

- ▶ Players: $\mathcal{N} = \{1, 2\}.$
- Actions: $A_i = \{R, P, S\}, i = 1, 2.$
- Payoff matrix (win 1, lose -1, tie 0):

$$A = \frac{\begin{vmatrix} \mathsf{R} & \mathsf{P} & \mathsf{S} \\ \hline \mathsf{R} & \mathsf{0} & -1 & 1 \\ \hline \mathsf{P} & 1 & \mathsf{0} & -1 \\ \hline \mathsf{S} & -1 & 1 & \mathsf{0} \end{vmatrix}$$

- Mixed strategies: $x_i \in \Delta\{R, P, S\}$.
- Payoff functions (multi-population):

$$u_1(x) = -u_2(x) = x_1^{\mathsf{T}} A x_2$$

Multi-population matching \rightsquigarrow Mixed extension \rightsquigarrow Multilinear game

- ▶ Players: $\mathcal{N} = \{1, 2\}.$
- Actions: $A_i = \{R, P, S\}, i = 1, 2.$
- Payoff matrix (win 1, lose -1, tie 0):

$$A = \frac{\begin{vmatrix} \mathsf{R} & \mathsf{P} & \mathsf{S} \\ \hline \mathsf{R} & \mathsf{0} & -1 & 1 \\ \hline \mathsf{P} & 1 & \mathsf{0} & -1 \\ \hline \mathsf{S} & -1 & 1 & \mathsf{0} \end{vmatrix}$$

- Mixed strategies: $x_i \in \Delta\{R, P, S\}$.
- Payoff functions (single-population):

$$u(x) = x^{\top}Ax$$

Single-population matching 🆘 Mixed extensions 🖘 Multilinear games

Overvie 000	ew Preliminaries	The replicator dynamics 00000	Rationality analysis 000000000000000	References
cnrs	Rest of this lecture			
	Are game-theoretic	solution concepts consis	tent with evolutionary models?	
	Evolutionary mode	els $ ightarrow$ dynamical systems	(Lotka-Volterra, replicator, etc.)
	Do dominated stra	ategies become extinct?		
	Is equilibrium play	stable/attracting?		
	►			

		The replicator dynamics ●0000	
CITS Outli	ne		

Preliminaries

The replicator dynamics

Rationality analysis

12/35

		The replicator dynamics O●OOO	
CITS A	biologist's viewpoint		

Populations are species, strategies are phenotypes:

 z_{ia_i} = absolute population mass of type $a_i \in A_i$ $z_i = \sum_{a_i} z_{ia_i}$ = absolute population mass of *i*-th species

		The replicator dynamics O●OOO	
CITS A b	iologist's viewpoint		

Populations are species, strategies are phenotypes:

 z_{ia_i} = absolute population mass of type $a_i \in A_i$ $z_i = \sum_{a_i} z_{ia_i}$ = absolute population mass of *i*-th species

Utilities measure fecundity / reproductive fitness:

 $u_{ia_i}(x)$ = per capita growth rate of type a_i

Population evolution:

$$\dot{z}_{ia_i} = z_{ia_i} u_{ia_i}$$

		The replicator dynamics ○●○○○	
CITS A bio	logist's viewpoint		

Populations are species, strategies are phenotypes:

 z_{ia_i} = absolute population mass of type $a_i \in A_i$ $z_i = \sum_{a_i} z_{ia_i}$ = absolute population mass of *i*-th species

Utilities measure fecundity / reproductive fitness:

 $u_{ia_i}(x)$ = per capita growth rate of type a_i

Population evolution:

$$\dot{z}_{ia_i} = z_{ia_i} u_{ia_i}$$

• Evolution of population shares $(x_{ia_i} = z_{ia_i}/z_i)$:

$$\dot{x}_{ia_{i}} = \frac{d}{dt} \frac{z_{ia_{i}}}{z_{i}} = \frac{\dot{z}_{ia_{i}} z_{i} - z_{ia_{i}} \sum_{a'_{i}} \dot{z}_{ia'_{i}}}{z_{i}^{2}} = \frac{z_{ia_{i}}}{z_{i}} u_{ia_{i}} - \frac{z_{ia_{i}}}{z_{i}} \sum_{a'_{i}} \frac{z_{ia'_{i}}}{z_{i}} u_{ia'_{i}}$$

Replicator dynamics [Taylor and Jonker, 1978]

$$\dot{x}_{ia_i} = x_{ia_i}[u_{ia_i}(x) - u_i(x)]$$
 (RD)

		The replicator dynamics 00●00	
CITS	An economist's viewboint		

Agents receive revision opportunities to switch strategies

 $\rho_{aa'}(x)$ = conditional switch rate from *a* to *a*'

[NB: dropping player index for simplicity]

		The replicator dynamics 00●00	
CITS	An economist's viewboint		

Agents receive revision opportunities to switch strategies

 $\rho_{aa'}(x)$ = conditional switch rate from *a* to *a*'

[NB: dropping player index for simplicity]

Pairwise proportional imitation:

$$\rho_{aa'}(x) = x_{a'}[u_{a'}(x) - u_a(x)]_+$$

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

Inflow/outflow:

ncoming toward
$$a = \sum_{a'} \max(a' \rightsquigarrow a) = \sum_{a' \in \mathcal{A}} x_{a'} \rho_{a'a}(x)$$

Outgoing from $a = \sum_{a'} \max(a \rightsquigarrow a') = x_a \sum_{a' \in \mathcal{A}} \rho_{aa'}(x)$

Conditional switch:
$$\rho_{\alpha\beta} = \chi_{\beta} \sum [u_{\beta} - u_{\alpha}]_{+}$$

Inflow to $\alpha = \sum_{\beta\neq\alpha} \chi_{\beta} \rho_{\beta\alpha}(x) = \sum_{\beta} \chi_{\beta} \chi_{\alpha} \sum [u_{\alpha} - u_{\beta}]_{+}$
Outflow from $\alpha = \sum_{\beta\neq\alpha} \chi_{\alpha} \rho_{\alpha\beta}(x) = \sum_{\beta} \chi_{\alpha} \chi_{\beta} \sum [u_{\beta} - u_{\alpha}]_{+}$
Net flow $\chi_{\alpha} = \chi_{\alpha} \sum_{\beta} \chi_{\beta} \sum [u_{\alpha} - u_{\beta}]_{+} - \sum_{\beta} \chi_{\beta} \sum [u_{\beta} - u_{\alpha}]_{+}$
 $u_{\alpha} u_{\alpha} u_{\alpha} \chi_{\alpha} u_{\beta} = \chi_{\alpha} \sum_{\beta} \sum_{\beta} \chi_{\beta} \sum [u_{\alpha} - u_{\beta}] + \sum_{\beta} \sum_{\alpha} \sum_{\alpha} u_{\alpha} - u_{\beta}]$
 $u_{-1} : u_{\alpha} \leq u_{\beta}$
 $= \chi_{\alpha} \sum_{\beta} \chi_{\beta} \sum [u_{\alpha} - u_{\beta}] = \chi_{\alpha} [u_{\alpha}(x) - u(x)]$

		The replicator dynamics 00●00	
CITS	An economist's viewboint		

Agents receive revision opportunities to switch strategies

 $\rho_{aa'}(x)$ = conditional switch rate from *a* to *a*'

[NB: dropping player index for simplicity]

Pairwise proportional imitation:

$$\rho_{aa'}(x) = x_{a'}[u_{a'}(x) - u_a(x)]_+$$

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

Inflow/outflow:

ncoming toward
$$a = \sum_{a'} \max(a' \rightsquigarrow a) = \sum_{a' \in \mathcal{A}} x_{a'} \rho_{a'a}(x)$$

Outgoing from $a = \sum_{a'} \max(a \rightsquigarrow a') = x_a \sum_{a' \in \mathcal{A}} \rho_{aa'}(x)$

Detailed balance:

$$\dot{x}_a = \operatorname{inflow}_a(x) - \operatorname{outflow}_a(x) = \cdots = x_a[u_a(x) - u(x)]$$
 (RD)

		The replicator dynamics ○○○●○	
CITS	A learning viewboint		

Evolution of mixed strategies in a finite game:

Agents record cumulative payoff of each strategy

$$y_a(t) = \int_0^t u_a(\tau) \, d\tau$$

→ propensity of choosing a strategy [Littlestone and Warmuth, 1994; Vovk, 1995]

▶ Choice probabilities ~> exponentially proportional to propensity scores

$$x_a(t) = \frac{\exp(y_a(t))}{\sum_{a'} \exp(y_{a'}(t))}$$

exp(ya) \mathcal{T}_{n} Zp exp (yp) at exp (ye) Eperp (yn) - exp(y-) at Eperp(yn) [Eperplyn] 2 ż , للط - exply) Zp yp yn exp (yn) 22 - xa L3 x up Te Ul -= xa [4a (x) - u(2)]

		The replicator dynamics 000€0	
CITS A lea	arning viewpoint		

Evolution of mixed strategies in a finite game:

Agents record cumulative payoff of each strategy

$$y_a(t) = \int_0^t u_a(\tau) \, d\tau$$

→ propensity of choosing a strategy [Littlestone and Warmuth, 1994; Vovk, 1995]

▶ Choice probabilities ~> exponentially proportional to propensity scores

$$x_a(t) = \frac{\exp(y_a(t))}{\sum_{a'} \exp(y_{a'}(t))}$$

Evolution of mixed strategies [Rustichini, 1999; Hofbauer et al., 2009]

$$\dot{x}_a = \dots = x_a [u_a(x) - u(x)] \tag{RD}$$

[Check: verify computation]

CNRS & Criteo Al Lab

		The replicator dynamics 0000●	
CITS Basi	c properties		

Different viewpoints, same dynamics:

$$\dot{x}_{ia_i} = x_{a_i} [u_{ia_i}(x) - u_i(x)]$$
 (RD)

[NB: all viewpoints will be useful later]

Structural properties

[Weibull, 1995; Hofbauer and Sigmund, 1998]

• Well-posed: every initial condition $x \in \mathcal{X}$ admits unique solution trajectory x(t) that exists for all time

[Assuming u_i is Lipschitz]

• Consistent: $x(t) \in \mathcal{X}$ for all $t \ge 0$

[Assuming $x(0) \in \mathcal{X}$]

Faces are forward invariant ("strategies breed true"):

 $\begin{aligned} x_{ia_i}(0) &> 0 \iff x_{ia_i}(t) > 0 \quad \text{for all } t \ge 0 \\ x_{ia_i}(0) &= 0 \iff x_{ia_i}(t) = 0 \quad \text{for all } t \ge 0 \end{aligned}$

		Rationality analysis ●0000000000000000	
CITS Outli	ne		

Preliminaries

The replicator dynamics

Rationality analysis

		Rationality analysis	
		0000000000000	
CITS			

Dynamics and rationality

Are game-theoretic solution concepts consistent with evolutionary models?

	Rationality analysis	
	000000000000000000	

Dynamics and rationality

Are game-theoretic solution concepts consistent with the replicator dynamics?

- Do dominated strategies die out in the long run?
- Are Nash equilibria stationary?
- Are they stable? Are they attracting?
- Do the replicator dynamics always converge?
- What other behaviors can we observe?
- **۰**...

CINIS Phase portraits

		Rationality analysis 000●000000000000	
CITS Dom	inated strategies		

Suppose $a_i \in A_i$ is dominated by $a'_i \in A_i$

Consistent payoff gap:

 $u_{ia_i}(x) \le u_{ia'_i}(x) - \varepsilon$ for some $\varepsilon > 0$

		Rationality analysis 000●000000000000	
CITS Dom	inated strategies		

Suppose $a_i \in A_i$ is dominated by $a'_i \in A_i$

Consistent payoff gap:

$$u_{ia_i}(x) \le u_{ia'_i}(x) - \varepsilon$$
 for some $\varepsilon > 0$

Consistent difference in scores:

$$y_{ia_i}(t) = \int_0^t u_{ia_i}(x) d\tau \le \int_0^t \left[u_{ia'_i}(x) - \varepsilon \right] d\tau = y_{ia'_i}(t) - \varepsilon t$$

Consistent difference in choice probabilities

$$\frac{x_{ia_i}(t)}{x_{ia'_i}(t)} = \frac{\exp(y_{ia_i}(t))}{\exp(y_{ia'_i}(t))} \le \exp(-\varepsilon t)$$

		Rationality analysis 000●000000000000	
CITS Dom	inated strategies		

Suppose $a_i \in A_i$ is dominated by $a'_i \in A_i$

Consistent payoff gap:

$$u_{ia_i}(x) \le u_{ia'_i}(x) - \varepsilon$$
 for some $\varepsilon > 0$

Consistent difference in scores:

$$y_{ia_i}(t) = \int_0^t u_{ia_i}(x) d\tau \le \int_0^t \left[u_{ia'_i}(x) - \varepsilon \right] d\tau = y_{ia'_i}(t) - \varepsilon t$$

Consistent difference in choice probabilities

$$\frac{x_{ia_i}(t)}{x_{ia'_i}(t)} = \frac{\exp(y_{ia_i}(t))}{\exp(y_{ia'_i}(t))} \le \exp(-\varepsilon t)$$

Dominated strategies become extinct [Samuelson and Zhang, 1992]

 $\lim_{t \to \infty} x_{ia_i}(t) = 0 \quad \text{whenever } a_i \text{ is dominated}$

[Check #1: extend to *iteratively / mixed* dominated strategies] [Check #2: what about *weakly* dominated strategies?]

		Rationality analysis 0000●000000000	
CITS	Creation of the second states of		

Stationarity of equilibria

Nash equilibrium: $u_{ia_i}(x^*) \ge u_{ia'_i}(x^*)$ for all $a_i, a'_i \in A_i$ with $x^*_{ia_i} > 0$

Supported strategies have equal payoffs:

$$u_{ia_i}(x^*) = u_{ia'_i}(x^*)$$
 for all $a_i, a'_i \in \text{supp}(x^*_i)$

Mean payoff equal to equilibrium payoff:

 $u_i(x^*) = u_{ia_i}(x^*)$ for all $a_i \in \operatorname{supp}(x_i^*)$

		Rationality analysis 0000●0000000000	
CITS Stat	tion anity of a quilibria		

Stationarity of equilibria

Nash equilibrium: $u_{ia_i}(x^*) \ge u_{ia'_i}(x^*)$ for all $a_i, a'_i \in A_i$ with $x^*_{ia_i} > 0$

Supported strategies have equal payoffs:

$$u_{ia_i}(x^*) = u_{ia'_i}(x^*) \quad \text{for all } a_i, a'_i \in \text{supp}(x^*_i)$$

Mean payoff equal to equilibrium payoff:

$$u_i(x^*) = u_{ia_i}(x^*)$$
 for all $a_i \in \operatorname{supp}(x_i^*)$

Replicator field vanishes at equilibria:

$$x_{ia_{i}}^{*}[u_{ia_{i}}(x^{*}) - u_{i}(x^{*})] = 0 \text{ for all } a_{i} \in \mathcal{A}_{i}$$

Nash equilibria are stationary:

$$x(0) = x^* \iff x(t) = x^* \text{ for all } t \ge 0$$

The converse does not hold (never used inequality)

[Check: All vertices are stationary - general statement?]

		Rationality analysis 00000●000000000	
Stability			
Are all stationary poi	nts created equal?		
Definition			
		od U of x^* in \mathcal{X} , there exists	ists a
	$x(0) \in U' \iff x(t) \in U$	for all $t \ge 0$	
	[Trajectories th	at start close to x^* remain close f	or all time]
	Stability Are all stationary point Definition x* is (Lyapunov) state	Stability Are all stationary points created equal? Definition x^* is (Lyapunov) stable if, for every neighborhoon neighborhood U' of x^* such that $x(0) \in U' \iff x(t) \in U$	OCCOOL

			Rationality analysis 00000●000000000	
CITS	Stability			
	Are all stationary p	points created equal?		
	Definition			
	x^* is (Lyapunov) s neighborhood U'	table if, for every neighborhor of x^* such that	ood U of x^* in \mathcal{X} , there exis	sts a
		$x(0) \in U' \iff x(t) \in U$	for all $t \ge 0$	
		[Trajectories th	hat start close to x^* remain close for	or all time]
		x^* is stable $\implies x^*$ is a Na	ash equilibrium	
				22/35

Are all Nash equilibria created equal?

Definition

- ▶ x^* is attracting if $\lim_{t\to\infty} x(t) = x^*$ whenever x(0) is close enough to x^*
- x* is asymptotically stable if it is stable and attracting

Р

 \mathbf{S}

			Rationality analysis 000000000000000000	
CITS	Convergence in potenti	al games		
	Potential games [Sandho	olm, 2001]		

 $u_{ia_i} = -\frac{\partial V}{\partial x_{ia_i}}$ for some potential function $V: \mathcal{X} \to \mathbb{R}$

NASC (Poincaré):

potential
$$\iff \frac{\partial u_{ia_i}}{\partial x_{ia'_i}} = \frac{\partial u_{ia'_i}}{\partial x_{ia_i}}$$

Positive correlation / Lyapunov property:

$$\frac{dV}{dt} \leq 0 \quad \text{under (RD)}$$

[Check: verify this]

Theorem (Sandholm, 2001)

- In potential games, (RD) converges to its set of stationary points
- In random matching potential games, interior trajectories of (RD) converge to Nash equilibrium

	Rationality analysis	
	000000000000000	

Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

 $x^{*} \text{ is full-support equilibrium } \Longrightarrow (RD) \text{ admits constant of motion}$ KL divergence: $D_{KL}(x^{*}, x) = \sum_{i} \sum_{a_{i}} x^{*}_{ia_{i}} \log \frac{x^{*}_{ia_{i}}}{x_{ia_{i}}}$ $D_{LL}(q, x) = \sum_{\alpha: x_{n} \rightarrow 0} p_{\alpha} \log \frac{p_{\alpha}}{x_{n}}$ $d_{L}(q, x) = -\sum_{\alpha: x_{n} \rightarrow 0} p_{\alpha} \log \frac{p_{\alpha}}{x_{n}}$ $= \sum_{\alpha \in \mathcal{L}L(q, x)} = -\sum_{\alpha \in \mathcal{L}L(q, x)} p_{\alpha} \frac{x_{\alpha}}{x_{n}} = \sum_{\alpha \in \mathcal{L}L(\alpha)} - U_{n}(x)$ $= \int_{\mathcal{L}L} U_{n}(x) (p_{n} - x_{n})$

Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

 x^* is full-support equilibrium \implies (RD) admits constant of motion KL divergence: $D_{\text{KL}}(x^*, x) = \sum_i \sum_{a_i} x^*_{ia_i} \log \frac{x^*_{ia_i}}{x^*_{ia_i}}$

Theorem (Hofbauer et al., 2009)

Assume a bilinear zero-sum game admits an interior equilibrium. Then:

- Interior trajectories of (RD) do not converge (unless stationary)
- Time-averages $\bar{x}(t) = t^{-1} \int_0^t x(\tau) d\tau$ converge to Nash equilibrium

		Rationality analysis 00000000000000000000000000000000000	
Chrs			

Convergence of time-averages

The replicator dynamics in a game of Matching Pennies

 x_1

Overview

Preliminario

he replicator dynamics

Rationality analysis

Poincaré recurrence in zero-sum games

Definition (Poincaré)

A dynamical system is **Poincaré recurrent** if almost all solution trajectories return *arbitrarily close* to their starting point *infinitely many times*

Theorem (Piliouras and Shamma, 2014; M et al., 2018)

(RD) is recurrent in all bilinear zero-sum games with a full-support equilibrium

		Rationality analysis 00000000000000000000000000000000000	
CITS What	t's missing		

- Evolutionary stability
- Other (classes of) dynamics:
 - Fictitious play
 - Best response dynamics
 - Imitative / Innovative dynamics
 - Higher-order dynamics
- Unexpected / Complex behaviors:
 - Survival of dominated strategies
 - Chaos

[Maynard Smith and Price, 1973]

[Brown, 1951; Robinson, 1951] [Gilboa and Matsui, 1991] [Weibull, 1995; Sandholm, 2010] [Laraki and M, 2013]

[Hofbauer and Sandholm, 2011] [Sandholm, 2010]

 Evolution in the presence of uncertainty [Fudenberg and Harris, 1992; Imhof, 2005; M & Moustakas, 2010; M & Viossat, 2016]

			References
CITS I	References I		

- G. W. Brown. Iterative solutions of games by fictitious play. In T. C. Coopmans, editor, Activity Analysis of Productions and Allocation, 374-376. Wiley, 1951.
- S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. *Foundations and Trends in Machine Learning*, 5(1):1-122, 2012.
- N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.
- R. Cressman. Evolutionary Dynamics and Extensive Form Games. The MIT Press, 2003.
- D. Fudenberg and C. Harris. Evolutionary dynamics with aggregate shocks. *Journal of Economic Theory*, 57(2):420-441, August 1992.
- D. Fudenberg and D. K. Levine. The Theory of Learning in Games, volume 2 of Economic learning and social evolution. MIT Press, Cambridge, MA, 1998.
- D. Fudenberg and J. Tirole. Game Theory. The MIT Press, 1991.
- I. Gilboa and A. Matsui. Social stability and equilibrium. Econometrica, 59(3):859-867, May 1991.
- D. Helbing. A mathematical model for behavioral changes by pair interactions. In G. Haag, U. Mueller, and K. G. Troitzsch, editors, *Economic Evolution and Demographic Change: Formal Models in Social Sciences*, pages 330-348. Springer, Berlin, 1992.
- J. Hofbauer and W. H. Sandholm. Survival of dominated strategies under evolutionary dynamics. *Theoretical Economics*, 6(3):341-377, September 2011.

				References	
CITS	References II				
	J. Hofbauer and K. Sigmund. Press, Cambridge, UK, 199		tion Dynamics. Cambridge Univers	ity	
	J. Hofbauer and K. Sigmund. Evolutionary game dynamics. <i>Bulletin of the American Mathematical Society</i> , 40(4):479-519, July 2003.				
	J. Hofbauer, S. Sorin, and Y. Vi Operations Research, 34(2)		and best reply dynamics. <i>Mathemat</i>	tics of	
	L. A. Imhof. The long-run beh Probability, 15(1B):1019-10		r dynamics. The Annals of Applied		
	R. Laraki and P. Mertikopoulos 2666-2695, November 201		. Journal of Economic Theory, 148(6	»):	
	T. Lattimore and C. Szepesvár	. Bandit Algorithms. Cambridg	e University Press, Cambridge, UK, 2	2020.	
	N. Littlestone and M. K. Warm (2):212-261, 1994.	uth. The weighted majority algo	orithm. Information and Computatio	on, 108	
	J. Maynard Smith and G. R. Pr	ice. The logic of animal conflict	. <i>Nature</i> , 246:15-18, November 197	'3.	
		ustakas. The emergence of ration of Applied Probability, 20(4):13	onal behavior in the presence of sto 59-1388, July 2010.	chastic	
	P. Mertikopoulos and Y. Viossa Theory, 45(1-2):291-320, N	, , , , , , , , , , , , , , , , , , , ,	off shocks. International Journal of G	ame	
				33/35	

			References
CITS	References III		

- P. Mertikopoulos, C. H. Papadimitriou, and G. Piliouras. Cycles in adversarial regularized learning. In SODA '18: Proceedings of the 29th annual ACM-SIAM Symposium on Discrete Algorithms, 2018.
- N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, editors. *Algorithmic Game Theory*. Cambridge University Press, 2007.
- G. Piliouras and J. S. Shamma. Optimization despite chaos: Convex relaxations to complex limit sets via Poincaré recurrence. In SODA '14: Proceedings of the 25th annual ACM-SIAM Symposium on Discrete Algorithms, 2014.
- J. Robinson. An iterative method for solving a game. Annals of Mathematics, 54:296-301, 1951.
- A. Rustichini. Optimal properties of stimulus-response learning models. *Games and Economic Behavior*, 29(1-2):244-273, 1999.
- L. Samuelson and J. Zhang. Evolutionary stability in asymmetric games. *Journal of Economic Theory*, 57: 363-391, 1992.
- W. H. Sandholm. Potential games with continuous player sets. *Journal of Economic Theory*, 97:81-108, 2001.
- W. H. Sandholm. Population Games and Evolutionary Dynamics. MIT Press, Cambridge, MA, 2010.
- W. H. Sandholm. Population games and deterministic evolutionary dynamics. In H. P. Young and S. Zamir, editors, *Handbook of Game Theory IV*, pages 703-778. Elsevier, 2015.

			References
CITS Refe	rences IV		

- K. H. Schlag. Why imitate, and if so, how? a boundedly rational approach to multi-armed bandits. *Journal of Economic Theory*, 78(1):130-156, 1998.
- S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107-194, 2011.
- P. D. Taylor and L. B. Jonker. Evolutionary stable strategies and game dynamics. *Mathematical Biosciences*, 40(1-2):145–156, 1978.
- V. G. Vovk. A game of prediction with expert advice. In COLT '95: Proceedings of the 8th Annual Conference on Computational Learning Theory, pages 51-60, 1995.
- J. W. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.