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The problem

Transform a symbol string into a binary symbol string with
the most economic way
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Fixed-length Codes

Each symbol from the alphabet X is maped into a codeword
C (x), and all the codewords are of the same length L.

For example, if X = {a, b, c , d , e}then we could use L=3

C (a) = 000
C (b) = 001
C (c) = 010
C (d) = 011
C (e) = 100

There are 2L different L-tuples, thus for an alphabet of size M
we need L = dlogMe bits.
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Variable-lengthed Codes

Our aim is to reduce the rate L̄ = L
n of encoded bits per original

source symbols.

The idea is to map more probable symbols into shorter bit
sequences, and less likely symbols into longer bit sequences.

We need unique decodability.

Example: If X = {a, b, c} and
C (a) = 0
C (b) = 1
C (c) = 01

Solution: Prefix-free Codes
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Prefix-free Codes

A code is prefix-free (or just a prefix code) if no codeword is a
prefix of any other codeword. For example, {0, 10, 11} is
prefix-free, but the code {0, 1, 01} is not.

Every prefix-free code is uniquely decodable. Why?: Every
prefix-free code corresponds to a binary code tree, and each
node on the tree is either a codeword or a proper prefix of a
codeword.

Note: The converse is not true.
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Optimum Source Coding problem

Suppose that X = {a1, a2, ...aM}, with probabilities
{p(a1), p(a2), ...p(aM)} and lengths {l(a1), l(a2), ...l(aM)}
respectively, where the lenghts correspond to a prefix-free code

Then the expected value of L̄ for the given code is given by:

L̄ = E [L] =
∑M

j=1 l(aj)pX (aj)

and we want to minimize this quantity.
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Kraft’s inequality

A prefix code with codeword lengths l1, l2, ..., lM exists if and only
if: ∑M

i=1 2−li ≤ 1

Proof: ∑M
i=1 2lmax−li ≤ 2lmax ⇒

∑M
i=1 2−li ≤ 1

For the converse:
Assume that the lengths are sorted in increasing order.
Start with a binary tree.Choose a free node for each li until all
codewords are placed.
Note that in each i step there are free leaves at the maximum
depth lmax :
The number of the remaining leaves is (using Kraft’s inequality):
2lmax −

∑i−1
j=1 2lmax−lj = 2lmax (1−

∑i−1
j=1 2−lj ) >

2lmax (1−
∑M

j=1 2−lj ) ≥ 0
Vasiliki Velona Huffman Coding



Introduction
Codes, Compression, Entropy

Huffman Encoding

Codes and Compression
Information and Entropy

Entropy, Lower and Upper Bounds

Entropy Definition:

H[X ] = −
∑

j pj log pj

We’ll prove that if L̄min is the minimum expected length over all
prefix-free codes for X then:

H[X ] ≤ L̄min ≤ H[X ] + 1 bit per symbol

Vasiliki Velona Huffman Coding



Introduction
Codes, Compression, Entropy

Huffman Encoding

Codes and Compression
Information and Entropy

Entropy, Lower and Upper Bounds, cont.

Proof:

(First inequality)

H[X ]− L̄ =
∑M

j=1 pj log 1
pj
−
∑M

j=1 pj lj =
∑M

j=1 pj log 2
−lj

pj

Thus, H[X ]− L̄ ≤ (log e)
∑M

j=1 pj(
2−lj

pj
− 1) =

(log e)(
∑M

j=1 2−lj −
∑M

j=1 pj) ≤ 0
where the inequality lnx ≤ x − 1, the Kraft inequality, and∑

j pj = 1 have been used.

(Second Inequality) We need to prove that there exist a
prefix-free code such that L̄ < H[X ] + 1.It suffices to choose
lj = d− log pje. Then − log pj ≤ lj < − log pj + 1 which is
equivalent (the left part) to 2−lj ≤ pj , thus∑

j 2−lj ≤
∑

j pj = 1 and the Kraft inequality is satisfied.
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Huffman Encoding Algorithm

1 Pick two letters x , y from alphabet A with the smallest
frequencies and create a subtree that has these two characters
as leaves. Label the root of this subtree as z .

2 Set frequency f (z) = f (x) + f (y). Removex , y and add z
creating new alphabet A′ = A ∪ {z} − {x , y}. Then
|A′| = |A| − 1.

3 Repeat this procedure with new alphabet A′ until only one
symbol is left.
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Algorithm Revisited

For (i , 1 TO n − 1) do

Merge last two subtrees;

Rearrange subtrees in nonincreasing order of root - probability

End for

Complexity: O(n log n) - if a heap is used.
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Huffman Coding is Optimal

1 Prefix-free Codes have the property that the associated code
tree is full.

2 Optimal prefix-free Codes have the property that, for each of
the longest codewords in the code, the sibling of the codeword
is another longest codeword

3 There is an optimal prefix-free code for X in which the
codewords for M − 1and M are siblings and have maximal
length within the code.

4 An optimal code for the reduced alphabet
X ′ = X − {M,M − 1} ∪ z yields an optimal code for X .
(Note that L̄ = L̄′ + pM−1 + pM)
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General Comments

Huffman Code is usefull in finding an optimal code, while the
entropy bounds provide insightful performance bounds.

Huffman Coding is generally close to the entropy.

By Coding in Large k-blocks we can find codings that
approximate as much as we want the lower entropy bounds
(for large k). Not practical though, due to the size of |X |k .
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Sources used

1 Robert Gallager, course materials for 6.450 Principles of
Digital Communications I, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/)

2 Notes from 2005 Design and Analysis of Algorithms (Hong
Kong University)

3 Stathis Zachos 2014, NTUA

4 Anadolu University, Notes from 2010 Algorithm Analysis and
Complexity

5 Linkopings University, 2008 Data Compression Notes
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Thank you!
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