Dynamic Epistemic Logic: Action Models

Thomas Pipilikas

INTER-INSTITUTIONAL GRADUATE PROGRAM "ALGORITHMS, LOGIC AND DISCRETE MATHEMATICS"

Overview

1 Bisimilarity \& Action Emulation

2 Validities \& Axiomatisation

3 DEMO

4 EA vs AMC

5 Private Announcements

1 Bisimilarity \& Action Emulation

2 Validities \& Axiomatisation

3 DEMO

4 EA vs AMC

5 Private Announcements

Bisimilarity in Kripke Models

Definition (Bisimulation)

Let two Kripke models $M=\langle S, R, V\rangle$ and $M^{\prime}=\left\langle S^{\prime}, R^{\prime}, V^{\prime}\right\rangle$ be given. A non-empty relation $\Re \subseteq S \times S^{\prime}$ is a bisimulation iff for all $s \in S$ and $s^{\prime} \in S^{\prime}$ with $\left(s, s^{\prime}\right) \in \mathfrak{R}$:
atoms $s \in V(p)$ iff $s^{\prime} \in V^{\prime}(p)$, for any $p \in P$
forth for all $a \in A$ and all $t \in S$, if $(s, t) \in R_{a}$, then there is a $t^{\prime} \in S^{\prime}$ such that $\left(s^{\prime}, t^{\prime}\right) \in R_{a}^{\prime}$ and $\left(t, t^{\prime}\right) \in \mathbb{R}$
back for all $a \in A$ and all $t^{\prime} \in S^{\prime}$, if $\left(s^{\prime}, t^{\prime}\right) \in R_{a}^{\prime}$, then there is a $t \in S$ such that $(s, t) \in R_{a}$ and $\left(t, t^{\prime}\right) \in \mathfrak{R}$
We write $(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$, iff there is a bisimulation between M and M^{\prime} linking s and s^{\prime}. Then we call (M, s) and $\left(M^{\prime}, s^{\prime}\right)$ bisimilar.

Bisimilarity in Kripke Models

Definition (Bisimulation)

Let two Kripke models $M=\langle S, R, V\rangle$ and $M^{\prime}=\left\langle S^{\prime}, R^{\prime}, V^{\prime}\right\rangle$ be given. A non-empty relation $\mathfrak{R} \subseteq S \times S^{\prime}$ is a bisimulation iff for all $s \in S$ and $s^{\prime} \in S^{\prime}$ with $\left(s, s^{\prime}\right) \in \mathfrak{R}$:
atoms $s \in V(p)$ iff $s^{\prime} \in V^{\prime}(p)$, for any $p \in P$
forth for all $a \in A$ and all $t \in S$, if $(s, t) \in R_{a}$, then there is a $t^{\prime} \in S^{\prime}$ such that $\left(s^{\prime}, t^{\prime}\right) \in R_{a}^{\prime}$ and $\left(t, t^{\prime}\right) \in \mathbb{R}$
back for all $a \in A$ and all $t^{\prime} \in S^{\prime}$, if $\left(s^{\prime}, t^{\prime}\right) \in R_{a}^{\prime}$, then there is a $t \in S$ such that $(s, t) \in R_{a}$ and $\left(t, t^{\prime}\right) \in \mathfrak{R}$
We write $(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$, iff there is a bisimulation between M and M^{\prime} linking s and s^{\prime}. Then we call (M, s) and $\left(M^{\prime}, s^{\prime}\right)$ bisimilar.

Theorem (2.15)

For all pointed models (M, s) and $\left(M^{\prime}, s^{\prime}\right)$, if $(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$, then $(M, s) \equiv_{\mathcal{L}_{K}}\left(M^{\prime}, s^{\prime}\right)$; i.e. for any $\varphi \in \mathcal{L}_{K} M, s \models \varphi$ iff $M^{\prime}, s^{\prime} \models \varphi$.

Preservation of bisimilarity

If we execute the same action in two given bisimilar epistemic states, we would want them to be bisimilar again.

Preservation of bisimilarity

If we execute the same action in two given bisimilar epistemic states, we would want them to be bisimilar again.

This is indeed the case!

Preservation of bisimilarity

If we execute the same action in two given bisimilar epistemic states, we would want them to be bisimilar again.

This is indeed the case!

Proposition (6.21)

Given epistemic states (M, s) and $\left(M^{\prime}, s^{\prime}\right)$ s.t. $(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$. Let (M, s) with $\mathrm{M}=\langle\mathrm{S}, \sim$, pre \rangle be executable in (M, s). Then

$$
(M \otimes M,(s, s)) \leftrightarrow\left(M^{\prime} \otimes M,\left(s^{\prime}, s\right)\right)
$$

Proof of Proposition 6.21 (1/2)

(M, s) executable in $(M, s) \Longleftrightarrow$

Proof of Proposition 6.21 (1/2)

(M, s) executable in $(M, s) \Longleftrightarrow$
$M, s \vDash \operatorname{pre}(s) \stackrel{\text { Th.2.15 }}{\Longleftrightarrow}$

Proof of Proposition 6.21 (1/2)

(M, s) executable in $(M, s) \Longleftrightarrow$
$M, s \vDash \operatorname{pre}(s) \stackrel{\text { Th.2.15 }}{\Longleftrightarrow}$
$M^{\prime}, s^{\prime} \models \operatorname{pre}(s) \Longleftrightarrow$

Proof of Proposition 6.21 (1/2)

(M, s) executable in $(M, s) \Longleftrightarrow$
$M, s \models \operatorname{pre}(\mathrm{~s}) \stackrel{\mathrm{Th} .2 .15}{\Longleftrightarrow}$
$M^{\prime}, s^{\prime} \models \operatorname{pre}(s) \Longleftrightarrow$
(M, s) executable in ($\left.M^{\prime}, s^{\prime}\right)$

Proof of Proposition 6.21 (1/2)

(M, s) executable in $(M, s) \Longleftrightarrow$
$M, s \vDash \operatorname{pre}(s) \stackrel{\text { Th.2.15 }}{\Longleftrightarrow}$
$M^{\prime}, s^{\prime} \models \operatorname{pre}(s) \Longleftrightarrow$
(M, s) executable in $\left(M^{\prime}, s^{\prime}\right)$

Let $\mathfrak{R}:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$ bisimulation.

Proof of Proposition 6.21 (1/2)

(M, s) executable in $(M, s) \Longleftrightarrow$
$M, s \models \operatorname{pre}(\mathrm{~s}) \stackrel{\mathrm{Th} 2.2 .15}{\Longleftrightarrow}$
$M^{\prime}, s^{\prime} \models \operatorname{pre}(s) \Longleftrightarrow$
(M, s) executable in $\left(M^{\prime}, s^{\prime}\right)$

Let $\mathfrak{R}:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$ bisimulation.
We define the relation

$$
\mathfrak{R}^{\prime}:=\left\{\left((t, \mathrm{t}),\left(t^{\prime}, \mathrm{t}^{\prime}\right)\right) \in S_{\otimes M} \times S_{\otimes M}^{\prime} \mid t \Re t^{\prime} \& t=\mathrm{t}^{\prime}\right\}
$$

i.e.

$$
(t, \mathrm{t}) \mathfrak{R}^{\prime}\left(t^{\prime}, \mathrm{t}^{\prime}\right) \Longleftrightarrow t \mathfrak{R} t^{\prime} \& \mathrm{t}=\mathrm{t}^{\prime}
$$

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$

$$
\begin{gathered}
\text { atoms } \operatorname{Let}(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right) \\
(s, s) \in V_{\otimes M}(p)
\end{gathered}
$$

Proof of Proposition 6.21 (2/2)

Let $(s, s) \Re^{\prime}\left(s^{\prime}, s^{\prime}\right)$

$$
\begin{aligned}
& \text { atoms Let }(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right) \\
& \qquad(s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p)
\end{aligned}
$$

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$

$$
\begin{aligned}
\text { atoms } & \text { Let }(s, s) \Re^{\prime}\left(s^{\prime}, s^{\prime}\right) \\
& (s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p) \stackrel{s \Re s^{\prime}}{\Longleftrightarrow} \\
& s^{\prime} \in V^{\prime}(p)
\end{aligned}
$$

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$

$$
\begin{array}{ll}
\text { atoms } & \text { Let }(s, s) \Re^{\prime}\left(s^{\prime}, s^{\prime}\right) \\
& (s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p) \stackrel{s \Re s^{\prime}}{\Longleftrightarrow} \\
& s^{\prime} \in V^{\prime}(p) \Longleftrightarrow\left(s^{\prime}, s\right) \in V_{\otimes M}^{\prime}(p)
\end{array}
$$

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$

$$
\begin{array}{ll}
\text { atoms } & \text { Let }(s, s) \Re^{\prime}\left(s^{\prime}, s^{\prime}\right) \\
& (s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p) \stackrel{s \Re s^{\prime}}{\Longleftrightarrow} \\
& s^{\prime} \in V^{\prime}(p) \Longleftrightarrow\left(s^{\prime}, s\right) \in V_{\otimes M}^{\prime}(p)
\end{array}
$$

forth Let agent $a \in A$ and state (t, t) s.t. $(t, t) \sim_{a}^{\otimes M}(s, s)$

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$
atoms Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$
$(s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p) \stackrel{s \Re s^{\prime}}{\Longleftrightarrow}$ $s^{\prime} \in V^{\prime}(p) \Longleftrightarrow\left(s^{\prime}, s\right) \in V_{\otimes M}^{\prime}(p)$
forth Let agent $a \in A$ and state (t, t) s.t. $(t, \mathrm{t}) \sim_{a}^{\otimes \mathrm{M}}(\mathrm{s}, \mathrm{s})$; i.e. $t \sim_{a} s$ and $t \sim_{a} s$.

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$
atoms Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$

$$
\begin{aligned}
& (s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p) \stackrel{s \Re s^{\prime}}{\Longleftrightarrow} \\
& s^{\prime} \in V^{\prime}(p) \Longleftrightarrow\left(s^{\prime}, s\right) \in V_{\otimes M}^{\prime}(p)
\end{aligned}
$$

forth Let agent $a \in A$ and state (t, t) s.t. $(t, t) \sim_{a}^{\otimes M}(s, s)$; i.e. $t \sim_{a} S$ and $t \sim_{a} S$.
By $\mathfrak{R}:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$ there is $t^{\prime} \in S^{\prime}$ s.t. $t \mathfrak{R} t^{\prime}$ and $t^{\prime} \sim_{a}^{\prime} s^{\prime}$.

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$
atoms Let $(s, s) \Re^{\prime}\left(s^{\prime}, s^{\prime}\right)$

$$
\begin{aligned}
& (s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p) \stackrel{s \Re s^{\prime}}{\Longleftrightarrow} \\
& s^{\prime} \in V^{\prime}(p) \Longleftrightarrow\left(s^{\prime}, s\right) \in V_{\otimes M}^{\prime}(p)
\end{aligned}
$$

forth Let agent $a \in A$ and state (t, t) s.t. $(t, t) \sim_{a}^{\otimes M}(s, s)$; i.e. $t \sim_{a} S$ and $t \sim_{a} S$.
By $\mathfrak{R}:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$ there is $t^{\prime} \in S^{\prime}$ s.t. $t \mathfrak{R} t^{\prime}$ and $t^{\prime} \sim_{a}^{\prime} s^{\prime}$.
Trivially, $(t, \mathrm{t}) \mathfrak{R}^{\prime}\left(t^{\prime}, \mathrm{t}\right)$ and $\left(t^{\prime}, \mathrm{t}\right) \sim_{a}^{\prime \otimes \mathrm{M}}\left(s^{\prime}, \mathrm{s}^{\prime}\right)$

Proof of Proposition 6.21 (2/2)

Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$
atoms Let $(s, s) \mathfrak{R}^{\prime}\left(s^{\prime}, s^{\prime}\right)$

$$
\begin{aligned}
& (s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p) \stackrel{s \Re s^{\prime}}{\Longleftrightarrow} \\
& s^{\prime} \in V^{\prime}(p) \Longleftrightarrow\left(s^{\prime}, s\right) \in V_{\otimes M}^{\prime}(p)
\end{aligned}
$$

forth Let agent $a \in A$ and state (t, t) s.t. $(t, t) \sim_{a}^{\otimes M}(s, s)$; i.e. $t \sim_{a} S$ and $t \sim_{a} S$.
By $\mathfrak{R}:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$ there is $t^{\prime} \in S^{\prime}$ s.t. $t \Re t^{\prime}$ and $t^{\prime} \sim_{a}^{\prime} s^{\prime}$.
Trivially, $(t, \mathrm{t}) \mathfrak{R}^{\prime}\left(t^{\prime}, \mathrm{t}\right)$ and $\left(t^{\prime}, \mathrm{t}\right) \sim_{a}^{\prime \otimes \mathrm{M}}\left(s^{\prime}, \mathrm{s}^{\prime}\right)$
back Similarly, with forth

Bisimulation of Actions

As the action models also have structure, we can go beyond such observations.

Bisimulation of Actions

As the action models also have structure, we can go beyond such observations.
The obvious notion of bisimilarity for action models is as for epistemic states, but with the requirement that points have corresponding valuations replaced by the requirement that points have corresponding preconditions.

Bisimulation of Actions

As the action models also have structure, we can go beyond such observations.
The obvious notion of bisimilarity for action models is as for epistemic states, but with the requirement that points have corresponding valuations replaced by the requirement that points have corresponding preconditions.

Definition (Bisimulation of Actions)

Given are pointed action models (M, u) with $\mathrm{M}=\langle\mathrm{S}, \sim$, pre \rangle, and ($\mathrm{M}^{\prime}, \mathrm{u}^{\prime}$) with $\mathrm{M}^{\prime}=\left\langle\mathrm{S}^{\prime}, \sim^{\prime}\right.$, $\left.\mathrm{pre}^{\prime}\right\rangle$. A bisimulation between (M, u) and $\left(\mathrm{M}^{\prime}, \mathrm{u}^{\prime}\right)$ is a relation $\mathfrak{R} \subseteq S \times \mathrm{S}^{\prime}$ s.t. $\mathrm{u} \Re \mathrm{u}^{\prime}$ and s.t. the following three conditions are met for each agent a (for arbitrary action points):

Forth If $s \Re s^{\prime}$ and $s \sim_{a} t$, then there is an $t^{\prime} \in S^{\prime}$ s.t. $t \mathfrak{R} t^{\prime}$ and $s^{\prime} \sim_{a}^{\prime} t^{\prime}$.
Back If $s \Re s^{\prime}$ and $s^{\prime} \sim_{a}^{\prime} t^{\prime}$, then there is an $t \in S$ s.t. $t \Re t^{\prime}$ and $\mathrm{S} \sim{ }_{a} \mathrm{t}$.
Pre If $s \Re s^{\prime}$, then $\models \operatorname{pre}(s) \leftrightarrow \operatorname{pre}^{\prime}\left(s^{\prime}\right)$

Preservation of Bisimilarity for Actions

- A relation \Re is a total bisimulation between M and M^{\prime} iff for each $s \in S$ there is an $s^{\prime} \in S^{\prime}$ s.t. \Re is a bisimulation between (M, s) and $\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$, and vice versa.

Preservation of Bisimilarity for Actions

- A relation \mathfrak{R} is a total bisimulation between M and M^{\prime} iff for each $s \in S$ there is an $s^{\prime} \in S^{\prime}$ s.t. \Re is a bisimulation between (M, s) and ($\mathrm{M}^{\prime}, \mathrm{s}^{\prime}$), and vice versa.
- As usual we write $(M, s) \leftrightarrows\left(M^{\prime}, s^{\prime}\right)$ if such a bisimulation exists; or $\Re:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$, to make the bisimulation explicit.

Preservation of Bisimilarity for Actions

- A relation \mathfrak{R} is a total bisimulation between M and M^{\prime} iff for each $s \in S$ there is an $s^{\prime} \in S^{\prime}$ s.t. \Re is a bisimulation between (M, s) and ($\mathrm{M}^{\prime}, \mathrm{s}^{\prime}$), and vice versa.
- As usual we write $(\mathrm{M}, \mathrm{s}) \leftrightarrows\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$ if such a bisimulation exists; or $\Re:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$, to make the bisimulation explicit.

If two bisimilar action models are executed in the same epistemic state, are the resulting epistemic states bisimilar?

Preservation of Bisimilarity for Actions

- A relation \mathfrak{R} is a total bisimulation between M and M^{\prime} iff for each $s \in S$ there is an $s^{\prime} \in S^{\prime}$ s.t. \mathfrak{R} is a bisimulation between (M, s) and $\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$, and vice versa.
■ As usual we write $(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$ if such a bisimulation exists; or $\mathfrak{R}:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$, to make the bisimulation explicit.

If two bisimilar action models are executed in the same epistemic state, are the resulting epistemic states bisimilar?

Proposition (6.23)

Given two action models s.t. $(\mathrm{M}, \mathrm{s}) \leftrightarrow\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$ and an epistemic state (M, s), s.t. (M, s) is executable in (M, s). Then

$$
(M \otimes M,(s, s)) \leftrightarrow\left(M \otimes M^{\prime},\left(s, s^{\prime}\right)\right)
$$

Preservation of Bisimilarity for Actions

- A relation \mathfrak{R} is a total bisimulation between M and M^{\prime} iff for each $s \in S$ there is an $s^{\prime} \in S^{\prime}$ s.t. \mathfrak{R} is a bisimulation between (M, s) and $\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$, and vice versa.
■ As usual we write $(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$ if such a bisimulation exists; or $\mathfrak{R}:(M, s) \leftrightarrow\left(M^{\prime}, s^{\prime}\right)$, to make the bisimulation explicit.

If two bisimilar action models are executed in the same epistemic state, are the resulting epistemic states bisimilar?

Proposition (6.23)

Given two action models s.t. $(\mathrm{M}, \mathrm{s}) \leftrightarrow\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$ and an epistemic state (M, s), s.t. (M, s) is executable in (M, s). Then

$$
(M \otimes M,(s, s)) \leftrightarrow\left(M \otimes M^{\prime},\left(s, s^{\prime}\right)\right)
$$

Hint: $\mathfrak{R}^{\prime}:=\left\{\left((t, t),\left(t^{\prime}, t^{\prime}\right)\right) \in S_{\otimes M} \times S_{\otimes M^{\prime}} \mid t=t^{\prime} \& t \mathfrak{R} t^{\prime}\right\}$

It turns out, however, that this requirement for action sameness is too strong: if we merely want to guarantee that the resulting epistemic states are bisimilar given two executed actions, then a weaker notion of sameness is already sufficient.

It turns out, however, that this requirement for action sameness is too strong: if we merely want to guarantee that the resulting epistemic states are bisimilar given two executed actions, then a weaker notion of sameness is already sufficient.

For example, consider

- the action model $\langle\{t\}, \sim$, pre \rangle that is reflexive for all agents and with pre $(\mathrm{t})=\mathrm{T}$
- the action model $\left\langle\{n \mathrm{n}, \mathrm{p}\}, \sim^{\prime}\right.$, pre' \rangle such that no agent can distinguish between p and $n \mathrm{p}$, and with $\operatorname{pre}(\mathrm{p})=p$ and pre $(\mathrm{np})=\neg p$
$\langle\{t\}, \sim$, pre \rangle

$$
(0, t) \longrightarrow(1, t)
$$

t

$$
\langle\{t\}, \sim, \text { pre }\rangle
$$

$$
\left\langle\{\mathrm{np}, \mathrm{p}\}, \sim^{\prime}, \text { pre }{ }^{\prime}\right\rangle
$$

$$
\langle\{t\}, \sim, \text { pre }\rangle
$$

The final models are bisimilar (equivalent), but the action models weren't!

Action Emulation

Definition

Given are pointed action models (M, u) with $\mathrm{M}=\langle\mathrm{S}, \sim, \mathrm{pre}\rangle$, and ($\mathrm{M}^{\prime}, \mathrm{u}^{\prime}$) with $\mathrm{M}^{\prime}=\left\langle\mathrm{S}^{\prime}, \sim^{\prime}\right.$, pre \rangle. A emulation between (M, u) and $\left(\mathrm{M}^{\prime}, \mathrm{u}^{\prime}\right)$ is a relation $\mathfrak{E} \subseteq S \times \mathrm{S}^{\prime}$ s.t. $\mathrm{u} \mathfrak{E} \mathrm{u}^{\prime}$ and s.t. the following three conditions are met for each agent a (for arbitrary action points):

Forth If $s \mathfrak{E} s^{\prime}$ and $s \sim_{a} t$, then there are $t_{1}^{\prime}, \ldots, t_{n}^{\prime} \in S^{\prime}$ s.t. for all $i \in[n]$, $\mathrm{t} \mathrm{E} \mathrm{t}_{i}^{\prime}$ and $\mathrm{s}^{\prime} \sim_{a}^{\prime} \mathrm{t}_{i}^{\prime}$ and s.t. $\operatorname{pre}(\mathrm{t}) \vDash \operatorname{pre}^{\prime}\left(\mathrm{t}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{t}_{n}^{\prime}\right)$.
Back If $\mathrm{s} \mathfrak{E} \mathrm{s}^{\prime}$ and $\mathrm{s}^{\prime} \sim_{a}^{\prime} \mathrm{t}^{\prime}$ then there are $\mathrm{t}_{1}, \ldots, \mathrm{t}_{n} \in \mathrm{~S}$ s.t. for all $i \in[n], \mathrm{t}_{i} \mathscr{E} \mathrm{t}^{\prime}$ and $\mathrm{s} \sim{ }_{\mathrm{a}} \mathrm{t}_{i}$ and s.t. $\operatorname{pre}^{\prime}\left(\mathrm{t}^{\prime}\right) \models \operatorname{pre}\left(\mathrm{t}_{1}\right) \vee \cdots \vee \operatorname{pre}\left(\mathrm{t}_{n}\right)$.
Pre If s $\mathfrak{E} s^{\prime}$, then $\operatorname{pre}(\mathrm{s}) \wedge \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right)$ is consistent.
A total emulation $\mathfrak{E}: M \rightleftarrows M^{\prime}$ is an emulation such that for each $s \in S$ there is a $\mathrm{s}^{\prime} \in \mathrm{S}^{\prime}$, with s ゼ s^{\prime} and vice versa.

Action Emulation

- In the previous definition, it is essential that the accessibility relations are reflexive (as they are equivalence relations).
- This ensures that the entailment requirements in the forth and back conditions also hold in the designated points of the structures

Bisimulation vs Action Emulation

We can paraphrase the difference between action bisimulation and action emulation as follows:

- Two bisimilar actions s, s^{\prime} must have logically equivalent preconditions; i.e. $\models \operatorname{pre}(\mathrm{s}) \leftrightarrow \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right)$.
■ In the case of two emulous actions it may be that one precondition only entails the other; i.e. $\models \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right)$ but $\neq \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right) \rightarrow \operatorname{pre}(\mathrm{s})$.
In that case, formula $\operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right)$ is strictly weaker than pre(s). This does not hurt if we can make up for the difference by finding sufficient emulous 'alternatives' t_{1}, \ldots, t_{n} (including s) to s s.t. even though $\neq \operatorname{pre}^{\prime}\left(s^{\prime}\right) \rightarrow$ pre(s), after all $\vDash \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right) \rightarrow \operatorname{pre}\left(\mathrm{t}_{1}\right) \vee \cdots \vee \operatorname{pre}\left(\mathrm{t}_{n}\right)$

Action Emulation

Action Emulation

Forth

Action Emulation

Back

An Alternative Emulation

Definition (Action Emulation 2)

Given are action models (M, u) with $\mathrm{M}=\langle\mathrm{S}, \sim$, pre \rangle, and $\left(\mathrm{M}^{\prime}, \mathrm{u}^{\prime}\right)$ with $M^{\prime}=\left\langle S^{\prime}, \sim^{\prime}, \operatorname{pre}^{\prime}\right\rangle$. An emulation between (M, u) and $\left(M^{\prime}, u^{\prime}\right)$ is a relation $\mathfrak{E} \subseteq S \times \mathrm{S}^{\prime}$ s.t. $u \mathfrak{E} \mathrm{u}^{\prime}$ and s.t. the following three conditions are met for each agent a (for arbitrary action points):

Forth If $s \mathfrak{F} s^{\prime}$ and $s \sim_{a} t$, then there is an $t^{\prime} \in S^{\prime}$ s.t. $t \mathfrak{F} t^{\prime}$ and $s^{\prime} \sim_{a}^{\prime} t^{\prime}$.
Back If $\mathrm{s} \mathfrak{F} \mathrm{s}^{\prime}$ and $\mathrm{s}^{\prime} \sim_{a}^{\prime} \mathrm{t}^{\prime}$, then there is an $\mathrm{t} \in \mathrm{S}$ s.t. $\mathrm{t} \mathfrak{F} \mathrm{t}^{\prime}$ and $\mathrm{S} \sim{ }_{a} \mathrm{t}$.
Pre If $\mathrm{s} \mathfrak{E} \mathrm{s}^{\prime}$, then there are $\mathrm{s}_{1}^{\prime}, \ldots, \mathrm{s}_{n}^{\prime} \in \mathrm{S}^{\prime}$ including s^{\prime} s.t. for all $i \in[n] \mathrm{s} \mathscr{E} \mathrm{s}_{i}^{\prime}$ and $\operatorname{pre}(\mathrm{s}) \models \operatorname{pre}^{\prime}\left(\mathrm{s}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{s}_{n}^{\prime}\right)$; and there are $s_{1}, \ldots, s_{n} \in S$ including S s.t. for all $i \in[n] \mathrm{s}_{i} \mathscr{E} \mathrm{~s}^{\prime}$ and $\operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right) \models \operatorname{pre}\left(\mathrm{s}_{1}\right) \vee \cdots \vee \operatorname{pre}\left(\mathrm{s}_{n}\right)$

An Alternative Emulation

It is easy (EZ) to observe that the first definition of emulation, implies the second.

An Alternative Emulation

It is easy (EZ) to observe that the first definition of emulation, implies the second.
Are the two definitions equivalent?

An Alternative Emulation

It is easy (EZ) to observe that the first definition of emulation, implies the second.
Are the two definitions equivalent?
...

An Alternative Emulation

It is easy (EZ) to observe that the first definition of emulation, implies the second.
Are the two definitions equivalent?

Nope! Crash gonna crash them all!

Example 6.26

Consider the previous example $\mathcal{S} 5$ action models：
－$\langle\{\mathrm{t}\}, \sim, \operatorname{pre}\rangle$ ，with pre $(\mathrm{t})=\mathrm{T}$
－$\left\langle\{n p, p\}, \sim^{\prime}, p r e^{\prime}\right\rangle$ ，with $\operatorname{pre}(p)=p$ and pre $(n p)=\neg p$ ．

Example 6.26

Consider the previous example $\mathcal{S} 5$ action models:

- $\langle\{t\}, \sim$, pre \rangle, with pre $(\mathrm{t})=\mathrm{T}$
- $\left\langle\{n \mathrm{n}, \mathrm{p}\}, \sim^{\prime}\right.$, pre' \rangle, with pre $(\mathrm{p})=p$ and $\operatorname{pre}(\mathrm{np})=\neg p$.

It is easy to observe that the relation

$$
\mathfrak{E}:=\{(\mathrm{t}, \mathrm{np}),(\mathrm{t}, \mathrm{p})\}
$$

is an emulation.

Example 6.26

Forth pre $(\mathrm{t}) \models \operatorname{pre}^{\prime}(\mathrm{np}) \vee \operatorname{pre}^{\prime}(\mathrm{p})$

Example 6.26

Forth $\operatorname{pre}(\mathrm{t}) \models \operatorname{pre}^{\prime}(\mathrm{np}) \vee \operatorname{pre}^{\prime}(\mathrm{p}) \equiv \neg p \vee p$

Example 6.26

Forth pre $(\mathrm{t}) \models \operatorname{pre}^{\prime}(\mathrm{np}) \vee \operatorname{pre}^{\prime}(\mathrm{p}) \equiv \neg p \vee p \equiv T$

Back $\varphi \models \operatorname{pre}(\mathrm{t})$

Example 6.26

Forth pre $(\mathrm{t}) \models \operatorname{pre}^{\prime}(\mathrm{np}) \vee \operatorname{pre}^{\prime}(\mathrm{p}) \equiv \neg p \vee p \equiv T$

Back $\varphi \models \operatorname{pre}(\mathrm{t}) \equiv \mathrm{T}$

Pre pre(t$) \wedge \operatorname{pre}^{\prime}(\mathrm{np})$

Example 6.26

Forth pre $(\mathrm{t}) \models \operatorname{pre}^{\prime}(\mathrm{np}) \vee \operatorname{pre}^{\prime}(\mathrm{p}) \equiv \neg p \vee p \equiv T$

Back $\varphi \models \operatorname{pre}(\mathrm{t}) \equiv \top$

$$
\text { Pre pre }(\mathrm{t}) \wedge \operatorname{pre}^{\prime}(\mathrm{np}) \equiv \tau \wedge \neg p
$$

Example 6.26

Forth pre $(\mathrm{t}) \models \operatorname{pre}^{\prime}(\mathrm{np}) \vee \operatorname{pre}^{\prime}(\mathrm{p}) \equiv \neg p \vee p \equiv T$

Back $\varphi \models \operatorname{pre}(\mathrm{t}) \equiv \top$
$\operatorname{Pre} \operatorname{pre}(\mathrm{t}) \wedge \operatorname{pre}^{\prime}(\mathrm{np}) \equiv \tau \wedge \neg p \equiv \neg p$
consistent

Example 6.26

Forth pre $(\mathrm{t}) \models \operatorname{pre}^{\prime}(\mathrm{np}) \vee \operatorname{pre}^{\prime}(\mathrm{p}) \equiv \neg p \vee p \equiv T$

Back $\varphi \models \operatorname{pre}(\mathrm{t}) \equiv \top$

$$
\begin{aligned}
\text { Pre } \operatorname{pre}(\mathrm{t}) \wedge \operatorname{pre}^{\prime}(\mathrm{np}) \equiv \top \wedge \neg p \equiv \neg p & \text { consistent } \\
\operatorname{pre}(\mathrm{t}) \wedge \operatorname{pre}^{\prime}(\mathrm{p}) \equiv p & \text { consistent }
\end{aligned}
$$

Exercise 6.27

Show that the following four action models are emulous. The preconditions of action points are indicated below their names.

Exercise 6.27

Show that the following four action models are emulous. The preconditions of action points are indicated below their names.

$$
\begin{gathered}
\mathrm{s}_{1} \\
p \vee q \\
\mathrm{~s}_{2} \\
p
\end{gathered} \mathrm{~s}_{3}
$$

Emulation Guarantees Bisimilarity

Proposition (6.29 | Bisimilar actions are emulous)

A bisimulation $\mathfrak{R}:(\mathrm{M}, \mathrm{s}) \leftrightarrow\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$ is also an emulation.

Emulation Guarantees Bisimilarity

Proposition (6.29 | Bisimilar actions are emulous)
A bisimulation $\mathfrak{R}:(\mathrm{M}, \mathrm{s}) \leftrightarrows\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$ is also an emulation.

Proposition (6.30 I Emulation guarantees bisimilarity)
Given an epistemic model M and action models $\mathrm{M} \rightleftarrows \mathrm{M}^{\prime}$. Then

$$
M \rightleftarrows \mathrm{M}^{\prime} \Rightarrow M \otimes \mathrm{M} \leftrightarrows M \otimes \mathrm{M}^{\prime}
$$

Proof of Proposition $6.30(1 / 2)$

As usual, assume $\mathrm{M}=\langle\mathrm{S}, \sim$, pre $\rangle, \mathrm{M}^{\prime}=\left\langle\mathrm{S}^{\prime}, \sim^{\prime}\right.$, pre \rangle and $\mathfrak{E}: \mathrm{M} \rightleftarrows \mathrm{M}^{\prime}$.

Proof of Proposition $6.30(1 / 2)$

As usual, assume $\mathrm{M}=\langle\mathrm{S}, \sim$, pre $\rangle, \mathrm{M}^{\prime}=\left\langle\mathrm{S}^{\prime}, \sim^{\prime}\right.$, pre' \rangle and $\mathfrak{E}: ~ \mathrm{M} \rightleftarrows \mathrm{M}^{\prime}$. We define

$$
\mathfrak{R}:=\left\{\left((s, s),\left(s^{\prime}, s^{\prime}\right)\right) \in S_{\otimes M} \times S_{\otimes M^{\prime}} \mid s=s^{\prime} \& s \mathbb{E} s^{\prime}\right\}
$$

i.e.

$$
(s, s) \mathfrak{R}\left(s^{\prime}, s^{\prime}\right) \Longleftrightarrow s=s^{\prime} \& s \mathbb{E} s^{\prime}
$$

where

$$
S_{\otimes M}:=\{(s, s) \in S \times S \mid M, s \models \operatorname{pre}(s)\}
$$

and similarly for $S_{\otimes \mathrm{M}^{\prime}}$.
Let's assume $a \in A$ and $(s, s) \Re\left(s^{\prime}, s^{\prime}\right)$

Proof of Proposition $6.30(1 / 2)$

As usual, assume $M=\langle S, \sim$, pre $\rangle, M^{\prime}=\left\langle S^{\prime}, \sim^{\prime}\right.$, pre \rangle and $\mathfrak{E}: M \rightleftarrows M^{\prime}$. We define

$$
\mathfrak{R}:=\left\{\left((s, s),\left(s^{\prime}, s^{\prime}\right)\right) \in S_{\otimes M} \times S_{\otimes M^{\prime}} \mid s=s^{\prime} \& s \mathbb{E} s^{\prime}\right\}
$$

i.e.

$$
(s, s) \mathfrak{R}\left(s^{\prime}, s^{\prime}\right) \Longleftrightarrow s=s^{\prime} \& s \mathbb{E} s^{\prime}
$$

where

$$
S_{\otimes \mathrm{M}}:=\{(\mathrm{s}, \mathrm{~s}) \in S \times S \mid M, s \models \operatorname{pre}(\mathrm{~s})\}
$$

and similarly for $S_{\otimes M^{\prime}}$.
Let's assume $a \in A$ and $(s, s) \Re\left(s^{\prime}, s^{\prime}\right)$; i.e.

$$
s=s^{\prime} \& M, s \models \operatorname{pre}(\mathrm{~s}) \wedge \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right) \& \mathrm{~s} \mathbb{E} \mathrm{~s}^{\prime}
$$

Proof of Proposition $6.30(1 / 2)$

As usual, assume $M=\langle S, \sim$, pre $\rangle, M^{\prime}=\left\langle S^{\prime}, \sim^{\prime}\right.$, pre \rangle and $\mathfrak{E}: M \rightleftarrows M^{\prime}$. We define

$$
\mathfrak{R}:=\left\{\left((s, s),\left(s^{\prime}, s^{\prime}\right)\right) \in S_{\otimes M} \times S_{\otimes M^{\prime}} \mid s=s^{\prime} \& s \mathbb{E} s^{\prime}\right\}
$$

i.e.

$$
(s, s) \mathfrak{R}\left(s^{\prime}, s^{\prime}\right) \Longleftrightarrow s=s^{\prime} \& s \mathbb{E} s^{\prime}
$$

where

$$
S_{\otimes \mathrm{M}}:=\{(\mathrm{s}, \mathrm{~s}) \in S \times S \mid M, s \models \operatorname{pre}(\mathrm{~s})\}
$$

and similarly for $S_{\otimes M^{\prime}}$.
Let's assume $a \in A$ and $(s, s) \Re\left(s^{\prime}, s^{\prime}\right)$; i.e.

$$
s=s^{\prime} \& M, s \models \operatorname{pre}(\mathrm{~s}) \wedge \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right) \& \mathrm{~s} \mathscr{E} \mathrm{~s}^{\prime}
$$

atoms $(s, s) \in V_{8 M}(p)$

Proof of Proposition $6.30(1 / 2)$

As usual, assume $M=\langle S, \sim$, pre $\rangle, M^{\prime}=\left\langle S^{\prime}, \sim^{\prime}\right.$, pre \rangle and $\mathfrak{E}: ~ M \rightleftarrows M^{\prime}$. We define

$$
\mathfrak{R}:=\left\{\left((s, s),\left(s^{\prime}, s^{\prime}\right)\right) \in S_{\otimes M} \times S_{\otimes M^{\prime}} \mid s=s^{\prime} \& s \mathbb{E} s^{\prime}\right\}
$$

i.e.

$$
(s, s) \mathfrak{R}\left(s^{\prime}, s^{\prime}\right) \Longleftrightarrow s=s^{\prime} \& s \mathbb{E} s^{\prime}
$$

where

$$
S_{\otimes \mathrm{M}}:=\{(\mathrm{s}, \mathrm{~s}) \in S \times S \mid M, s \models \operatorname{pre}(\mathrm{~s})\}
$$

and similarly for $S_{\otimes M^{\prime}}$.
Let's assume $a \in A$ and $(s, s) \Re\left(s^{\prime}, s^{\prime}\right)$; i.e.

$$
s=s^{\prime} \& M, s \models \operatorname{pre}(\mathrm{~s}) \wedge \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right) \& \mathrm{~s} \mathscr{E} \mathrm{~s}^{\prime}
$$

atoms $(s, s) \in V_{\otimes M}(p) \Longleftrightarrow s \in V(p)$

Proof of Proposition $6.30(1 / 2)$

As usual, assume $\mathrm{M}=\langle\mathrm{S}, \sim$, pre $\rangle, \mathrm{M}^{\prime}=\left\langle\mathrm{S}^{\prime}, \sim^{\prime}\right.$, pre \rangle and $\mathfrak{E}: ~ M \rightleftarrows \mathrm{M}^{\prime}$. We define

$$
\mathfrak{R}:=\left\{\left((s, s),\left(s^{\prime}, s^{\prime}\right)\right) \in S_{\otimes M} \times S_{\otimes M^{\prime}} \mid s=s^{\prime} \& s \mathbb{E} s^{\prime}\right\}
$$

i.e.

$$
(s, s) \Re\left(s^{\prime}, s^{\prime}\right) \Longleftrightarrow s=s^{\prime} \& s \mathbb{E} s^{\prime}
$$

where

$$
S_{\otimes M}:=\{(s, s) \in S \times S \mid M, s \models \operatorname{pre}(s)\}
$$

and similarly for $S_{\otimes M^{\prime}}$.
Let's assume $a \in A$ and $(s, s) \Re\left(s^{\prime}, s^{\prime}\right)$; i.e.

$$
s=s^{\prime} \& M, s \models \operatorname{pre}(\mathrm{~s}) \wedge \operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right) \& \mathrm{~s} \mathbb{E} \mathrm{~s}^{\prime}
$$

Proof of Proposition 6.30 (2/2)

forth Let $(s, s) \sim_{a}(t, t)$.

Proof of Proposition 6.30 （2／2）

forth Let $(s, s) \sim_{a}(t, t)$ ．
It suffices to show that there is $\left(t^{\prime}, \mathrm{t}^{\prime}\right) \in \mathrm{S}_{\otimes \mathrm{M}^{\prime}}$ ，s．t． $(t, t) \Re\left(t^{\prime}, t^{\prime}\right)$ and $\left(s^{\prime}, s^{\prime}\right) \sim_{a}^{\prime}\left(t^{\prime}, t^{\prime}\right)$ ．

Proof of Proposition 6.30 (2/2)

forth Let $(s, s) \sim_{a}(t, t)$.
It suffices to show that there is $\left(t^{\prime}, \mathrm{t}^{\prime}\right) \in \mathrm{S}_{\otimes \mathrm{M}^{\prime}}$, s.t. $(t, \mathrm{t}) \Re\left(t^{\prime}, \mathrm{t}^{\prime}\right)$ and $\left(s^{\prime}, \mathrm{s}^{\prime}\right) \sim_{a}^{\prime}\left(t^{\prime}, t^{\prime}\right)$.
Equivalently, it suffices to show that there is $t^{\prime} \in S^{\prime}$ s.t.

$$
M, t \models \operatorname{pre}^{\prime}\left(\mathrm{t}^{\prime}\right) \& \mathrm{t} \mathbb{E} \mathrm{t}^{\prime} \& \mathrm{~s}^{\prime} \sim_{a}^{\prime} \mathrm{t}^{\prime}
$$

Proof of Proposition $6.30(2 / 2)$

forth Let $(s, s) \sim_{a}(t, t)$.
It suffices to show that there is $\left(t^{\prime}, \mathrm{t}^{\prime}\right) \in \mathrm{S}_{\otimes \mathrm{M}^{\prime}}$, s.t. $(t, \mathrm{t}) \Re\left(t^{\prime}, \mathrm{t}^{\prime}\right)$ and $\left(s^{\prime}, \mathrm{s}^{\prime}\right) \sim_{a}^{\prime}\left(t^{\prime}, t^{\prime}\right)$.
Equivalently, it suffices to show that there is $\mathrm{t}^{\prime} \in \mathrm{S}^{\prime}$ s.t.

$$
M, t \models \operatorname{pre}^{\prime}\left(\mathrm{t}^{\prime}\right) \& \mathrm{t} \mathfrak{E} \mathrm{t}^{\prime} \& \mathrm{~s}^{\prime} \sim_{a}^{\prime} \mathrm{t}^{\prime}
$$

By $s \in \mathscr{E} s^{\prime},(s, s) \sim_{a}(t, t)$ (which implies $\left.s \sim_{a} t\right)$ and Forth for emulation \mathfrak{E}, we have that there are $\mathrm{t}_{1}^{\prime}, \ldots, \mathrm{t}_{n}^{\prime} \in \mathrm{S}^{\prime}$ s.t. for all $i \in[n], t \mathbb{E} \mathrm{t}_{i}^{\prime}$ and $\mathrm{s}^{\prime} \sim_{a}^{\prime} \mathrm{t}_{i}^{\prime}$ and s.t. $\operatorname{pre}(\mathrm{t}) \models \operatorname{pre}^{\prime}\left(\mathrm{t}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{t}_{n}^{\prime}\right)$.

Proof of Proposition 6.30 (2/2)

forth Let $(s, s) \sim_{a}(t, t)$.
It suffices to show that there is $\left(t^{\prime}, \mathrm{t}^{\prime}\right) \in \mathrm{S}_{\otimes \mathrm{M}^{\prime}}$, s.t. $(t, \mathrm{t}) \Re\left(t^{\prime}, \mathrm{t}^{\prime}\right)$ and $\left(s^{\prime}, \mathrm{s}^{\prime}\right) \sim_{a}^{\prime}\left(t^{\prime}, t^{\prime}\right)$.
Equivalently, it suffices to show that there is $t^{\prime} \in S^{\prime}$ s.t.

$$
M, t \models \operatorname{pre}^{\prime}\left(\mathrm{t}^{\prime}\right) \& \mathrm{t} \mathfrak{E} \mathrm{t}^{\prime} \& \mathrm{~s}^{\prime} \sim_{a}^{\prime} \mathrm{t}^{\prime}
$$

By $s \in \mathscr{E} s^{\prime},(s, s) \sim_{a}(t, t)\left(w h i c h\right.$ implies $\left.s \sim_{a} t\right)$ and Forth for emulation \mathfrak{E}, we have that there are $\mathrm{t}_{1}^{\prime}, \ldots, \mathrm{t}_{n}^{\prime} \in \mathrm{S}^{\prime}$ s.t. for all $i \in[n], t \mathbb{E} \mathrm{t}_{i}^{\prime}$ and $\mathrm{s}^{\prime} \sim_{a}^{\prime} \mathrm{t}_{i}^{\prime}$ and s.t. $\operatorname{pre}(\mathrm{t}) \models \operatorname{pre}^{\prime}\left(\mathrm{t}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{t}_{n}^{\prime}\right)$.
But as $(t, \mathrm{t}) \in S_{\otimes \mathrm{M}}$ we have that $M, t \vDash \operatorname{pre}(\mathrm{t})$ and thus $M, t \models \operatorname{pre}^{\prime}\left(\mathrm{t}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{t}_{n}^{\prime}\right)$.

Proof of Proposition 6.30 (2/2)

forth Let $(s, s) \sim_{a}(t, t)$.
It suffices to show that there is $\left(t^{\prime}, \mathrm{t}^{\prime}\right) \in \mathrm{S}_{\otimes \mathrm{M}^{\prime}}$, s.t. $(t, \mathrm{t}) \mathfrak{R}\left(t^{\prime}, t^{\prime}\right)$ and $\left(s^{\prime}, s^{\prime}\right) \sim_{a}^{\prime}\left(t^{\prime}, t^{\prime}\right)$.
Equivalently, it suffices to show that there is $\mathrm{t}^{\prime} \in \mathrm{S}^{\prime}$ s.t.

$$
M, t \models \operatorname{pre}^{\prime}\left(\mathrm{t}^{\prime}\right) \& \mathrm{t} \mathfrak{E} \mathrm{t}^{\prime} \& \mathrm{~s}^{\prime} \sim_{a}^{\prime} \mathrm{t}^{\prime}
$$

By $s \in \mathscr{E} s^{\prime},(s, s) \sim_{a}(t, t)$ (which implies $\left.s \sim_{a} t\right)$ and Forth for emulation \mathfrak{E}, we have that there are $\mathrm{t}_{1}^{\prime}, \ldots, \mathrm{t}_{n}^{\prime} \in \mathrm{S}^{\prime}$ s.t. for all $i \in[n], t \mathbb{E} \mathrm{t}_{i}^{\prime}$ and $\mathrm{s}^{\prime} \sim_{a}^{\prime} \mathrm{t}_{i}^{\prime}$ and s.t. $\operatorname{pre}(\mathrm{t}) \models \operatorname{pre}^{\prime}\left(\mathrm{t}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{t}_{n}^{\prime}\right)$.
But as $(t, \mathrm{t}) \in S_{\otimes \mathrm{M}}$ we have that $M, t \vDash \operatorname{pre}(\mathrm{t})$ and thus $M, t \vDash \operatorname{pre}^{\prime}\left(\mathrm{t}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{t}_{n}^{\prime}\right)$.
Therefore, there is some $i \in[n]$ s.t.

$$
M, t \models \operatorname{pre}^{\prime}\left(\mathrm{t}_{i}^{\prime}\right) \& \mathrm{t} \mathbb{E} \mathrm{t}_{i}^{\prime} \& \mathrm{~s}^{\prime} \sim_{a}^{\prime} \mathrm{t}_{i}^{\prime}
$$

Proof of Proposition 6.30 (2/2)

forth Let $(s, s) \sim_{a}(t, t)$.
It suffices to show that there is $\left(t^{\prime}, \mathrm{t}^{\prime}\right) \in \mathrm{S}_{\otimes \mathrm{M}^{\prime}}$, s.t. $(t, \mathrm{t}) \mathfrak{R}\left(t^{\prime}, t^{\prime}\right)$ and $\left(s^{\prime}, s^{\prime}\right) \sim_{a}^{\prime}\left(t^{\prime}, t^{\prime}\right)$.
Equivalently, it suffices to show that there is $\mathrm{t}^{\prime} \in \mathrm{S}^{\prime}$ s.t.

$$
M, t \models \operatorname{pre}^{\prime}\left(\mathrm{t}^{\prime}\right) \& \mathrm{t} \mathfrak{E} \mathrm{t}^{\prime} \& \mathrm{~s}^{\prime} \sim_{a}^{\prime} \mathrm{t}^{\prime}
$$

By $s \in \mathscr{E} s^{\prime},(s, s) \sim_{a}(t, t)\left(w h i c h\right.$ implies $\left.s \sim_{a} t\right)$ and Forth for emulation \mathfrak{E}, we have that there are $\mathrm{t}_{1}^{\prime}, \ldots, \mathrm{t}_{n}^{\prime} \in \mathrm{S}^{\prime}$ s.t. for all $i \in[n], t \mathbb{E} \mathrm{t}_{i}^{\prime}$ and $\mathrm{s}^{\prime} \sim_{a}^{\prime} \mathrm{t}_{i}^{\prime}$ and s.t. $\operatorname{pre}(\mathrm{t}) \models \operatorname{pre}^{\prime}\left(\mathrm{t}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{t}_{n}^{\prime}\right)$.
But as $(t, \mathrm{t}) \in S_{\otimes \mathrm{M}}$ we have that $M, t \vDash \operatorname{pre}(\mathrm{t})$ and thus $M, t \vDash \operatorname{pre}^{\prime}\left(\mathrm{t}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{t}_{n}^{\prime}\right)$.
Therefore, there is some $i \in[n]$ s.t.

$$
M, t \models \operatorname{pre}^{\prime}\left(\mathrm{t}_{i}^{\prime}\right) \& \mathrm{t} \mathbb{E} \mathrm{t}_{i}^{\prime} \& \mathrm{~s}^{\prime} \sim_{a}^{\prime} \mathrm{t}_{i}^{\prime}
$$

back Similarly with forth.

Proposition 6.30 for pointed Action Models?

The obvious 'pointed' version of Proposition 6.30 does not hold!

Proposition 6.30 for pointed Action Models?

The obvious 'pointed' version of Proposition 6.30 does not hold! Given an epistemic state (M, s) and action models $(M, s) \rightleftarrows\left(M^{\prime}, s^{\prime}\right)$ and such that (M, s) is executable in (M, s), then $(M \otimes M,(s, s))$ may not be bisimilar to $\left(M \otimes \mathrm{M}^{\prime},\left(s, \mathrm{~s}^{\prime}\right)\right)$.

Proposition 6.30 for pointed Action Models?

The obvious 'pointed' version of Proposition 6.30 does not hold! Given an epistemic state (M, s) and action models $(\mathrm{M}, \mathrm{s}) \rightleftarrows\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$ and such that (M, s) is executable in (M, s), then $(M \otimes M,(s, s))$ may not be bisimilar to $\left(M \otimes \mathrm{M}^{\prime},\left(s, s^{\prime}\right)\right)$.
This is because $\operatorname{pre}^{\prime}\left(s^{\prime}\right)$ may not be true in (M, s).

Proposition 6.30 for pointed Action Models?

The obvious 'pointed' version of Proposition 6.30 does not hold! Given an epistemic state (M, s) and action models $(M, s) \rightleftarrows\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$ and such that (M, s) is executable in (M, s), then $(M \otimes M,(s, s))$ may not be bisimilar to $\left(M \otimes \mathrm{M}^{\prime},\left(s, s^{\prime}\right)\right)$.
This is because $\operatorname{pre}^{\prime}\left(\mathrm{s}^{\prime}\right)$ may not be true in (M, s).
Although there must be a $s_{i}^{\prime} \in S^{\prime}$ among the 'alternatives' for s^{\prime} with $\operatorname{pre}(\mathrm{s}) \models \operatorname{pre}^{\prime}\left(\mathrm{s}_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\mathrm{s}_{n}^{\prime}\right) \vee \ldots$, s.t. this s_{n}^{\prime} fulfils the role required for $\left(M \otimes M,\left(s, s_{n}^{\prime}\right)\right)$

1 Bisimilarity \& Action Emulation

2 Validities \& Axiomatisation

3 DEMO

4 EA vs AMC

5 Private Announcements

Axiomatization for Action Model Logic

The axiom system for Action Model logic is denoted as AMC.
$\mathbf{A M C}=\mathbf{S 5 C}+$ axioms for action models

Axiomatization for Action Model Logic

S5C Axiom System

Axiom Schemes

$K_{a}(\varphi \rightarrow \psi) \rightarrow K_{a} \varphi \rightarrow K_{a} \psi$
$K_{a} \varphi \rightarrow \varphi$
$K_{a} \varphi \rightarrow K_{a} K_{a} \varphi$
$\neg K_{a} \varphi \rightarrow K_{a} \neg K_{a} \varphi$
$C_{B}(\varphi \rightarrow \psi) \rightarrow C_{B} \varphi \rightarrow C_{B} \psi$
$C_{B} \varphi \rightarrow\left(\varphi \wedge E_{B} C_{B} \varphi\right)$
$C_{B}\left(\varphi \rightarrow E_{B} \varphi\right) \rightarrow \varphi \rightarrow C_{B} \varphi$
distribution of K_{a} over \rightarrow truth
positive introspection negative introspection distribution of C_{B} over \rightarrow
mix induction axiom

Rules of inference

From φ and $\varphi \rightarrow \psi$, infer ψ
From φ, infer $K_{a} \varphi$
From φ, infer $C_{B} \varphi$
modus ponens necessitation of K_{a} necessitation of C_{B}

Axiomatization for Action Model Logic

Axioms for Action Models

Axiom Schemes

$[\mathrm{M}, \mathrm{s}] p \leftrightarrow(\operatorname{pre}(\mathrm{~s}) \rightarrow p)$
$[\mathrm{M}, \mathrm{s}] \neg \varphi \leftrightarrow(\operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{s}] \varphi)$
$[\mathrm{M}, \mathrm{s}](\varphi \wedge \psi) \leftrightarrow[\mathrm{M}, \mathrm{s}] \varphi \wedge[\mathrm{M}, \mathrm{s}] \psi$
$[\mathrm{M}, \mathrm{s}] K_{a} \varphi \leftrightarrow\left(\operatorname{pre}(\mathrm{~s}) \rightarrow \bigwedge_{\mathrm{s} \sim \mathrm{at}} K_{a}[\mathrm{M}, \mathrm{t}] \varphi\right)$
$[\mathrm{M}, \mathrm{s}]\left[\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right] \varphi \leftrightarrow\left[(\mathrm{M}, \mathrm{s}) ;\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)\right] \varphi$
$[\alpha \cup \beta] \varphi \leftrightarrow[\alpha] \varphi \wedge[\beta] \varphi$
atomic permanence
action and negation action and conjunction action and knowledge action composition non-deterministic choice

Rules of inference

From φ, infer $[\mathrm{M}, \mathrm{s}] \varphi$
necessitation of (M, s)
Given (M, s), and χ_{t} for all $\mathrm{t} \sim_{B} \mathrm{~s}$. action and comm. knowl.
If for all $a \in B$ and $u \sim_{a} t: \chi_{t} \rightarrow[M, t] \varphi$ and $\left(\chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t})\right) \rightarrow K_{a} \chi_{\mathrm{u}}$, then $\chi_{\mathrm{s}} \rightarrow[\mathrm{M}, \mathrm{s}] C_{B} \varphi$.

Soundness of AMC

Theorem (Propositions 6.9, 6.11, 6.32-6.37)
Axiom system AMC is sound with respect of AMC; i.e. for any $\varphi \in \mathcal{L}_{K C \otimes}^{\text {stat }}(A, P)$
$\mathrm{AMC} \vdash \varphi \Longrightarrow A M C \models \varphi$

Soundness of AMC

$$
\text { Proof of Atomic permanence } \quad[\mathrm{M}, \mathrm{~s}] p \leftrightarrow(\mathrm{pre}(\mathrm{~s}) \rightarrow p)
$$

Soundness of AMC

Proof of Atomic permanence $\quad[\mathrm{M}, \mathrm{s}] p \leftrightarrow(\mathrm{pre}(\mathrm{s}) \rightarrow p)$

Let arbitrary epistemic state (M, t) s.t. $M, t \models[M, s] p$.

Soundness of AMC

Proof of Atomic permanence $\quad[\mathrm{M}, \mathrm{s}] p \leftrightarrow(\mathrm{pre}(\mathrm{s}) \rightarrow p)$

Let arbitrary epistemic state (M, t) s.t. $M, t \models[\mathrm{M}, \mathrm{s}] p$.
Equivalently, for any epistemic state $\left(M^{\prime}, t^{\prime}\right)$ s.t. $(M, t) \llbracket \mathrm{M}, \mathrm{s} \rrbracket\left(M^{\prime}, t^{\prime}\right)$, we have $M^{\prime}, t^{\prime} \models p$.

Soundness of AMC

Proof of Atomic permanence $\quad[\mathrm{M}, \mathrm{s}] p \leftrightarrow(\mathrm{pre}(\mathrm{s}) \rightarrow p)$

Let arbitrary epistemic state（ M, t ）s．t．$M, t \models[\mathrm{M}, \mathrm{s}] p$ ．
Equivalently，for any epistemic state $\left(M^{\prime}, t^{\prime}\right)$ s．t．$(M, t) \llbracket \mathrm{M}, \mathrm{s} \rrbracket\left(M^{\prime}, t^{\prime}\right)$ ， we have $M^{\prime}, t^{\prime} \models p$ ．

Equivalently，if $M, t \models$ pre（s），then $M \otimes \mathrm{M},(t, \mathrm{~s}) \models p$

Soundness of AMC

Proof of Atomic permanence $\quad[\mathrm{M}, \mathrm{s}] p \leftrightarrow(\mathrm{pre}(\mathrm{s}) \rightarrow p)$

Let arbitrary epistemic state (M, t) s.t. $M, t \models[\mathrm{M}, \mathrm{s}] p$.
Equivalently, for any epistemic state $\left(M^{\prime}, t^{\prime}\right)$ s.t. $(M, t) \llbracket \mathrm{M}, \mathrm{s} \rrbracket\left(M^{\prime}, t^{\prime}\right)$, we have $M^{\prime}, t^{\prime} \models p$.

Equivalently, if $M, t \vDash$ pre(s), then $M \otimes M,(t, s) \models p \Leftrightarrow(t, s) \in V_{\otimes M}(p)$

Soundness of AMC

Proof of Atomic permanence $\quad[\mathrm{M}, \mathrm{s}] p \leftrightarrow(\mathrm{pre}(\mathrm{s}) \rightarrow p)$

Let arbitrary epistemic state（ M, t ）s．t．$M, t \models[\mathrm{M}, \mathrm{s}] p$ ．
Equivalently，for any epistemic state $\left(M^{\prime}, t^{\prime}\right)$ s．t．$(M, t) \llbracket \mathrm{M}, \mathrm{s} \rrbracket\left(M^{\prime}, t^{\prime}\right)$ ， we have $M^{\prime}, t^{\prime} \models p$ ．

Equivalently，if $M, t \models$ pre（s），then $M \otimes \mathrm{M},(t, \mathrm{~s}) \models p \Leftrightarrow(t, \mathrm{~s}) \in V_{\otimes M}(p) \Leftrightarrow t \in V(p)$

Soundness of AMC

Proof of Atomic permanence $\quad[\mathrm{M}, \mathrm{s}] p \leftrightarrow(\mathrm{pre}(\mathrm{s}) \rightarrow p)$

Let arbitrary epistemic state (M, t) s.t. $M, t \models[\mathrm{M}, \mathrm{s}] p$.
Equivalently, for any epistemic state $\left(M^{\prime}, t^{\prime}\right)$ s.t. $(M, t) \llbracket \mathrm{M}, \mathrm{s} \rrbracket\left(M^{\prime}, t^{\prime}\right)$, we have $M^{\prime}, t^{\prime} \models p$.

Equivalently, if $M, t \models$ pre(s), then $M \otimes M,(t, s) \models p \Leftrightarrow(t, s) \in V_{\otimes M}(p) \Leftrightarrow t \in V(p) \Leftrightarrow M, t \vDash p$.

Soundness of AMC

Proof of Atomic permanence $\quad[\mathrm{M}, \mathrm{s}] p \leftrightarrow(\mathrm{pre}(\mathrm{s}) \rightarrow p)$

Let arbitrary epistemic state (M, t) s.t. $M, t \models[\mathrm{M}, \mathrm{s}] p$.
Equivalently, for any epistemic state $\left(M^{\prime}, t^{\prime}\right)$ s.t. $(M, t) \llbracket \mathrm{M}, \mathrm{s} \rrbracket\left(M^{\prime}, t^{\prime}\right)$, we have $M^{\prime}, t^{\prime} \models p$.

Equivalently, if $M, t \models$ pre(s), then
$M \otimes \mathrm{M},(t, \mathrm{~s}) \models p \Leftrightarrow(t, \mathrm{~s}) \in V_{\otimes \mathrm{M}}(p) \Leftrightarrow t \in V(p) \Leftrightarrow M, t \vDash p$.
Equivalently, $M, t \vDash$ pre $(s) \rightarrow p$

Soundness of AMC

Proof of Action and Common Knowledge Axiom (1/3)

Soundness of AMC

Proof of Action and Common Knowledge Axiom (1/3)

Let $\forall t \sim_{B} s \forall a \in B \forall u \sim_{a} t$

$$
\vDash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \varphi \quad \& \quad \vDash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}
$$

Soundness of AMC

Proof of Action and Common Knowledge Axiom（1／3）

Let $\forall t \sim_{B} s \forall a \in B \forall u \sim_{a} t$

$$
\vDash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \varphi \quad \& \quad \vDash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}
$$

We want to show that $\models \chi_{\mathrm{s}} \rightarrow[\mathrm{M}, \mathrm{s}] C_{B} \varphi$ ．

Soundness of AMC

Proof of Action and Common Knowledge Axiom（1／3）

Let $\forall t \sim_{B} s \forall a \in B \forall u \sim_{a} t$

$$
\vDash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \varphi \quad \& \quad \vDash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}
$$

We want to show that $\models \chi_{\mathrm{s}} \rightarrow[\mathrm{M}, \mathrm{s}] C_{B} \varphi$ ．
Let arbitrary $S 5$ epistemic state（ M, s ）s．t．$M, s \models \chi_{\mathrm{s}} \wedge$ pre（s）． It suffices to show that $M \otimes M,(s, s) \models C_{B} \varphi$ ．

Soundness of AMC

Proof of Action and Common Knowledge Axiom (1/3)

Let $\forall t \sim_{B} s \forall a \in B \forall u \sim_{a} t$

$$
\vDash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \varphi \quad \& \quad \vDash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{a} \chi_{\mathrm{u}}
$$

We want to show that $\models \chi_{\mathrm{s}} \rightarrow[\mathrm{M}, \mathrm{s}] C_{B} \varphi$.
Let arbitrary $S 5$ epistemic state (M, s) s.t. $M, s \models \chi_{\mathrm{s}} \wedge$ pre(s).
It suffices to show that $M \otimes \mathrm{M},(\mathrm{s}, \mathrm{s}) \models C_{B} \varphi$.
By Remark (2.29), it suffices to to show that

$$
\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes M ; E_{B}}^{n}(\mathrm{~s}, \mathrm{~s}) \quad M \otimes \mathrm{M},(t, \mathrm{t}) \models \varphi
$$

Soundness of AMC

Proof of Action and Common Knowledge Axiom (1/3)

Let $\forall t \sim_{B} s \forall a \in B \forall u \sim_{a} t$

$$
\vDash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \varphi \quad \& \quad \vDash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}
$$

We want to show that $\models \chi_{\mathrm{s}} \rightarrow[\mathrm{M}, \mathrm{s}] C_{B} \varphi$.
Let arbitrary $S 5$ epistemic state (M, s) s.t. $M, s \models \chi_{\mathrm{s}} \wedge$ pre(s).
It suffices to show that $M \otimes \mathrm{M},(\mathrm{s}, \mathrm{s}) \models C_{B} \varphi$.
By Remark (2.29), it suffices to to show that

$$
\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes M ; E_{B}}^{n}(\mathrm{~s}, \mathrm{~s}) \quad M \otimes \mathrm{M},(t, \mathrm{t}) \models \varphi
$$

i.e. for any epistemic point (t, t) reachable from (s, s) through $\sim_{\otimes M ;} E_{B}$ $M \otimes \mathrm{M},(t, \mathrm{t}) \models \varphi$.

Soundness of AMC

Proof of Action and Common Knowledge Axiom (2/3)
We will prove, by induction on n, the stronger statement, that $\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes M ; E_{B}}^{n}(s, s)$

$$
M \otimes M,(t, t) \models \varphi \quad \& \quad M, t \models \chi_{t}
$$

Soundness of AMC

Proof of Action and Common Knowledge Axiom (2/3)

We will prove, by induction on n, the stronger statement, that $\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes \mathrm{M} ; \mathrm{E}_{\mathrm{B}}}^{n}(\mathrm{~s}, \mathrm{~s})$

$$
M \otimes M,(t, t) \models \varphi \quad \& \quad M, t \models \chi_{t}
$$

- $\mathbf{n}=\mathbf{0}$

Soundness of AMC

Proof of Action and Common Knowledge Axiom（2／3）
We will prove，by induction on n ，the stronger statement，that $\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes M ; E_{B}}^{n}(s, s)$

$$
M \otimes M,(t, t) \models \varphi \quad \& \quad M, t \models \chi_{t}
$$

－ $\mathbf{n}=\mathbf{0} \quad$ Then $(t, \mathrm{t})=(s, \mathrm{~s})$ and M，$s \models$ pre（s）

Soundness of AMC

Proof of Action and Common Knowledge Axiom (2/3)
We will prove, by induction on n, the stronger statement, that $\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes M ; E_{B}}^{n}(s, s)$

$$
M \otimes M,(t, t) \models \varphi \quad \& \quad M, t \models \chi_{t}
$$

- $\mathbf{n}=\mathbf{0} \quad$ Then $(t, \mathrm{t})=(s, \mathrm{~s})$ and M, $s \models$ pre(s)

$$
(s, s) \in S_{\otimes M}
$$

Soundness of AMC

Proof of Action and Common Knowledge Axiom（2／3）

We will prove，by induction on n ，the stronger statement，that $\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes M ; E_{B}}^{n}(s, s)$

$$
M \otimes M,(t, t) \models \varphi \quad \& \quad M, t \models \chi_{t}
$$

■ $\mathbf{n}=\mathbf{0} \quad$ Then $(t, \mathrm{t})=(\mathrm{s}, \mathrm{s})$ and
M，$s \models$ pre（s）
$(s, s) \in S_{\otimes M}$
$M, s \models \chi_{\mathrm{s}}$

Soundness of AMC

Proof of Action and Common Knowledge Axiom (2/3)

We will prove, by induction on n, the stronger statement, that $\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes M ; E_{B}}^{n}(s, s)$

$$
M \otimes M,(t, t) \models \varphi \quad \& \quad M, t \models \chi_{t}
$$

■ $\mathbf{n}=\mathbf{0} \quad$ Then $(t, \mathrm{t})=(\mathrm{s}, \mathrm{s})$ and
$M, s \models$ pre(s)
$M, s \models \chi$ s
$(s, s) \in S_{8 M}$
by hypothesis

Soundness of AMC

Proof of Action and Common Knowledge Axiom（2／3）
We will prove，by induction on n ，the stronger statement，that
$\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes M ; E_{B}}^{n}(s, s)$

$$
M \otimes M,(t, t) \models \varphi \quad \& \quad M, t \models \chi_{t}
$$

－ $\mathbf{n}=\mathbf{0} \quad$ Then $(t, \mathrm{t})=(\mathrm{s}, \mathrm{s})$ and
$M, s \models$ pre（s）$\quad(s, s) \in S_{\otimes M}$
$M, s \vDash \chi_{\mathrm{s}} \quad$ by hypothesis
Thus by $\models \chi_{\mathrm{s}} \rightarrow[\mathrm{M}, \mathrm{s}] \varphi$ ，we have $M \otimes \mathrm{M},(\mathrm{s}, \mathrm{s}) \models \varphi$ and $M, s \models \chi_{\mathrm{s}}$

Soundness of AMC

Proof of Action and Common Knowledge Axiom（2／3）
We will prove，by induction on n ，the stronger statement，that
$\forall n \in \mathbb{N} \forall(t, \mathrm{t}) \sim_{\otimes \mathrm{M} ; E_{B}}^{n}(s, s)$

$$
M \otimes \mathrm{M},(t, \mathrm{t}) \models \varphi \quad \& \quad M, t \models \chi_{\mathrm{t}}
$$

$■ \mathbf{n}=\mathbf{0} \quad$ Then $(t, t)=(s, s)$ and
$M, s \models \operatorname{pre}(s) \quad(s, s) \in S_{\otimes M}$
$M, s \models \chi_{\mathrm{s}} \quad$ by hypothesis
Thus by $\models \chi_{\mathrm{s}} \rightarrow[\mathrm{M}, \mathrm{s}] \varphi$ ，we have $M \otimes \mathrm{M},(\mathrm{s}, \mathrm{s}) \models \varphi$ and $M, s \models \chi_{\mathrm{s}}$
■ Induction hypothesis（I．H．）Let the statement holds for $n=k \in \mathbb{N}$ ．

Soundness of AMC

Proof of Action and Common Knowledge Axiom (3/3)
$\square \mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \underset{\otimes M ; E_{B}}{\sim_{~}^{k+1}}(s, s)$.

Soundness of AMC

Proof of Action and Common Knowledge Axiom (3/3)

■ $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \underset{\otimes M ; E_{B}}{\sim_{B}+1}(s, s)$.
Equivalently, there is $(t, t) \in S_{\otimes M}$ s.t. $(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$, for some $a \in B$.

Soundness of AMC

Proof of Action and Common Knowledge Axiom（3／3）

■ $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \underset{\otimes M ; E_{B}}{\sim_{B}+1}(s, s)$ ．
Equivalently，there is $(t, t) \in S_{\otimes M}$ s．t．$(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$ ， for some $a \in B$ ．
$M, t \models \operatorname{pre}(\mathrm{t})$

Soundness of AMC

Proof of Action and Common Knowledge Axiom（3／3）
－ $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \underset{\otimes M ; E_{B}}{k+1}(s, s)$ ．
Equivalently，there is $(t, t) \in S_{\otimes M}$ s．t．$(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$ ， for some $a \in B$ ．
$M, t \models \operatorname{pre}(\mathrm{t})$
$(t, \mathrm{t}) \in S_{\otimes \mathrm{M}}$

Soundness of AMC

Proof of Action and Common Knowledge Axiom（3／3）

■ $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \underset{\otimes M ; E_{B}}{\sim_{B}+1}(s, s)$ ．
Equivalently，there is $(t, t) \in S_{\otimes M}$ s．t．$(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$ ， for some $a \in B$ ．
$M, t \models \operatorname{pre}(\mathrm{t})$
$(t, \mathrm{t}) \in \mathrm{S}_{8 \mathrm{M}}$
$M, t \models \chi_{\mathrm{t}}$

Soundness of AMC

Proof of Action and Common Knowledge Axiom（3／3）
－ $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \underset{\otimes M ; E_{B}}{k+1}(s, s)$ ．
Equivalently，there is $(t, t) \in S_{\otimes M}$ s．t．$(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$ ， for some $a \in B$ ．
$M, t \models \operatorname{pre}(\mathrm{t})$
$M, t \models \chi_{\mathrm{t}}$
$(t, t) \in S_{\otimes M}$
by I．H．

Soundness of AMC

Proof of Action and Common Knowledge Axiom (3/3)

- $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \underset{\otimes M ; E_{B}}{k+1}(s, s)$.

Equivalently, there is $(t, t) \in S_{\otimes M}$ s.t. $(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$, for some $a \in B$.
$M, t \models \operatorname{pre}(\mathrm{t})$
$M, t \models \chi_{\mathrm{t}}$
$(t, t) \in S_{8 M}$
Thus by $\models \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{a} \chi_{\mathrm{u}}$, we have $M, t \models K_{a} \chi_{\mathrm{u}}$ and as $u \sim_{a} t$ we have $M, u \vDash \chi_{\mathrm{u}}$.

Soundness of AMC

Proof of Action and Common Knowledge Axiom (3/3)

- $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \underset{\otimes M ; E_{B}}{k+1}(s, s)$.

Equivalently, there is $(t, t) \in S_{\otimes M}$ s.t. $(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$, for some $a \in B$.
$M, t \models \operatorname{pre}(\mathrm{t})$
$M, t \models \chi_{\mathrm{t}}$
$(t, t) \in S_{8 M}$
Thus by $\models \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{a} \chi_{\mathrm{u}}$, we have $M, t \models K_{a} \chi_{\mathrm{u}}$ and as $u \sim_{a} t$ we have $M, u \vDash \chi_{u}$.
$M, u \vDash \operatorname{pre}(\mathrm{u})$

Soundness of AMC

Proof of Action and Common Knowledge Axiom（3／3）
－ $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \sim_{\otimes M ; E_{B}}^{k+1}(s, s)$ ．
Equivalently，there is $(t, t) \in S_{\otimes M}$ s．t．$(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$ ， for some $a \in B$ ．
$M, t \models \operatorname{pre}(\mathrm{t})$
$M, t \models \chi_{\mathrm{t}}$
$(t, t) \in S_{8 M}$
Thus by $\models \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}$ ，we have $M, t \models K_{a} \chi_{\mathrm{u}}$ and as $u \sim_{a} t$ we have $M, u \vDash \chi_{u}$ ．
$M, u \models \operatorname{pre}(u)$
$(u, u) \in S_{\otimes M}$

Soundness of AMC

Proof of Action and Common Knowledge Axiom (3/3)

- $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \sim_{\otimes M ; E_{B}}^{k+1}(s, s)$.

Equivalently, there is $(t, t) \in S_{\otimes M}$ s.t. $(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$, for some $a \in B$.
$M, t \models \operatorname{pre}(\mathrm{t})$
$M, t \models \chi_{\mathrm{t}}$
$(t, t) \in S_{8 M}$
Thus by $\models \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{a} \chi_{\mathrm{u}}$, we have $M, t \models K_{a} \chi_{\mathrm{u}}$ and as $u \sim_{a} t$ we have $M, u \vDash \chi_{\mathrm{u}}$.
$M, u \models \operatorname{pre}(\mathrm{u})$
$(u, u) \in S_{\otimes M}$
Thus by $M, u \vDash \chi_{u}$ and $\vDash \chi_{u} \rightarrow[\mathrm{M}, \mathrm{u}] \varphi$ we have $M \otimes \mathrm{M},(u, \mathrm{u}) \models \varphi$ and $M, u \models \chi_{u}$, as wanted.

Soundness of AMC

Proof of Action and Common Knowledge Axiom (3/3)

- $\mathbf{n}=\mathbf{k}+\mathbf{1} \quad$ Let $(u, u) \sim_{\otimes M ; E_{B}}^{k+1}(s, s)$.

Equivalently, there is $(t, t) \in S_{\otimes M}$ s.t. $(s, s) \sim_{\otimes M ; E_{B}}^{k}(t, t) \sim_{\otimes M ; a}(u, u)$, for some $a \in B$.
$M, t \models \operatorname{pre}(\mathrm{t})$ $(t, \mathrm{t}) \in S_{8 \mathrm{M}}$
$M, t \vDash \chi_{\mathrm{t}}$ by I.H.
Thus by $\models \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{a} \chi_{\mathrm{u}}$, we have $M, t \models K_{a} \chi_{\mathrm{u}}$ and as $u \sim_{a} t$ we have $M, u \vDash \chi_{\mathrm{u}}$.
$M, u \vDash \operatorname{pre}(u)$
$(u, u) \in S_{\otimes M}$
Thus by $M, u \models \chi_{u}$ and $\models \chi_{u} \rightarrow[\mathrm{M}, \mathrm{u}] \varphi$ we have $M \otimes \mathrm{M},(u, \mathrm{u}) \models \varphi$ and $M, u \vDash \chi_{u}$, as wanted.
By induction principle we get the required statement.

Action and common knowledge

Example 6.38

AMC $\vdash[$ Read, p$] K_{a} p$

Example 6.38

AMC $\vdash[$ Read, $p] K_{a} p$

$\varphi_{1}: p \rightarrow p$
tautology

Example 6.38

$\mathrm{AMC} \vdash[$ Read, p$] K_{a} p$

$\varphi_{1}: p \rightarrow p$
$\varphi_{2}:[$ Read, p$] p \leftrightarrow(p \rightarrow p)$
tautology
$\operatorname{pre}(\mathrm{p})=p$, atomic permanence

Example 6.38

$\mathrm{AMC} \stackrel{[R e a d, ~ p]}{ } K_{a} p$

$\varphi_{1}: p \rightarrow p$
$\varphi_{2}:[$ Read, p$] p \leftrightarrow(p \rightarrow p)$
$\varphi_{3}:[$ Read, p$] p$
tautology
$\operatorname{pre}(\mathrm{p})=p$, atomic permanence 1,2, Pr.

Example 6.38

$\mathrm{AMC} \vdash[$ Read, p$] K_{a} p$

$\varphi_{1}: p \rightarrow p$
$\varphi_{2}:[$ Read, p$] p \leftrightarrow(p \rightarrow p)$
$\varphi_{3}:[$ Read, p$] p$
$\varphi_{4}: K_{a}[$ Read, p$] p$

$\operatorname{pre}(\mathrm{p})=p$, atomic permanence
1,2, Pr.
3, Nec of K_{a}

Example 6.38

AMC $\vdash[$ Read, $p] K_{a} p$

$$
\begin{aligned}
& \varphi_{1}: p \rightarrow p \\
& \varphi_{2}:[\operatorname{Read}, \mathrm{p}] p \leftrightarrow(p \rightarrow p) \\
& \varphi_{3}:[\operatorname{Read}, \mathrm{p}] p \\
& \varphi_{4}: K_{a}[\operatorname{Read}, \mathrm{p}] p \\
& \varphi_{5}: p \rightarrow K_{\mathrm{a}}[\operatorname{Read}, \mathrm{p}] p
\end{aligned}
$$

tautology

$$
\operatorname{pre}(\mathrm{p})=p, \text { atomic permanence }
$$

1,2, Pr.

4, weakening

Example 6.38

AMC $\stackrel{[R e a d, ~ p] ~}{ } K_{a} p$

$\varphi_{1}: p \rightarrow p$
$\varphi_{2}:[$ Read, p$] p \leftrightarrow(p \rightarrow p)$
$\varphi_{3}:[$ Read, p$] p$
$\varphi_{4}: K_{a}[$ Read, p$] p$
$\varphi_{5}: p \rightarrow K_{a}[$ Read, p$] p$
$\varphi_{6}:[\operatorname{Read}, \mathrm{p}] K_{\mathrm{a}} p \leftrightarrow\left(p \rightarrow \bigwedge_{p \sim_{\mathrm{a}} \mathrm{s}} K_{\mathrm{a}}[\right.$ Read, s$\left.] p\right)$
tautology
$\operatorname{pre}(p)=p$, atomic permanence 1,2, Pr. 3, Nec of K_{a}
4, weakening $[p]_{\sim_{a}}=\{p\}$, act\&kn

Example 6.38

$\mathrm{AMC} \vdash[$ Read, p$] K_{\mathrm{a}} p$

$\varphi_{1}: p \rightarrow p$
$\varphi_{2}:[$ Read, p$] p \leftrightarrow(p \rightarrow p)$
$\varphi_{3}:[$ Read, p$] p$
$\varphi_{4}: K_{a}[$ Read, p$] p$
$\varphi_{5}: p \rightarrow K_{a}$ [Read, p$] p$
$\varphi_{6}:[$ Read, p$] K_{\mathrm{a}} p \leftrightarrow\left(p \rightarrow \bigwedge_{\mathrm{p} \sim_{\mathrm{a}} \mathrm{s}} K_{a}[\right.$ Read, s$\left.] p\right)$
$\varphi_{7}:[$ Read, p$] K_{a} p$
tautology
$\operatorname{pre}(\mathrm{p})=p$, atomic permanence 1,2, Pr. 3, Nec of K_{a}
4, weakening $[\mathrm{p}]_{\sim_{\mathrm{a}}}=\{p\}$, act\&kn 5,6, Pr.

Is $[\alpha]$ a normal modal operator?

The necessitation rule holds for $[\alpha]$. Does the axiom K, i.e.

$$
[\alpha](\varphi \rightarrow \psi) \rightarrow[\alpha] \varphi \rightarrow[\alpha] \psi
$$

also hold?

Is $[\alpha]$ a normal modal operator?

The necessitation rule holds for $[\alpha]$. Does the axiom K, i.e.

$$
[\alpha](\varphi \rightarrow \psi) \rightarrow[\alpha] \varphi \rightarrow[\alpha] \psi
$$

also hold?

YES!

$[\alpha]$ respects axiom K. Proof (1/5)

By action composition, non-deterministic choice and

$$
(a \rightarrow b \rightarrow c) \wedge\left(a^{\prime} \rightarrow b^{\prime} \rightarrow c^{\prime}\right) \rightarrow a \wedge a^{\prime} \rightarrow b \wedge b^{\prime} \rightarrow c \wedge c^{\prime}
$$

axioms, we get that it suffices to show that, for any pointed action model (M, s)

$$
\mathrm{AMC} \vdash[\mathrm{M}, \mathrm{~s}](\varphi \rightarrow \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

$[\alpha]$ respects axiom K. Proof $(1 / 5)$

By action composition, non-deterministic choice and

$$
(a \rightarrow b \rightarrow c) \wedge\left(a^{\prime} \rightarrow b^{\prime} \rightarrow c^{\prime}\right) \rightarrow a \wedge a^{\prime} \rightarrow b \wedge b^{\prime} \rightarrow c \wedge c^{\prime}
$$

axioms, we get that it suffices to show that, for any pointed action model (M, s)

$$
\mathrm{AMC} \vdash[\mathrm{M}, \mathrm{~s}](\varphi \rightarrow \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

Note that $[\mathrm{M}, \mathrm{s}](\varphi \rightarrow \psi)$ is an abbreviation for $[\mathrm{M}, \mathrm{s}] \neg(\varphi \wedge \neg \psi)$

[α] respects axiom K. Proof (2/5)

$[\mathrm{M}, \mathrm{s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{s}](\varphi \wedge \neg \psi)$
act.\&neg., Pr.

$[\alpha]$ respects axiom K. Proof $(2 / 5)$

$$
\begin{aligned}
& {[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}](\varphi \wedge \neg \psi)} \\
& {[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg([\mathrm{M}, \mathrm{~s}] \varphi \wedge[\mathrm{M}, \mathrm{~s}] \neg \psi)}
\end{aligned}
$$

act.\&neg., Pr.
act.\&conj., Pr.

$[\alpha]$ respects axiom K. Proof (2/5)

$$
\begin{aligned}
& {[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}](\varphi \wedge \neg \psi)} \\
& {[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg([\mathrm{M}, \mathrm{~s}] \varphi \wedge[\mathrm{M}, \mathrm{~s}] \neg \psi)} \\
& {[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \neg \psi}
\end{aligned}
$$

act.\&neg., Pr.
act.\&conj., Pr.
Pr.

$[\alpha]$ respects axiom K. Proof $(2 / 5)$

$$
\begin{array}{lr}
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}](\varphi \wedge \neg \psi)} & \text { act.\&neg., Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg([\mathrm{M}, \mathrm{~s}] \varphi \wedge[\mathrm{M}, \mathrm{~s}] \neg \psi)} & \text { act.\&conj., Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \neg \psi} & \text { Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg(\operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \psi)} & \text { Pr., act.\&neg. }
\end{array}
$$

$[\alpha]$ respects axiom K. Proof $(2 / 5)$

$$
\begin{array}{lr}
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}](\varphi \wedge \neg \psi)} & \text { act.\&neg., Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg([\mathrm{M}, \mathrm{~s}] \varphi \wedge[\mathrm{M}, \mathrm{~s}] \neg \psi)} & \text { act.\&conj., Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \neg \psi} & \text { Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg(\operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \psi)} & \text { Pr., act.\&neg. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \wedge[\mathrm{M}, \mathrm{~s}] \psi} & \text { Pr. }
\end{array}
$$

[α] respects axiom K. Proof (2/5)

$$
\begin{array}{lr}
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}](\varphi \wedge \neg \psi)} & \text { act.\&neg., Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg([\mathrm{M}, \mathrm{~s}] \varphi \wedge[\mathrm{M}, \mathrm{~s}] \neg \psi)} & \text { act.\&conj., Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \neg \psi} & \text { Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg(\operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \psi)} & \text { Pr., act.\&neg. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \wedge[\mathrm{M}, \mathrm{~s}] \psi} & \text { Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi} & \text { Pr. }
\end{array}
$$

[α] respects axiom K. Proof (2/5)

$$
\begin{array}{lr}
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}](\varphi \wedge \neg \psi)} & \text { act.\&neg., Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg([\mathrm{M}, \mathrm{~s}] \varphi \wedge[\mathrm{M}, \mathrm{~s}] \neg \psi)} & \text { act.\&conj., Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \neg \psi} & \text { Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \neg(\operatorname{pre}(\mathrm{s}) \rightarrow \neg[\mathrm{M}, \mathrm{~s}] \psi)} & \text { Pr., act.\&neg. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \wedge[\mathrm{M}, \mathrm{~s}] \psi} & \text { Pr. } \\
{[\mathrm{M}, \mathrm{~s}] \neg(\varphi \wedge \neg \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \varphi \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi} & \text { Pr. }
\end{array}
$$

Thus it suffices to show that for any ψ

$$
\begin{equation*}
\text { AMC } \vdash(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi \tag{*}
\end{equation*}
$$

$[\alpha]$ respects axiom K. Proof $(3 / 5)$

$$
\text { AMC } \vdash(\text { pre }(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

We will prove it by induction on the complexity of ψ.

- $\psi:=p$

$[\alpha]$ respects axiom K. Proof $(3 / 5)$

$$
\mathrm{AMC} \vdash(\mathrm{pre}(\mathrm{~s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

We will prove it by induction on the complexity of ψ.

- $\psi:=p$

$$
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p \quad \text { at. perm., } \operatorname{Pr} .
$$

$[\alpha]$ respects axiom K. Proof $(3 / 5)$

$$
\text { AMC } \vdash(\text { pre }(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

We will prove it by induction on the complexity of ψ.

- $\psi:=p$

$$
\begin{array}{rrr}
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \text { at. perm., } \operatorname{Pr} . \\
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \operatorname{Pr} .
\end{array}
$$

$[\alpha]$ respects axiom K. Proof $(3 / 5)$

$$
\text { AMC } \vdash(\text { pre }(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

We will prove it by induction on the complexity of ψ.

- $\psi:=p$

$$
\begin{aligned}
& (\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p \\
& (\operatorname{pre}(\mathrm{~s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p \\
& (\operatorname{pre}(\mathrm{~s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow[\mathrm{M}, \mathrm{~s}] p
\end{aligned}
$$

at. perm., Pr.
Pr.
at. perm., Pr.

$[\alpha]$ respects axiom K．Proof $(3 / 5)$

$$
\mathrm{AMC} \vdash(\mathrm{pre}(\mathrm{~s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

We will prove it by induction on the complexity of ψ ．
－$\psi:=p$

$$
\begin{array}{lr}
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \text { at. perm., } \operatorname{Pr} . \\
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \operatorname{Pr} . \\
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow[\mathrm{M}, \mathrm{~s}] p & \text { at. perm., } \operatorname{Pr} .
\end{array}
$$

■ $\psi:=\neg \psi$ or $\psi:=K_{a} \psi$ similarly with previous，without using induction．

$[\alpha]$ respects axiom K. Proof $(3 / 5)$

$$
\text { AMC } \vdash(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

We will prove it by induction on the complexity of ψ.

- $\psi:=p$

$$
\begin{array}{rlr}
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \text { at. perm., } \operatorname{Pr} . \\
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \operatorname{Pr} . \\
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow[\mathrm{M}, \mathrm{~s}] p & \text { at. perm., } \operatorname{Pr} .
\end{array}
$$

■ $\psi:=\neg \psi$ or $\psi:=K_{a} \psi$ similarly with previous, without using induction.

- $\psi:=\chi \wedge \psi \quad$ EZ, by using induction.

[α] respects axiom K. Proof (3/5)

$$
\text { AMC } \vdash(\text { pre }(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

We will prove it by induction on the complexity of ψ.

- $\psi:=p$

$$
\begin{array}{lr}
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \text { at. perm., } \operatorname{Pr} \text {. } \\
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \operatorname{Pr} . \\
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow[\mathrm{M}, \mathrm{~s}] p & \text { at. perm., } \operatorname{Pr} .
\end{array}
$$

■ $\psi:=\neg \psi$ or $\psi:=K_{a} \psi$ similarly with previous, without using induction.

- $\psi:=\chi \wedge \psi \quad$ EZ, by using induction.
- $\psi:=[\alpha] \psi \quad$ W.l.o.g. $\alpha:=\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$,

$[\alpha]$ respects axiom K. Proof $(3 / 5)$

$$
\text { AMC } \vdash(\text { pre }(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

We will prove it by induction on the complexity of ψ.

- $\psi:=p$

$$
\begin{array}{lr}
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \text { at. perm., } \operatorname{Pr} . \\
(\operatorname{pre}(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow \operatorname{pre}(\mathrm{s}) \rightarrow p & \operatorname{Pr} \\
(\operatorname{pre}(\mathrm{~s}) \rightarrow[\mathrm{M}, \mathrm{~s}] p) \rightarrow[\mathrm{M}, \mathrm{~s}] p & \text { at. perm., } \operatorname{Pr} .
\end{array}
$$

■ $\psi:=\neg \psi$ or $\psi:=K_{a} \psi$ similarly with previous, without using induction.

- $\psi:=\chi \wedge \psi \quad$ EZ, by using induction.
- $\psi:=[\alpha] \psi \quad$ W.l.o.g. $\alpha:=\left(\mathrm{M}^{\prime}, \mathrm{s}^{\prime}\right)$,

Hint: $\operatorname{pre}\left(\left(\mathrm{s}, \mathrm{s}^{\prime}\right)\right)=\operatorname{pre}(\mathrm{s}) \wedge$ pre($\left.\mathrm{s}^{\prime}\right)$, by using induction.

[$\alpha]$ respects axiom K. Proof $(4 / 5)$

$$
\mathrm{AMC} \vdash(\mathrm{pre}(\mathrm{~s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

- $\psi:=C_{B} \psi \quad$ We denote

$$
\chi_{\mathrm{t}}:=\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi,
$$

for any $t \sim_{B} s$.

$[\alpha]$ respects axiom K. Proof (4/5)

$$
\mathrm{AMC} \vdash(\mathrm{pre}(\mathrm{~s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

■ $\psi:=C_{B} \psi \quad$ We denote

$$
\chi_{\mathrm{t}}:=\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi,
$$

for any $t \sim_{B} S$.
We want to show that for any $t \sim_{B} S$ and for any $a \in B$ and $u \sim_{a} t$

$$
\mathbf{A M C} \vdash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi
$$

and

$$
\mathbf{A M C} \vdash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] K_{\mathrm{a}} \chi_{\mathrm{u}}
$$

[$\alpha]$ respects axiom K. Proof (4/5)

$$
\text { AMC } \vdash(\text { pre }(\mathrm{s}) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi) \rightarrow[\mathrm{M}, \mathrm{~s}] \psi
$$

■ $\psi:=C_{B} \psi \quad$ We denote

$$
\chi_{\mathrm{t}}:=\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi,
$$

for any $t \sim_{B} S$.
We want to show that for any $t \sim_{B} S$ and for any $a \in B$ and $u \sim_{a} t$

$$
\mathbf{A M C} \vdash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi
$$

and

$$
\text { AMC } \vdash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] K_{\mathrm{a}} \chi_{\mathrm{u}}
$$

Then by action and comm. knowl. axiom we have

$$
\mathrm{AMC} \vdash\left(\mathrm{pre}(\mathrm{~s}) \rightarrow[\mathrm{M}, \mathrm{~s}] C_{B} \psi\right) \rightarrow[\mathrm{M}, \mathrm{~s}] C_{B} \psi
$$

AMC $\vdash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

AMC $\stackrel{\chi_{\mathrm{t}}}{ } \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$C_{B} \psi \rightarrow \psi$

[α] respects axiom K. Proof (5/5)

AMC $\vdash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$C_{B} \psi \rightarrow \psi$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{B} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
mix, Pr.
I.H. for $\mathbf{K}, \psi<C_{B} \psi$

$[\alpha]$ respects axiom K．Proof $(5 / 5)$

AMC $\vdash \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$C_{B} \psi \rightarrow \psi$
mix，Pr．
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
I．H．for $\mathbf{K}, \psi<C_{B} \psi$
$\left(\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi\right) \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] \psi$ Pr．

$[\alpha]$ respects axiom K．Proof $(5 / 5)$

AMC $\stackrel{\chi_{\mathrm{t}}}{ } \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$C_{B} \psi \rightarrow \psi$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
$\left(\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi\right) \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
$\chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
mix，Pr．
I．H．for $\mathbf{K}, \psi<C_{B} \psi$ Pr．

I．H．for（ ${ }^{*}$ ），$\psi<C_{B} \psi$

$[\alpha]$ respects axiom K. Proof $(5 / 5)$

AMC $\stackrel{\chi_{\mathrm{t}}}{ } \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$$
\begin{aligned}
& C_{B} \psi \rightarrow \psi \\
& {[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi} \\
& \left(\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi\right) \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] \psi \\
& \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi
\end{aligned}
$$

$$
\text { mix, } \operatorname{Pr} .
$$

$$
\text { I.H. for } \mathbf{K}, \psi<C_{B} \psi
$$

Pr.

$$
\text { I.H. for }\left({ }^{*}\right), \psi<C_{B} \psi
$$

AMC $\vdash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] K_{a} \chi_{\mathrm{u}}$
$C_{B} \psi \rightarrow K_{a} C_{B} \psi$
mix, Pr.

$[\alpha]$ respects axiom K. Proof $(5 / 5)$

AMC $\stackrel{\chi_{\mathrm{t}}}{ } \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$$
\begin{array}{lr}
C_{B} \psi \rightarrow \psi & \text { mix, } \operatorname{Pr} . \\
{[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi} & \text { I.H. for } \mathbf{K}, \psi<C_{B} \psi \\
\left(\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi\right) \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] \psi & \\
\chi \mathrm{Pr} \rightarrow[\mathrm{M}, \mathrm{t}] \psi & \text { I.H. for }\left(^{*}\right), \psi<C_{B} \psi
\end{array}
$$

$$
\mathbf{A M C} \vdash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] K_{\mathrm{a}} \chi_{\mathrm{u}}
$$

$C_{B} \psi \rightarrow K_{a} C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \rightarrow[\mathrm{M}, \mathrm{t}] K_{\mathrm{a}} C_{B} \psi$
mix, Pr.
\mathbf{K} holds w/o I.H. for K_{a}

$[\alpha]$ respects axiom K. Proof $(5 / 5)$

AMC $\stackrel{\chi_{\mathrm{t}}}{ } \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$C_{B} \psi \rightarrow \psi$
mix, Pr.
$[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
$\left(\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi\right) \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
I.H. for $\mathbf{K}, \psi<C_{B} \psi$
$\chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi \quad$ AMC $+\chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] K_{\mathrm{a}} \chi_{\mathrm{u}}$
$C_{B} \psi \rightarrow K_{a} C_{B} \psi$
mix, Pr.
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \rightarrow[\mathrm{M}, \mathrm{t}] K_{a} C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow \wedge_{\mathrm{u} \sim_{\mathrm{a}}} K_{\mathrm{a}}[\mathrm{M}, \mathrm{u}] C_{B} \psi$

K holds w/o I.H. for K_{a} act.\&kn., Pr.

$[\alpha]$ respects axiom K. Proof $(5 / 5)$

AMC $\stackrel{\chi_{\mathrm{t}}}{ } \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$C_{B} \psi \rightarrow \psi$
mix, Pr.
$[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
$\left(\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi\right) \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
I.H. for $\mathbf{K}, \psi<C_{B} \psi$ Pr.
$\chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
I.H. for (*), $\psi<C_{B} \psi$

$$
\operatorname{AMC} \vdash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] K_{a} \chi_{\mathrm{u}}
$$

$C_{B} \psi \rightarrow K_{a} C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \rightarrow[\mathrm{M}, \mathrm{t}] K_{a} C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow \wedge_{\mathrm{u} \sim_{\mathrm{a}} \mathrm{K}} K_{a}[\mathrm{M}, \mathrm{u}] C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}$
mix, Pr.
K holds w/o I.H. for K_{a} act.\&kn., Pr.
$\left(x \rightarrow K_{a} y\right) \rightarrow x \rightarrow K_{a}(z \rightarrow y)$

$[\alpha]$ respects axiom K. Proof $(5 / 5)$

AMC $\stackrel{\chi_{\mathrm{t}}}{ } \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$C_{B} \psi \rightarrow \psi$
mix, Pr.
$[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
$\left(\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi\right) \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
I.H. for $\mathbf{K}, \psi<C_{B} \psi$ Pr.
$\chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
I.H. for (*), $\psi<C_{B} \psi$

$$
\operatorname{AMC} \vdash \chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] K_{a} \chi_{\mathrm{u}}
$$

$C_{B} \psi \rightarrow K_{a} C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \rightarrow[\mathrm{M}, \mathrm{t}] K_{a} C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow \wedge_{\mathrm{u} \sim_{\mathrm{a}} \mathrm{K}} K_{a}[\mathrm{M}, \mathrm{u}] C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{B} \psi \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}$
mix, Pr.
K holds w/o I.H. for K_{a} act.\&kn., Pr.
$\left(x \rightarrow K_{a} y\right) \rightarrow x \rightarrow K_{a}(z \rightarrow y)$
Pr.

$[\alpha]$ respects axiom K. Proof $(5 / 5)$

AMC $\stackrel{\chi_{\mathrm{t}}}{ } \rightarrow[\mathrm{M}, \mathrm{t}] \psi$

$C_{B} \psi \rightarrow \psi$
mix, Pr.
$[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
$\left(\operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] C_{B} \psi\right) \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] \psi$
I.H. for $\mathbf{K}, \psi<C_{B} \psi$ Pr.

$$
\begin{aligned}
& \chi_{\mathrm{t}} \rightarrow[\mathrm{M}, \mathrm{t}] \psi \quad \text { AMC }+\chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow[\mathrm{M}, \mathrm{t}] K_{\mathrm{a}} \chi_{\mathrm{u}}
\end{aligned}
$$

$C_{B} \psi \rightarrow K_{a} C_{B} \psi$
mix, Pr.
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \rightarrow[\mathrm{M}, \mathrm{t}] K_{a} C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] C_{B} \psi \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow \wedge_{\mathrm{u} \sim_{\mathrm{a}}} K_{\mathrm{a}}[\mathrm{M}, \mathrm{u}] C_{B} \psi$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{B} \psi \rightarrow \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}$
$\left(x \rightarrow K_{a} y\right) \rightarrow x \rightarrow K_{a}(z \rightarrow y)$
$[\mathrm{M}, \mathrm{t}] \mathrm{C}_{\mathrm{B}} \psi \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}$ Pr.
$\chi_{\mathrm{t}} \wedge \operatorname{pre}(\mathrm{t}) \rightarrow K_{\mathrm{a}} \chi_{\mathrm{u}}$
$(x \wedge y \rightarrow z) \rightarrow(y \rightarrow x) \wedge y \rightarrow z$

1 Bisimilarity \& Action Emulation

2 Validities \& Axiomatisation

3 DEMO

4 EA vs AMC

5 Private Announcements

- DEMO stands for Dynamic Epistemic MOdelling.
- DEMO stands for Dynamic Epistemic MOdelling.

■ DEMO is a truly dynamic epistemic model checker

■ DEMO stands for Dynamic Epistemic MOdelling.
■ DEMO is a truly dynamic epistemic model checker

- DEMO allows for the specification and graphical display of epistemic models and action models, and for formula evaluation in epistemic states, including epistemic states specified as (possibly iterated) restricted modal products.

■ DEMO stands for Dynamic Epistemic MOdelling.
■ DEMO is a truly dynamic epistemic model checker

- DEMO allows for the specification and graphical display of epistemic models and action models, and for formula evaluation in epistemic states, including epistemic states specified as (possibly iterated) restricted modal products.

■ DEMO is written in de programming language Haskell.

■ DEMO stands for Dynamic Epistemic MOdelling.
■ DEMO is a truly dynamic epistemic model checker

- DEMO allows for the specification and graphical display of epistemic models and action models, and for formula evaluation in epistemic states, including epistemic states specified as (possibly iterated) restricted modal products.

■ DEMO is written in de programming language Haskell.
■ Its code implements a reduction of action model logic AMC to PDL

■ DEMO stands for Dynamic Epistemic MOdelling.

- DEMO is a truly dynamic epistemic model checker
- DEMO allows for the specification and graphical display of epistemic models and action models, and for formula evaluation in epistemic states, including epistemic states specified as (possibly iterated) restricted modal products.

■ DEMO is written in de programming language Haskell.

- Its code implements a reduction of action model logic $A M C$ to PDL
- An introduction in DEMO

■ Sum and Product in DEMO

1 Bisimilarity \& Action Emulation

2 Validities \& Axiomatisation

3 DEMO

4 EA vs AMC

5 Private Announcements

■ In $\mathcal{L}_{!}(A, P)$ the interpretation of an epistemic action is a binary relation between epistemic states that is computed from similar relations but that interpret its subactions

■ In $\mathcal{L}_{!}(A, P)$ the interpretation of an epistemic action is a binary relation between epistemic states that is computed from similar relations but that interpret its subactions; therefore we call it a relational action language.

- In $\mathcal{L}_{!}(A, P)$ the interpretation of an epistemic action is a binary relation between epistemic states that is computed from similar relations but that interpret its subactions; therefore we call it a relational action language.
- In $\mathcal{L}_{K C \otimes}(A, P)$ the description of an epistemic action is a structure that resembles a Kripke model
- In $\mathcal{L}_{!}(A, P)$ the interpretation of an epistemic action is a binary relation between epistemic states that is computed from similar relations but that interpret its subactions; therefore we call it a relational action language.
- In $\mathcal{L}_{K C \otimes}(A, P)$ the description of an epistemic action is a structure that resembles a Kripke model; therefore we call it an action model language.
- In $\mathcal{L}_{!}(A, P)$ the interpretation of an epistemic action is a binary relation between epistemic states that is computed from similar relations but that interpret its subactions; therefore we call it a relational action language.
- In $\mathcal{L}_{K C \otimes}(A, P)$ the description of an epistemic action is a structure that resembles a Kripke model; therefore we call it an action model language.
■ EA does not have, until today (25/05/2021) a completeness theorem.
- In $\mathcal{L}_{!}(A, P)$ the interpretation of an epistemic action is a binary relation between epistemic states that is computed from similar relations but that interpret its subactions; therefore we call it a relational action language.
- In $\mathcal{L}_{K C \otimes}(A, P)$ the description of an epistemic action is a structure that resembles a Kripke model; therefore we call it an action model language.

■ EA does not have, until today (25/05/2021) a completeness theorem.

- AMC does have a completeness theorem.

EA \rightarrow AMC I Buy or sell？

We＇ve described in $\mathcal{L}_{!}(A, P)$ the action

$$
\text { mayread }:=L_{a b}\left(L_{a} ? p \cup L_{a} ? \neg p \cup!? \tau\right)
$$

wherein，Aggela and Baggelis learn that Aggela learns that p ，or that Aggela learns that $\neg p$ ，or that＇nothing happens＇，and actually nothing happens．

EA $\rightarrow \mathbf{A M C}$ I Buy or sell?

We've described in $\mathcal{L}_{!}(A, P)$ the action

$$
\text { mayread }:=L_{a b}\left(L_{a} ? p \cup L_{a} ? \neg p \cup!? T\right)
$$

wherein, Aggela and Baggelis learn that Aggela learns that p, or that Aggela learns that $\neg p$, or that 'nothing happens', and actually nothing happens.
The type of the action mayread is

$$
L_{a b}\left(L_{a} ? p \cup L_{a} ? \neg p \cup ? T\right)
$$

and there are three actions of that type, namely,

$$
\begin{aligned}
& L_{a b}\left(!L_{a} ? p \cup L_{a} ? \neg p \cup ? T\right) \\
& L_{a b}\left(L_{a} ? p \cup!L_{a} ? \neg p \cup ? T\right) \\
& L_{a b}\left(L_{a} ? p \cup L_{a} ? \neg p \cup!? T\right)
\end{aligned}
$$

EA $\rightarrow \mathbf{A M C}$ I Buy or sell?

We've described in $\mathcal{L}_{!}(A, P)$ the action

$$
\text { mayread }:=L_{a b}\left(L_{a} ? p \cup L_{a} ? \neg p \cup!? T\right)
$$

wherein, Aggela and Baggelis learn that Aggela learns that p, or that Aggela learns that $\neg p$, or that 'nothing happens', and actually nothing happens.
The type of the action mayread is

$$
L_{a b}\left(L_{a} ? p \cup L_{a} ? \neg p \cup ? T\right)
$$

and there are three actions of that type, namely,

$$
\begin{aligned}
& L_{a b}\left(!L_{a} ? p \cup L_{a} ? \neg p \cup ? T\right) \\
& L_{a b}\left(L_{a} ? p \cup!L_{a} ? \neg p \cup ? T\right) \\
& L_{a b}\left(L_{a} ? p \cup L_{a} ? \neg p \cup!? T\right)
\end{aligned}
$$

The 'preconditions' of these actions are, respectively $p, \neg p, T$.

EA $\rightarrow \mathbf{A M C}$ I Buy or sell？

－Baggelis cannot tell which of those actions actually takes place： they are all the same to him．
－Aggela can distinguish all three actions．

EA $\rightarrow \mathbf{A M C}$ I Buy or sell?

■ Baggelis cannot tell which of those actions actually takes place: they are all the same to him.

- Aggela can distinguish all three actions.

This induces a syntactic accessibility among epistemic actions; e.g., that

$$
L_{a b}\left(!L_{a} ? p \cup L_{a} ? \neg p \cup ? T\right) \sim_{b} L_{a b}\left(L_{a} ? p \cup!L_{a} ? \neg p \cup ? \tau\right)
$$

while

$$
L_{a b}\left(!L_{a} ? p \cup L_{a} ? \neg p \cup ? \tau\right) \not x_{a} L_{a b}\left(L_{a} ? p \cup!L_{a} ? \neg p \cup ? \tau\right)
$$

EA $\rightarrow \mathbf{A M C}$ I Buy or sell?

We can visualise this access among the three $\mathcal{L}_{!}$actions as

$$
\begin{gathered}
L_{a b}\left(L_{a} ? p \cup!L_{a} ? \neg p \cup ? T\right) \quad L_{a b}\left(!L_{a} ? p \cup L_{a} ? \neg p \cup ? T\right) \\
b \neq b \\
\underline{L_{a b}\left(L_{a} ? p \cup L_{a} ? \neg p \cup!? T\right)}
\end{gathered}
$$

EA $\rightarrow \mathbf{A M C}$ I Buy or sell?

We can visualise this access among the three $\mathcal{L}_{!}$actions as

We may replace them by labels p, np and t with preconditions $p, \neg p$, and T, respectively and get action (Mayread, t)

EA $\rightarrow \mathbf{A M C}$ I Buy or sell?

But it is interesting to observe that we might have done a similar trick with the three epistemic actions (Mayread, p), (Mayread, np), and (Mayread, t) by the much simpler expedient of lifting the notion of accessibility between points in a structure to accessibility between pointed structures.

EA $\rightarrow \mathbf{A M C}$ I Buy or sell?

But it is interesting to observe that we might have done a similar trick with the three epistemic actions (Mayread, p), (Mayread, np), and (Mayread, t) by the much simpler expedient of lifting the notion of accessibility between points in a structure to accessibility between pointed structures.

$\mathbf{E A} \rightarrow \mathbf{A M C}$

This method does not apply to arbitrary $\mathcal{L}!$ actions, because we do not know a notion of syntactic access among $\mathcal{L}_{!}$actions that exactly corresponds to the notion of semantic access.

$\mathrm{EA} \leftarrow \mathrm{AMC}$

Vice versa, given an action model, we can construct a $\mathcal{L}_{!n}$ action; i.e. the language of epistemic actions with concurrency.

$\mathrm{EA} \leftarrow \mathrm{AMC}$

Vice versa, given an action model, we can construct a $\mathcal{L}_{!n}$ action; i.e. the language of epistemic actions with concurrency.

Interestingly, there has been (independently) given a completeness theorem for this logic!

EA \leftarrow AMC I Example 6.40

Consider the case where a subgroup B of all agents A is told which of n alternatives described by propositions $\varphi_{1}, \ldots, \varphi_{n}$ is actually the case, but such that the remaining agents do not know which from these alternatives that is. Let φ_{i} be the actually told proposition.

EA \leftarrow AMC I Example 6.40

Consider the case where a subgroup B of all agents A is told which of n alternatives described by propositions $\varphi_{1}, \ldots, \varphi_{n}$ is actually the case, but such that the remaining agents do not know which from these alternatives that is. Let φ_{i} be the actually told proposition.

In $\mathcal{L}_{K C \otimes}$ this is described as a pointed action model visualised as (with the preconditions below the unnamed action points)

EA \leftarrow AMC I Example 6.40

Consider the case where a subgroup B of all agents A is told which of n alternatives described by propositions $\varphi_{1}, \ldots, \varphi_{n}$ is actually the case, but such that the remaining agents do not know which from these alternatives that is. Let φ_{i} be the actually told proposition.

In $\mathcal{L}_{K C \otimes}$ this is described as a pointed action model visualised as (with the preconditions below the unnamed action points)

In $\mathcal{L}_{!}$the coresponding epistemic action is

$$
L_{A}\left(L_{B} ? \varphi_{1} \cup \cdots \cup!L_{B} \varphi_{i} \cup \cdots \cup L_{B} \varphi_{n}\right)
$$

1 Bisimilarity \& Action Emulation

2 Validities \& Axiomatisation

3 DEMO

4 EA vs AMC

5 Private Announcements

In this section we pay attention to modelling private (truthful) announcements, that transform an epistemic state into a belief state, where agents not involved in private announcements lose their access to the actual world.

In this section we pay attention to modelling private (truthful) announcements, that transform an epistemic state into a belief state, where agents not involved in private announcements lose their access to the actual world.

In different words: agents that are unaware of the private announcement therefore have false beliefs about the actual state of the world, namely, they believe that what they knew before the action, is still true.

The proper general notion of action model is as follows
Definition (Action model for belief)
Let \mathcal{L} be a logical language for given parameters agents A and atoms P. An action model M is a structure $\langle S, R$, pre〉s.t. S is a domain of action points, s.t. for each $a \in A, R_{a}$ is an accessibility relation on S, and s.t. pre : $S \rightarrow \mathcal{L}$ is a preconditions function that assigns a precondition $\operatorname{pre}(\mathrm{s}) \in \mathcal{L}$ to each $\mathrm{s} \in \mathrm{S}$. A pointed action model is a structure (M, s) with $\mathrm{s} \in \mathrm{S}$.

One also has to adjust various other definitions, namely those of action model language, action model execution, and action model composition.

The 'typical' action that needs such a more general action model is the 'private announcement to a subgroup' mentioned above.

The 'typical' action that needs such a more general action model is the 'private announcement to a subgroup' mentioned above.

Let subgroup B of the public A learn that φ is true, without the remaining agents realising (or even suspecting) that.

The 'typical' action that needs such a more general action model is the 'private announcement to a subgroup' mentioned above.

Let subgroup B of the public A learn that φ is true, without the remaining agents realising (or even suspecting) that.

The action model for that is pictured below

Example 6.43

Consider the epistemic state (Letter, 1) where Aggela and Baggelis are uncertain about the truth of p.

Example 6.43

Consider the epistemic state (Letter, 1) where Aggela and Baggelis are uncertain about the truth of p.
The epistemic action that Aggela learns p without Baggelis noticing that, consists of two action points p and t, with preconditions p and T, and p actually happens.

Example 6.43

Consider the epistemic state（Letter，1）where Aggela and Baggelis are uncertain about the truth of p ．
The epistemic action that Aggela learns p without Baggelis noticing that，consists of two action points p and t ，with preconditions p and T ， and p actually happens．
The model and its execution are pictured below．

Example 6．43＋

Model and execute the action where Aggela secretly reads the letter and learns p ，while thinking that Baggelis doesn＇t see her，but Baggelis does see her reading the letter，without learning the content of the letter．

Example 6.43+

Model and execute the action where Aggela secretly reads the letter and learns p, while thinking that Baggelis doesn't see her, but Baggelis does see her reading the letter, without learning the content of the letter.

Thus, in the final epistemic model, Aggela knows that p holds, Baggelis doesn't know that p, but he knows, that Aggela knows whether p or $\neg p$, and Aggela believes that Baggelis doesn’t know that Aggela knows whether p or $\neg p$;
i.e.

$$
\begin{gathered}
K_{a} p \\
\neg\left(K_{b} p \vee K_{b} \neg p\right) \\
K_{b}\left(K_{a} p \vee K_{a} \neg p\right) \\
\neg K_{a}\left(K_{b}\left(K_{a} p \vee K_{a} \neg p\right)\right)
\end{gathered}
$$

Example 6.43+

We model this action in two steps.

Example 6．43＋

We model this action in two steps．
－Firstly，we assume that a private announcement is being made in which Aggela learns whether p or $\neg p$ ，and she actually learns p ．

Example 6.43+

We model this action in two steps.

- Firstly, we assume that a private announcement is being made in which Aggela learns whether p or $\neg p$, and she actually learns p.

■ Secondly, we assume that a private announcement is being made in which Baggelis learns that Aggela knows whether p or $\neg p$, and she actually learns p.

Example $6.43+$ I 1st announcement

The preconditions of $n p, p, t$ are defined as usual.

Example 6.43+ | 2nd announcement

The precondition of k is pre $(\mathrm{k}):=K_{a} p \vee K_{a} \neg p$ and the precondition of t^{\prime} is pre $\left(\mathrm{t}^{\prime}\right):=\mathrm{T}$.

