
Advanced Topics on

Algorithms & Complexity

Avarikioti Zeta
June 19, 2014

Path Coloring (PC)
Input: Graph G, set of paths R
Output: Coloring of the paths such that any two paths that share the same edge
have distinct colors and the number of colors used is minimized

2 / 3 6

Path Coloring Problems

Maximum Path Coloring (MaxPC)
Input: Graph G, number of colors W
Output: Maximum cardinality set of paths properly colored

Maximum Path Coloring (MaxPC) in trees
Input: undirected tree G=(V,E), multi-set of demands D⊆V*V (paths in G),

number of colors W, number of demands we seek to satisfy B
Output: W mutually disjoint subsets D1,D2…Dw⊆ D s.t. no set Di contains

two demands that share an edge and 𝑖=1
𝑊 |𝐷𝑖| ≥ 𝐵

3 / 3 6

Other problems we wil l need…

Maximum Edge Disjoint Paths (MaxEDP)
Input: Graph G, w=1 (one color)
Output: Maximum cardinality set of paths properly colored

Capacity Maximum Path Coloring (CapMaxPC)
Input: Graph G, number of colors W, edge capacities 1≤c(e)≤W
Output: Maximum cardinality set of paths properly colored

Disjoint Neighborhoods Packing (DNP)
Input: undirected graph G=(V,E)
Output: Maximum cardinality set of V’⊆V such that ∀u,v∊V’ we have N(u)∩N(v)=⊘

4 / 3 6

Previous work for Path Coloring

PC is NP-hard for:
 undirected stars (edge coloring in multi-graphs)
 Undirected rings (coloring circular-arc graphs)
 Bi-directed binary trees

PC is FPT for:
 Undirected trees when parameterized by the maximum

degree of the tree Δ
 Bi-directed trees when parameterized by the maximum

number of request touching any node

 4/3- approximation algorithm for undirected trees
 5/3-approximation algorithm for bi-directed trees

5 / 3 6

Previous work for

Maximum Path Coloring

MaxPC is solvable in polynomial time, in bi-directed trees, if
both maximum degree and number of colors are constant
(straightforward extension in undirected trees)

MaxEDP (MaxPC for W=1)
 Is NP-hard for bi-directed trees
 Is P for undirected trees

 1,58- approximation algorithm for undirected trees
 2,22-approximation algorithm for bi-directed trees

XP algorithm,
not FPT

Contribution of this paper

6 / 3 6

 Parameterization that does not involve the objective function-W, Δ, t:
 None of the parameters can be removed from the exponent of n, under

standard complexity assumptions, even if the others are small
constants

 MaxPC is NP-complete even in binary trees
 Gap between PC and MaxPC

 Parameterization that involves the objective function-W, Δ,T (number
of requests rejected):
 FPT in undirected and bi-directed trees with parameters W, Δ, T
 FPT in binary trees when parameterized by T
 FPT for undirected trees, rings and bi-directed trees when

parameterized by the size of the solution (MaxEDP)

many rejected
requests in
reductions, in
contrast with PC

7 / 3 6

Structural Parameterization

Proof sketch
(Bottom-up dynamic programming on the tree decomposition of G)

 Root the tree decomposition on some arbitrary bag (the vertices of a non-leaf bag of
the decomposition form a separator of G)

 In any feasible solution, for any given bag B, we can have only O(WΔt) satisfied
demands touching the vertices of B:
 Every edge has at most W satisfied demands going through it
 Every vertex has at most Δ edges touching it (2Δ for bi-directed trees)
 All bags have at most t+1 vertices

 With standard treewidth technique we calculate bottom-up for each possible local
solution, what is the maximum number of satisfied demands in the graph induced by
the vertices in the bag and those below in tree decomposition

Theorem 1: (cW, cΔ, ct)-MaxPC can be solved in polynomial time for
both undirected and bi-directed trees

8 / 3 6

Structural Parameterization

Proof

 For each edge (u, v) with capacity c<W we add W-c demands from u to v. Let A be the
set of these new demands

 We set the capacity of edges W (instance of MaxPC)

 CapMaxPC instance has a coloring satisfying B demands iff the new MaxPC has a
coloring satisfying A+B demands

Lemma 1: For both undirected and bi-directed graphs we have
a) (pW, cΔ)-CapMaxPC ≤FPT (pW, cΔ)-MaxPC
b) (cW, pΔ)-CapMaxPC ≤FPT (cW, pΔ)-MaxPC
c) (cW, cΔ, pt)-CapMaxPC ≤FPT (cW, cΔ, pt)-MaxPC

Is there an FPT algorithm for (pW, pΔ, pt)-MaxPC ?
We will show that IS ≤FPT DNP ≤FPT CapMaxPC ≤FPT MaxPC … so NO!

9 / 3 6

Structural Parameterization

Proof sketch

Subdivide every edge of G=(V,E). Connect all newly added vertices in a clique.
The new graph has a packing of k disjoint neighborhoods iff the original graph
has an independent set of size k.

Lemma 2: DNP is W[1]-hard (IS ≤FPT DNP)

Independent Set DNP

1 0 / 3 6

Structural Parameterization

Proof

At first, we will prove the theorem for undirected graphs. We have an instance
of DNP: a graph G=(V, E) and a target size for the DNP set k. We will start with
the gadget construction (let |V|=n):

 Backbone: path of n+2 vertices, bi, 0 ≤ i ≤ n+1
 Branches: n+2 copies of a path with n vertices, pij, 0 ≤ i ≤ n+1, 1 ≤ j ≤ n
 Connect bi to pi1

 For each 1 ≤ i, j ≤ n we add three vertices in the graph wij, uij, vij and the
edges (uij, wij), (vij, wij) and (wij, pij)

Theorem 2: (pW, cΔ)-MaxPC is W[1]-hard for both undirected and bi-
directed trees

Structural Parameterization

Graph G=(V, E)

1 1 / 3 6

1 2 / 3 6

Proof of Theorem 2

Now the graph is a tree of maximum degree 3

Proof of Theorem 2

Demands & Capacities

Suppose that the vertices of the original graph are numbered {1,2,…,n}. For
each i ∊V we consider the closed neighborhood N(i) in increasing order and let
N(i) ={j0, j1,…,jd(i)}, where d(i) is the degree of i.

 Global demands:
 From p0,i to uj0,i

 ∀l, , 0 ≤ l ≤ d(i), from vjl,I
to ujl+1,i

 From vjd(i),i to pn+1,I

 Local demands: from from vi,j to ui,j

 Capacities:
 2 for the edges (bi, pi,1)
 1 for the edges (uij, wij) and (vij, wij)

1 3 / 3 6

Proof of Theorem 2-demands

Local demands

1 4 / 3 6

Proof of Theorem 2-demands

From p0,i to uj0,i

1 5 / 3 6

Proof of Theorem 2-demands

From p0,i to uj0,i

1 6 / 3 6

Proof of Theorem 2-demands

From p0,i to uj0,i

1 7 / 3 6

Proof of Theorem 2-demands

From p0,i to uj0,i

1 8 / 3 6

Proof of Theorem 2-demands

From p0,i to uj0,i

1 9 / 3 6

From p0,i to uj0,i

Proof of Theorem 2-demands

2 0 / 3 6

Proof of Theorem 2-demands

From vjd(i),i to pn+1,i

2 2 / 3 6

Proof of Theorem 2-demands

∀l, , 0 ≤ l ≤ d(i), from vjl,I
to ujl+1,i

2 1 / 3 6

Proof of Theorem 2

All demands and capacities W=2k

2 3 / 3 6

Proof of Theorem 2

Suppose that the original graph has a packing V’ of size k, we will
construct a CapMaxPC solution of size n2+k.

 We select all the local demands, which gives us a solution of size n2

 For each i∊V’ we increase the solution size by 1, by satisfying all the global

demands associated with i.

 In each such step we use 2 new colors and remove the local demands that

intersect with the global demands we selected (profit of exactly one demand)

 Fewer than 2k colors in an edge’s capacitymore than two request going

through (bi, pi,1) i is a common neighbor of two vertices of the packing,

violating its feasibility

2 4 / 3 6

Proof of Theorem 2

Suppose that a solution of size n2 + k exists.

 For each edge (bi, pi,1) we are either satisfying two of the demands crossing it
or none and furthermore that if we are satisfying two, one of them is going
“left“ and the other is going “right“

 The number of satisfied requests going through each edge (bi, bi+1) is constant
(L) for all i. We will show that L=k.

 Pick an arbitrary satisfied demand which uses a backbone edge and
delete it from the solution (size solution and L decrease by 1)

 Repeat this L times
 The new solution satisfies all the local demands which are n2, so L=k

 There are k vertices in the branch of b0 with satisfied demands and all
associated global demands are also satisfied a DNP in the original graph (if
two of them had a common neighbor exceeding some branch's bottleneck
capacity of 2)

2 5 / 3 6

Proof of Theorem 2

Bi-directed trees

 For each edge (bi, pi,1) the capacity is set to 1

 W=k, since all global demands corresponding to a vertex are non-intersecting

 Make sure that the local demands are directed in such a way that they intersect
both global demands with which they share an edge

 The rest of the arguments of the reduction go through unchanged

2 6 / 3 6

2 7 / 3 6

Proof sketch

Gadget
 Take k copies of a path on n vertices, Si,j ,, 1≤i ≤k, 1≤j ≤n
 Take k more copies of a path on n vertices, Ti,j, 1≤i ≤k, 1≤j ≤n
 Add a new vertex C and connect it to all Si,j and Ti,j

 Set capacities of all edges to 1
 Add a demand fro Si,j to Ti,j

The optimal solution satisfies k paths by selecting k vertices in the S branches
and their corresponding vertices in the T branches

Theorem 3: (cW, pΔ)-MaxPC is W[1]-hard for both undirected and bi-
directed trees. The result holds even for instances where all the vertices
but one have degree bounded by 3

Structural Parameterization

2 8 / 3 6

The total number of vertices is O(n2k2) and a solution of size
𝑘
2

n(n+4)+k can be

achieved if the original graph has a packing of size k.

Structural Parameterization

How do we ensure that our selection is indeed a packing in the original graph?

For all the
𝑘
2

pairs of the selection, we make copies of the gadget we

constructed in theorem 2, slightly altered, and we attach them to C and then
properly reroute the demands from S to T vertices through them.

2 9 / 3 6

The construction is similar to the one in theorem 2, but we replace the backbone
with a grid, in order to achieve the constant number of colors (backbone, first
and last branch) using the treewidth.

Theorem 4: (cW, CΔ, pt)-MaxPC and (cW, cΔ, pt)-MaxRPC are W[1]-
hard for both undirected and bi-directed graphs

Structural Parameterization

Structural Parameterization

From ETH we know it is not possible to find an independent set of size k
on a n-vertex graph in time no(k)

The reductions in theorems 2 and 4 are linear in the parameter so no
no(W) or no(t) algorithms are possible for MaxPC

The reductions in theorem 3 is quadratic in the parameter so no no(Δ)

algorithm is possible for MaxPC

So no no(Wt Δ) algorithm is possible for MaxPC

3 0 / 3 6

Parameterizations involving the

objective function

Theorem 5: (pW, pΔ, pT)-MaxPC is FPT for both undirected and bi-
directed trees.

Bi-directed trees:
 if all three are part of the parameter the problem is FPT
 if we drop T the problem is W[1]-hard from the results of the previous

section
 if we drop any of the other two the problem is NP-hard

Undirected trees:
 if all three are part of the parameter the problem is FPT
 What happens if we drop only W from the list of parameters?

3 1 / 3 6

Parameterizations involving the

objective function

Theorem 6: (pT)-MaxPC is FPT on undirected trees of maximum
degree 3

Proof sketch

 PC on undirected trees can be decomposed into PC on stars
 We locate good and bad stars, pruning away the good part of the tree
 Kernelization: the new tree cannot have more than O(T) leaves at most

O(T) internal vertices of degree 3 without attached leaves
 If we remove all leaves: all vertices have degree at most 2, except the

“special” vertices (degree 1 or 3) which are at most O(T)
 First endpoint dropped: one of the bad leaves
 Second endpoint dropped:

guess the other endpoint among the “special” vertices or
if endpoint not a “special” vertex, use the optimal greedy criterion of

picking the one furthest away

3 2 / 3 6

Natural Parameterization

of MaxPC

Theorem 7: In any graph topology where (pB)-MaxEDP is FPT, (pB)-
MaxPC is also FPT

Proof sketch

 Obviously W<B. Randomly color all the demands using W colors. This
separates the demands in W disjoint sets

 For each set solve the MaxEDP

 The union of the solutions gives us a solution to MaxPC, by using different
color for each solution

 Repeat the second phase O(
𝑊𝐵

𝑊!
) times to create a constant probability of

success

3 3 / 3 6

Theorem 8: (pB)-MaxEDP is FPT on bi-directed trees

Corollary 2: (pB)-MaxPC
is FPT on bi-directed trees

Natural Parameterization

of MaxPC

Corollary 1: (pB)-MaxPC is FPT
on undirected trees and rings

3 4 / 3 6

Summary of results

All results concern trees, except those where the graphs treewidth t is included in the problem description

3 5 / 3 6

BIBLIOGRAPHY

 MICHAEL LAMPIS, PARAMETERIZED MAXIMUM PATH COLORING, 2011

 RODNEY G. DOWNEY & DIMITRIOS M. THILIKOS, CONFRONTING INTRACTABILITY

VIA PARAMETERS, 2011

 J. FLUM & M. GROHE, PARAMETERIZED COMPLEXITY THEORY, 2006

3 6 / 3 6

THANK YOU!

