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Bisimilarity in Kripke Models

Definition (Bisimulation)

Let two Kripke models M = 〈S,R ,V〉 and M′ = 〈S′,R ′,V ′〉 be given. A
non-empty relation R ⊆ S × S′ is a bisimulation iff for all s ∈ S and
s′ ∈ S′ with (s, s′) ∈ R:

atoms s ∈ V (p) iff s′ ∈ V ′ (p), for any p ∈ P

forth for all a ∈ A and all t ∈ S, if (s, t) ∈ Ra , then there is a
t ′ ∈ S′ such that (s′, t ′) ∈ R ′a and (t , t ′) ∈ R

back for all a ∈ A and all t ′ ∈ S′, if (s′, t ′) ∈ R ′a , then there is
a t ∈ S such that (s, t) ∈ Ra and (t , t ′) ∈ R

We write (M, s)↔ (M′, s′), iff there is a bisimulation between M and
M′ linking s and s′. Then we call (M, s) and (M′, s′) bisimilar.

Theorem (2.15)

For all pointed models (M, s) and (M′, s′), if (M, s)↔ (M′, s′), then
(M, s) ≡LK (M′, s′); i.e. for any ϕ ∈ LK M, s |= ϕ iff M′, s′ |= ϕ.
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Preservation of bisimilarity

If we execute the same action in two given bisimilar epistemic states,
we would want them to be bisimilar again.

This is indeed the case!

Proposition (6.21)

Given epistemic states (M, s) and (M′, s′) s.t. (M, s)↔ (M′, s′). Let
(M, s) with M = 〈S,∼, pre〉 be executable in (M, s). Then

(M ⊗M, (s, s))↔ (M′ ⊗M, (s′, s))

Thomas Pipilikas A.L.MA.
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Proof of Proposition 6.21 (1/2)

(M, s) executable in (M, s) ⇐⇒

M, s |= pre(s)
Th.2.15
⇐⇒

M′, s′ |= pre(s) ⇐⇒

(M, s) executable in (M′, s′)

Let R : (M, s)↔ (M′, s′) bisimulation.

We define the relation

R
′ B

{
((t , t) , (t ′, t′)) ∈ S⊗M × S′⊗M | t R t ′ & t = t′

}
i.e.

(t , t)R′ (t ′, t′) ⇐⇒ t R t ′ & t = t′
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Proof of Proposition 6.21 (2/2)

Let (s, s)R′ (s′, s′)

atoms Let (s, s)R′ (s′, s′)

(s, s) ∈ V⊗M (p)⇐⇒ s ∈ V (p)
s R s′
⇐⇒

s′ ∈ V ′ (p)⇐⇒ (s′, s) ∈ V ′
⊗M (p)

forth Let agent a ∈ A and state (t , t) s.t. (t , t) ∼⊗M
a (s, s); i.e.

t ∼a s and t ∼a s.

By R : (M, s)↔ (M′, s′) there is t ′ ∈ S′ s.t. t R t ′ and
t ′ ∼′a s′.

Trivially, (t , t)R′ (t ′, t) and (t ′, t) ∼′⊗M
a (s′, s′)

back Similarly, with forth
�
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Bisimulation of Actions

As the action models also have structure, we can go beyond such
observations.

The obvious notion of bisimilarity for action models is as for epistemic
states, but with the requirement that points have corresponding
valuations replaced by the requirement that points have corresponding
preconditions.

Definition (Bisimulation of Actions)

Given are pointed action models (M, u) with M = 〈S,∼, pre〉, and
(M′, u′) with M′ = 〈S′,∼′, pre′〉. A bisimulation between (M, u) and
(M′, u′) is a relation R ⊆ S × S′ s.t. u R u′ and s.t. the following three
conditions are met for each agent a (for arbitrary action points):

Forth If s R s′ and s ∼a t, then there is an t′ ∈ S′ s.t. t R t′ and
s′ ∼′a t′.

Back If s R s′ and s′ ∼′a t′, then there is an t ∈ S s.t. t R t′ and
s ∼a t.

Pre If sRs′, then |= pre(s)↔ pre′(s′)
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Preservation of Bisimilarity for Actions

A relation R is a total bisimulation between M and M′ iff for each
s ∈ S there is an s′ ∈ S′ s.t. R is a bisimulation between (M, s)
and (M′, s′), and vice versa.

As usual we write (M, s)↔ (M′, s′) if such a bisimulation exists;
or R : (M, s)↔ (M′, s′), to make the bisimulation explicit.

If two bisimilar action models are executed in the same epistemic state,
are the resulting epistemic states bisimilar?

Proposition (6.23)

Given two action models s.t. (M, s)↔ (M′, s′) and an epistemic state
(M, s), s.t. (M, s) is executable in (M, s). Then

(M ⊗M, (s, s))↔ (M ⊗M′, (s, s′))

Hint: R′ B
{
((t , t) , (t ′, t′)) ∈ S⊗M × S⊗M′ | t = t ′ & tR t′

}

Thomas Pipilikas A.L.MA.

Action Models
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Given two action models s.t. (M, s)↔ (M′, s′) and an epistemic state
(M, s), s.t. (M, s) is executable in (M, s). Then

(M ⊗M, (s, s))↔ (M ⊗M′, (s, s′))

Hint: R′ B
{
((t , t) , (t ′, t′)) ∈ S⊗M × S⊗M′ | t = t ′ & tR t′

}
Thomas Pipilikas A.L.MA.
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It turns out, however, that this requirement for action sameness is too
strong: if we merely want to guarantee that the resulting epistemic
states are bisimilar given two executed actions, then a weaker notion of
sameness is already sufficient.

For example, consider
the action model 〈{t} ,∼, pre〉 that is reflexive for all agents and
with pre(t) = >

the action model 〈{np, p} ,∼′, pre′〉 such that no agent can
distinguish between p and np, and with pre(p) = p and
pre(np) = ¬p

Thomas Pipilikas A.L.MA.
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〈{t} ,∼, pre〉

〈
{np, p} ,∼′, pre′

〉

The final models are bisimilar (equivalent), but the action models
weren’t!

Thomas Pipilikas A.L.MA.
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Action Emulation

Definition
Given are pointed action models (M, u) with M = 〈S,∼, pre〉, and
(M′, u′) with M′ = 〈S′,∼′, pre′〉. A emulation between (M, u) and
(M′, u′) is a relation E ⊆ S × S′ s.t. uE u′ and s.t. the following three
conditions are met for each agent a (for arbitrary action points):

Forth If sE s′ and s ∼a t, then there are t′1, . . . , t
′
n ∈ S′ s.t. for

all i ∈ [n], tE t′i and s′ ∼′a t′i and s.t.
pre(t) |= pre′

(
t′1
)
∨ · · · ∨ pre′(t′n).

Back If sE s′ and s′ ∼′a t′ then there are t1, . . . , tn ∈ S s.t. for
all i ∈ [n], ti E t′ and s ∼ a ti and s.t.
pre′(t′) |= pre(t1) ∨ · · · ∨ pre(tn).

Pre If sE s′, then pre(s) ∧ pre′(s′) is consistent.
A total emulation E : M� M′ is an emulation such that for each s ∈ S
there is a s′ ∈ S′, with sE s′ and vice versa.

Thomas Pipilikas A.L.MA.
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Action Emulation

In the previous definition, it is essential that the accessibility
relations are reflexive (as they are equivalence relations).
This ensures that the entailment requirements in the forth and
back conditions also hold in the designated points of the structures

Thomas Pipilikas A.L.MA.
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Bisimulation vs Action Emulation

We can paraphrase the difference between action bisimulation and
action emulation as follows:

Two bisimilar actions s, s′ must have logically equivalent
preconditions; i.e. |= pre(s)↔ pre′(s′).
In the case of two emulous actions it may be that one precondition
only entails the other; i.e. |= pre(s)→ pre′(s′) but
|=/ pre′(s′)→ pre(s).
In that case, formula pre′(s′) is strictly weaker than pre(s). This
does not hurt if we can make up for the difference by finding
sufficient emulous ‘alternatives’ t1, . . . , tn (including s) to s s.t. even
though |=/ pre′(s′)→ pre(s), after all
|= pre′(s′)→ pre(t1) ∨ · · · ∨ pre(tn)

Thomas Pipilikas A.L.MA.
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An Alternative Emulation

Definition (Action Emulation 2)

Given are action models (M, u) with M = 〈S,∼, pre〉, and (M′, u′) with
M′ = 〈S′,∼′, pre′〉. An emulation between (M, u) and (M′, u′) is a
relation E ⊆ S × S′ s.t. u E u′ and s.t. the following three conditions
are met for each agent a (for arbitrary action points):

Forth If s E s′ and s ∼a t, then there is an t′ ∈ S′ s.t. t E t′ and
s′ ∼′a t′.

Back If s E s′ and s′ ∼′a t′, then there is an t ∈ S s.t. t E t′ and
s ∼a t.

Pre If s E s′, then there are s′1, . . . , s
′
n ∈ S′ including s′ s.t.

for all i ∈ [n] s E s′i and pre(s) |= pre′
(
s′1

)
∨ · · · ∨ pre′(s′n);

and there are s1, . . . , sn ∈ S including S s.t. for all
i ∈ [n] si E s′ and pre′(s′) |= pre(s1) ∨ · · · ∨ pre(sn)

Thomas Pipilikas A.L.MA.
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An Alternative Emulation

It is easy (EZ) to observe that the first definition of emulation, implies
the second.

Are the two definitions equivalent?
...

Nope! Crash gonna crash them all!

Thomas Pipilikas A.L.MA.
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Example 6.26

Consider the previous example S5 action models:
〈{t} ,∼, pre〉, with pre(t) = >

〈{np, p} ,∼′, pre′〉, with pre(p) = p and pre(np) = ¬p.

It is easy to observe that the relation

E B
{
(t, np) , (t, p)

}
is an emulation.
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Example 6.26

Forth pre(t) |= pre′(np) ∨ pre′(p)

≡ ¬p ∨ p ≡ >

Back ϕ |= pre(t) ≡ >

Pre pre(t) ∧ pre′(np) ≡ > ∧ ¬p ≡ ¬p consistent

pre(t) ∧ pre′(p) ≡ p consistent

�
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Exercise 6.27
Show that the following four action models are emulous. The
preconditions of action points are indicated below their names.

p ∨ q ≡ pre(s1) ≡ pre(s2) ∨ pre(s3) ≡ pre(s4) ∨ pre(s5) ∨ pre(s6)

≡ pre(s7) ∨ pre(s8) ∨ pre(s9)

Thomas Pipilikas A.L.MA.
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Emulation Guarantees Bisimilarity

Proposition (6.29 | Bisimilar actions are emulous)

A bisimulation R : (M, s)↔ (M′, s′) is also an emulation.

Proposition (6.30 | Emulation guarantees bisimilarity)

Given an epistemic model M and action models M� M′. Then

M� M′ ⇒ M ⊗M↔M ⊗M′

Thomas Pipilikas A.L.MA.
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Proof of Proposition 6.30 (1/2)

As usual, assume M = 〈S,∼, pre〉 , M′ = 〈S′,∼′, pre′〉 and E : M� M′.

We define

R B
{
((s, s) , (s′, s′)) ∈ S⊗M × S⊗M′ | s = s′ & sE s′

}
i.e.

(s, s)R (s′, s′) ⇐⇒ s = s′ & sE s′

where
S⊗M B

{
(s, s) ∈ S × S | M, s |= pre(s)

}
and similarly for S⊗M′ .

Let’s assume a ∈ A and (s, s)R (s′, s′); i.e.

s = s′ & M, s |= pre(s) ∧ pre′(s′) & sE s′

atoms (s, s) ∈ V⊗M (p) ⇐⇒ s ∈ V (p) ⇐⇒ (s′, s′) ∈ V⊗M′ (p),
for any p ∈ P
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Proof of Proposition 6.30 (2/2)

forth Let (s, s) ∼a (t , t).

It suffices to show that there is (t ′, t′) ∈ S⊗M′ , s.t.
(t , t)R (t ′, t′) and (s′, s′) ∼′a (t ′, t′).
Equivalently, it suffices to show that there is t′ ∈ S′ s.t.

M, t |= pre′(t′) & tE t′ & s′ ∼′a t′

By sE s′, (s, s) ∼a (t , t) (which implies s ∼a t) and Forth
for emulation E , we have that there are t′1, . . . , t

′
n ∈ S′ s.t.

for all i ∈ [n], tE t′i and s′ ∼′a t′i and s.t.
pre(t) |= pre′

(
t′1
)
∨ · · · ∨ pre′(t′n).

But as (t , t) ∈ S⊗M we have that M, t |= pre(t) and thus
M, t |= pre′

(
t′1
)
∨ · · · ∨ pre′(t′n).

Therefore, there is some i ∈ [n] s.t.

M, t |= pre′(t′i ) & tE t′i & s′ ∼′a t′i

back Similarly with forth. �
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Proposition 6.30 for pointed Action Models?

The obvious ‘pointed’ version of Proposition 6.30 does not hold!

Given an epistemic state (M, s) and action models (M, s)� (M′, s′)
and such that (M, s) is executable in (M, s), then (M ⊗M, (s, s)) may
not be bisimilar to (M ⊗M′, (s, s′)).
This is because pre′(s′) may not be true in (M, s).
Although there must be a s′i ∈ S′ among the ‘alternatives’ for s′ with
pre(s) |= pre′

(
s′1

)
∨ · · · ∨ pre′(s′n) ∨ . . . , s.t. this s′n fulfils the role

required for (M ⊗M, (s, s′n))

Thomas Pipilikas A.L.MA.

Action Models
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Axiomatization for Action Model Logic

The axiom system for Action Model logic is denoted as AMC.

AMC = S5C + axioms for action models

Thomas Pipilikas A.L.MA.
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Axiomatization for Action Model Logic

S5C Axiom System

Axiom Schemes

Ka (ϕ→ ψ)→ Kaϕ→ Kaψ distribution of Ka over →
Kaϕ→ ϕ truth
Kaϕ→ KaKaϕ positive introspection
¬Kaϕ→ Ka¬Kaϕ negative introspection
CB (ϕ→ ψ)→ CBϕ→ CBψ distribution of CB over →
CBϕ→ (ϕ ∧ EBCBϕ) mix
CB (ϕ→ EBϕ)→ ϕ→ CBϕ induction axiom

Rules of inference

From ϕ and ϕ→ ψ, infer ψ modus ponens
From ϕ, infer Kaϕ necessitation of Ka

From ϕ, infer CBϕ necessitation of CB



Axiomatization for Action Model Logic

Axioms for Action Models

Axiom Schemes

[M, s] p ↔ (pre(s)→ p) atomic permanence
[M, s]¬ϕ↔ (pre(s)→ ¬ [M, s]ϕ) action and negation
[M, s] (ϕ ∧ ψ)↔ [M, s]ϕ ∧ [M, s]ψ action and conjunction
[M, s]Kaϕ↔

(
pre(s)→

∧
s∼a t Ka [M, t]ϕ

)
action and knowledge

[M, s] [M′, s′]ϕ↔ [(M, s) ; (M′, s′)]ϕ action composition
[α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ non-deterministic choice

Rules of inference

From ϕ, infer [M, s]ϕ necessitation of (M, s)
Given (M, s), and χt for all t ∼B s. action and comm. knowl.
If for all a ∈ B and u ∼a t : χt → [M, t]ϕ
and (χt ∧ pre(t))→ Kaχu,
then χs → [M, s]CBϕ.
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Soundness of AMC

Theorem (Propositions 6.9, 6.11, 6.32-6.37)

Axiom system AMC is sound with respect of AMC ; i.e. for any
ϕ ∈ Lstat

KC⊗ (A ,P)
AMC ` ϕ =⇒ AMC |= ϕ

Thomas Pipilikas A.L.MA.

Action Models



Soundness of AMC

Proof of Atomic permanence [M, s] p ↔ (pre(s)→ p)

Let arbitrary epistemic state (M, t) s.t. M, t |= [M, s] p.

Equivalently, for any epistemic state (M′, t ′) s.t. (M, t) ~M, s� (M′, t ′),
we have M′, t ′ |= p.

Equivalently, if M, t |= pre(s), then
M ⊗M, (t , s) |= p ⇔ (t , s) ∈ V⊗M (p) ⇔ t ∈ V (p) ⇔ M, t |= p.

Equivalently, M, t |= pre(s)→ p
�
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Soundness of AMC

Proof of Action and Common Knowledge Axiom (1/3)

Let ∀t ∼B s ∀a ∈ B ∀u ∼a t

|= χt → [M, t]ϕ & |= χt ∧ pre(t)→ Kaχu

We want to show that |= χs → [M, s]CBϕ.
Let arbitrary S5 epistemic state (M, s) s.t. M, s |= χs ∧ pre(s).
It suffices to show that M ⊗M, (s, s) |= CBϕ.
By Remark (2.29), it suffices to to show that

∀n ∈ N ∀ (t , t) ∼n
⊗M;EB

(s, s) M ⊗M, (t , t) |= ϕ

i.e. for any epistemic point (t , t) reachable from (s, s) through ∼⊗M;EB

M ⊗M, (t , t) |= ϕ.
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Soundness of AMC

Proof of Action and Common Knowledge Axiom (2/3)

We will prove, by induction on n, the stronger statement, that
∀n ∈ N ∀ (t , t) ∼n

⊗M;EB
(s, s)

M ⊗M, (t , t) |= ϕ & M, t |= χt

n = 0 Then (t , t) = (s, s) and
M, s |= pre(s) (s, s) ∈ S⊗M

M, s |= χs by hypothesis
Thus by |= χs → [M, s]ϕ, we have M ⊗M, (s, s) |= ϕ and M, s |= χs

Induction hypothesis (I.H.) Let the statement holds for n = k ∈ N.
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Soundness of AMC

Proof of Action and Common Knowledge Axiom (3/3)

n = k + 1 Let (u, u) ∼k+1
⊗M;EB

(s, s).

Equivalently, there is (t , t) ∈ S⊗M s.t. (s, s) ∼k
⊗M;EB

(t , t) ∼⊗M;a (u, u),
for some a ∈ B .
M, t |= pre(t) (t , t) ∈ S⊗M

M, t |= χt by I.H.
Thus by |= χt ∧ pre(t)→ Kaχu, we have M, t |= Kaχu and as u ∼a t
we have M, u |= χu.
M, u |= pre(u) (u, u) ∈ S⊗M

Thus by M, u |= χu and |= χu → [M, u]ϕ we have M ⊗M, (u, u) |= ϕ
and M, u |= χu, as wanted.
By induction principle we get the required statement.
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Action and common knowledge



Example 6.38

AMC ` [Read, p]Kap

ϕ1 : p → p tautology
ϕ2 : [Read, p] p ↔ (p → p) pre(p) = p, atomic permanence
ϕ3 : [Read, p] p 1,2, Pr.
ϕ4 : Ka [Read, p] p 3, Nec of Ka

ϕ5 : p → Ka [Read, p] p 4, weakening
ϕ6 : [Read, p]Kap ↔

(
p →

∧
p∼a s Ka [Read, s] p

)
[p]∼a

= {p}, act&kn
ϕ7 : [Read, p]Kap 5,6, Pr.
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Is [α] a normal modal operator?

The necessitation rule holds for [α]. Does the axiom K, i.e.

[α] (ϕ→ ψ)→ [α]ϕ→ [α]ψ

also hold?

YES!
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[α] respects axiom K. Proof (1/5)

By action composition, non-deterministic choice and

(a → b → c) ∧ (a′ → b ′ → c′)→ a ∧ a′ → b ∧ b ′ → c ∧ c′

axioms, we get that it suffices to show that, for any pointed action
model (M, s)

AMC ` [M, s] (ϕ→ ψ)→ [M, s]ϕ→ [M, s]ψ

Note that [M, s] (ϕ→ ψ) is an abbreviation for [M, s]¬ (ϕ ∧ ¬ψ)
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[α] respects axiom K. Proof (3/5)

AMC ` (pre(s)→ [M, s]ψ)→ [M, s]ψ

We will prove it by induction on the complexity of ψ.
ψ B p

(pre(s)→ [M, s] p)→ pre(s)→ pre(s)→ p at. perm., Pr.

(pre(s)→ [M, s] p)→ pre(s)→ p Pr.

(pre(s)→ [M, s] p)→ [M, s] p at. perm., Pr.

ψ B ¬ψ or ψ B Kaψ similarly with previous, without using
induction.

ψ B χ ∧ ψ EZ, by using induction.

ψ B [α]ψ W.l.o.g. α B (M′, s′),
Hint: pre((s, s′)) = pre(s) ∧ pre(s′), by using induction.
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DEMO stands for Dynamic Epistemic MOdelling.

DEMO is a truly dynamic epistemic model checker

DEMO allows for the specification and graphical display of
epistemic models and action models, and for formula evaluation in
epistemic states, including epistemic states specified as (possibly
iterated) restricted modal products.

DEMO is written in de programming language Haskell.

Its code implements a reduction of action model logic AMC to
PDL

An introduction in DEMO

Sum and Product in DEMO

Thomas Pipilikas A.L.MA.

Action Models

https://staff.fnwi.uva.nl/d.j.n.vaneijck2/papers/07/pdfs/DEMO_IL.pdf
http://www.cs.otago.ac.nz/staffpriv/hans/sumpro/
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In L! (A ,P) the interpretation of an epistemic action is a binary
relation between epistemic states that is computed from similar
relations but that interpret its subactions

; therefore we call it a
relational action language.

In LKC⊗ (A ,P) the description of an epistemic action is a structure
that resembles a Kripke model; therefore we call it an action model
language.

EA does not have, until today (25/05/2021) a completeness theorem.

AMC does have a completeness theorem.

Thomas Pipilikas A.L.MA.
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EA→AMC | Buy or sell?

We’ve described in L! (A ,P) the action

mayread B Lab (La?p ∪ La?¬p ∪ !?>)

wherein, Aggela and Baggelis learn that Aggela learns that p, or that
Aggela learns that ¬p, or that ‘nothing happens’, and actually nothing
happens.

The type of the action mayread is

Lab (La?p ∪ La?¬p ∪ ?>)

and there are three actions of that type, namely,

Lab (!La?p ∪ La?¬p ∪ ?>)

Lab (La?p ∪ !La?¬p ∪ ?>)

Lab (La?p ∪ La?¬p ∪ !?>)

The ‘preconditions’ of these actions are, respectively p,¬p,>.
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EA→AMC | Buy or sell?

Baggelis cannot tell which of those actions actually takes place:
they are all the same to him.
Aggela can distinguish all three actions.

This induces a syntactic accessibility among epistemic actions; e.g., that

Lab (!La?p ∪ La?¬p ∪ ?>) ∼b Lab (La?p ∪ !La?¬p ∪ ?>)

while

Lab (!La?p ∪ La?¬p ∪ ?>) /a Lab (La?p ∪ !La?¬p ∪ ?>)
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EA→AMC | Buy or sell?

We can visualise this access among the three L! actions as

We may replace them by labels p, np and t with preconditions p,¬p,
and >, respectively and get action (Mayread, t)
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EA→AMC | Buy or sell?

But it is interesting to observe that we might have done a similar trick
with the three epistemic actions (Mayread, p) , (Mayread, np), and
(Mayread, t) by the much simpler expedient of lifting the notion of
accessibility between points in a structure to accessibility between
pointed structures.
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EA→AMC

This method does not apply to arbitrary L! actions, because we do not
know a notion of syntactic access among L! actions that exactly
corresponds to the notion of semantic access.

Thomas Pipilikas A.L.MA.

Action Models
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EA←AMC

Vice versa, given an action model, we can construct a L!∩ action; i.e.
the language of epistemic actions with concurrency.

Interestingly, there has been (independently) given a completeness
theorem for this logic! (see also)

Thomas Pipilikas A.L.MA.

Action Models
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EA←AMC | Example 6.40

Consider the case where a subgroup B of all agents A is told which of
n alternatives described by propositions ϕ1, . . . , ϕn is actually the case,
but such that the remaining agents do not know which from these
alternatives that is. Let ϕi be the actually told proposition.

In LKC⊗ this is described as a pointed action model visualised as (with
the preconditions below the unnamed action points)

In L! the coresponding epistemic action is

LA (LB?ϕ1 ∪ · · · ∪ !LBϕi ∪ · · · ∪ LBϕn)



EA←AMC | Example 6.40

Consider the case where a subgroup B of all agents A is told which of
n alternatives described by propositions ϕ1, . . . , ϕn is actually the case,
but such that the remaining agents do not know which from these
alternatives that is. Let ϕi be the actually told proposition.

In LKC⊗ this is described as a pointed action model visualised as (with
the preconditions below the unnamed action points)

In L! the coresponding epistemic action is

LA (LB?ϕ1 ∪ · · · ∪ !LBϕi ∪ · · · ∪ LBϕn)



EA←AMC | Example 6.40

Consider the case where a subgroup B of all agents A is told which of
n alternatives described by propositions ϕ1, . . . , ϕn is actually the case,
but such that the remaining agents do not know which from these
alternatives that is. Let ϕi be the actually told proposition.

In LKC⊗ this is described as a pointed action model visualised as (with
the preconditions below the unnamed action points)

In L! the coresponding epistemic action is

LA (LB?ϕ1 ∪ · · · ∪ !LBϕi ∪ · · · ∪ LBϕn)



Bisimilarity & Action Emulation Validities & Axiomatisation DEMO EA vs AMC Private Announcements

1 Bisimilarity & Action Emulation

2 Validities & Axiomatisation

3 DEMO

4 EA vs AMC

5 Private Announcements

Thomas Pipilikas A.L.MA.

Action Models



Bisimilarity & Action Emulation Validities & Axiomatisation DEMO EA vs AMC Private Announcements

In this section we pay attention to modelling private (truthful)
announcements, that transform an epistemic state into a belief state,
where agents not involved in private announcements lose their access
to the actual world.

In different words: agents that are unaware of the private
announcement therefore have false beliefs about the actual state of the
world, namely, they believe that what they knew before the action, is
still true.

Thomas Pipilikas A.L.MA.
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The proper general notion of action model is as follows

Definition (Action model for belief)

Let L be a logical language for given parameters agents A and atoms
P . An action model M is a structure 〈S,R, pre〉 s.t. S is a domain of
action points, s.t. for each a ∈ A ,Ra is an accessibility relation on S,
and s.t. pre : S→ L is a preconditions function that assigns a
precondition pre(s) ∈ L to each s ∈ S. A pointed action model is a
structure (M, s) with s ∈ S.

One also has to adjust various other definitions, namely those of action
model language, action model execution, and action model composition.

Thomas Pipilikas A.L.MA.

Action Models



Bisimilarity & Action Emulation Validities & Axiomatisation DEMO EA vs AMC Private Announcements

The ‘typical’ action that needs such a more general action model is the
‘private announcement to a subgroup’ mentioned above.

Let subgroup B of the public A learn that ϕ is true, without the
remaining agents realising (or even suspecting) that.

The action model for that is pictured below

Thomas Pipilikas A.L.MA.
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Example 6.43

Consider the epistemic state (Letter , 1) where Aggela and Baggelis are
uncertain about the truth of p.

The epistemic action that Aggela learns p without Baggelis noticing
that, consists of two action points p and t, with preconditions p and >,
and p actually happens.
The model and its execution are pictured below.
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Example 6.43+

Model and execute the action where Aggela secretly reads the letter and
learns p, while thinking that Baggelis doesn’t see her, but Baggelis does
see her reading the letter, without learning the content of the letter.

Thus, in the final epistemic model, Aggela knows that p holds, Baggelis
doesn’t know that p, but he knows, that Aggela knows whether p or
¬p, and Aggela believes that Baggelis doesn’t know that Aggela knows
whether p or ¬p;
i.e.

Kap

¬ (Kbp ∨ Kb¬p)

Kb (Kap ∨ Ka¬p)

¬Ka (Kb (Kap ∨ Ka¬p))
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Example 6.43+

We model this action in two steps.

Firstly, we assume that a private announcement is being made in
which Aggela learns whether p or ¬p, and she actually learns p.

Secondly, we assume that a private announcement is being made
in which Baggelis learns that Aggela knows whether p or ¬p, and
she actually learns p.
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Example 6.43+ | 1st announcement
The preconditions of np, p, t are defined as usual.



Example 6.43+ | 2nd announcement
The precondition of k is pre(k) B Kap ∨ Ka¬p and the precondition of
t′ is pre(t′) B >.
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