Overview

GAMES, DYNAMICS & LEARNING

Panayotis Mertikopoulos¹

joint with

A. Giannou² T. Lianeas² E. V. Vlatakis-Gkaragkounis³

¹French National Center for Scientific Research (CNRS) & Criteo AI Lab

2NTUA

³Columbia University

ECE-NTUA - May 28, 2021

Overview

3. LEARNING IN FINITE GAMES AND BANDITS

Panayotis Mertikopoulos¹

joint with

A. Giannou² T. Lianeas² E. V. Vlatakis-Gkaragkounis³

¹French National Center for Scientific Research (CNRS) & Criteo AI Lab

2NTUA

³Columbia University

ECE-NTUA - May 28, 2021

Overvi 0000	ew Online learning - cont. time	Multi-agent learning – cont. time 000000000	Learning in discrete time	
CITS	Outline			
	Overview			
	Online learning - cont. time			
	Multi-agent learning - cont. t			
	Learning in discrete time			

Overvie O●OC	w Onlin	Multi-agent learning - cont. time 000000000	Learning in discrete time	
cnrs	Overview			

Learning in finite games

- ▶ Frequencies (population shares) ~→ Choice probabilities (mixed strategies)
- Dynamics (continuous time) ~> Algorithms (discrete time)
- Information available to the players:
 - Perfect payoff vector
 - Noisy payoff vector
 - Bandit (only rewards)
- Big picture: Focus on concepts + selected deep dives
- Multi-agent (game-theoretic) v. online ("playing against anything")
- Notation: losses ("ℓ") ↔ utilities ("u"); actions ↔ pure strategies; etc.

Overviev 0000	w Online learning - cont. time 00000000	Multi-agent learning - cont. time 000000000	Learning in discrete time	
onrs	Learning with a finite num	nber of actions		
	Online decision-making wit	h mixed strategies		
	repeat			
	At each epoch $t \ge 0$			
	Choose mixed strategy x	$t \in \mathcal{X} \coloneqq \Delta(\mathcal{A})$		
	Encounter payoff vector	$V_t \in \mathbb{R}^{\mathcal{A}}$	[depends on c	ontext]
	Get mean payoff $u_t(x_t)$ =	$= \langle V_t, x_t \rangle$		
	Receive feedback		[depends on c	ontext]
	until end			

Overvie 0000	online learning - cont. time	Multi-agent learning - cont. time 000000000	Learning in discrete time	
onrs	Learning with a finite nun	nber of actions		
	Online decision-making wit	h mixed strategies		
	repeat			
	At each epoch $t \ge 0$			
	Choose mixed strategy x	$t_t \in \mathcal{X} \coloneqq \Delta(\mathcal{A})$		
	Encounter payoff vector	$V_t \in \mathbb{R}^{\mathcal{A}}$	[depends on co	ontext]
	Get mean payoff $u_t(x_t)$:	$= \langle V_t, x_t \rangle$		
	Receive feedback		[depends on co	ontextl

until end

Key considerations

- Time: continuous or discrete?
- Players: //d////d//s//d/ discrete
- Actions: /d///ti/W///////discrete
- Payoffs: determined by other players or "Nature"?
- Feedback: full info? payoff-based?

Overview 000●		Multi-agent learning – cont. time 000000000	Learning in discrete time	
CITS Onli	ino v multi agont logr	aina		

How are payoffs generated?

Overview 000●	Multi-agent learning – cont. time 000000000	Learning in discrete time	
CITS			

How are payoffs generated?

Online viewpoint

- Single, focal agent
- Different payoff function encountered at each stage
- Agnostic: no assumptions on mechanism generating *u*_t (dispassionate Nature)

Overview	Online learning - cont. time	Multi-agent learning - cont. time	Learning in discrete time	

How are payoffs generated?

Online viewpoint

- Single, focal agent
- Different payoff function encountered at each stage
- Agnostic: no assumptions on mechanism generating *u*_t (dispassionate Nature)

Multi-agent viewpoint

- Several agents
- Individual payoff functions depend on actions of other agents
- Game-theoretic: underlying mechanism is a (finite) game

Overview	Online learning - cont. time	Multi-agent learning - cont. time	Learning in discrete time	

How are payoffs generated?

Online viewpoint

- Single, focal agent
- Different payoff function encountered at each stage
- Agnostic: no assumptions on mechanism generating *u*_t (dispassionate Nature)

Multi-agent viewpoint

- Several agents
- Individual payoff functions depend on actions of other agents
- Game-theoretic: underlying mechanism is a (finite) game

What is the interplay between online and multi-agent learning?

	ew Online learning - cont. time	Multi-agent learning - cont. time 000000000	Learning in discrete time	
crrs	Outline			
	Overview			
	Online learning - cont. time	2		
	Multi-agent learning - cont.	time		
	Learning in discrete time			

Online learning - cont. time		
0000000		

The most widely used online performance measure is the agent's regret

 $u_t(x) - u_t(x_t)$

Online learning - cont. time		
0000000		

The most widely used online performance measure is the agent's regret

$$\int_0^T [u_t(x) - u_t(x_t)] dt$$

	Online learning - cont. time	Multi-agent learning - cont. time	Learning in discrete time	
0000	0000000	00000000	000000000000	0

The most widely used online performance measure is the agent's regret

$$\max_{x\in\mathcal{X}}\int_0^T [u_t(x)-u_t(x_t)]\,dt$$

Online learning - cont. time		
0000000		

The most widely used online performance measure is the agent's regret

$$\operatorname{Reg}(T) = \max_{x \in \mathcal{X}} \int_0^T [u_t(x) - u_t(x_t)] dt = \max_{x \in \mathcal{X}} \int_0^T \langle V_t, x - x_t \rangle dt$$

Online learning - cont. time		
0000000		

The most widely used online performance measure is the agent's regret

$$\operatorname{Reg}(T) = \max_{x \in \mathcal{X}} \int_0^T \left[u_t(x) - u_t(x_t) \right] dt = \max_{x \in \mathcal{X}} \int_0^T \langle V_t, x - x_t \rangle dt$$

No regret: $\operatorname{Reg}(T) = o(T)$

[the smaller the better]

"The chosen policy is as good as the best fixed strategy in hindsight."

Online learning - cont. time ○●○○○○○○	Multi-agent learning - cont. time 000000000	Learning in discrete time	

The most widely used online performance measure is the agent's regret

$$\operatorname{Reg}(T) = \max_{x \in \mathcal{X}} \int_{0}^{T} [u_{t}(x) - u_{t}(x_{t})] dt = \max_{x \in \mathcal{X}} \int_{0}^{T} \langle V_{t}, x - x_{t} \rangle dt$$

$$\operatorname{Dyn} \operatorname{Peg}(T) = \int_{0}^{T} \max_{x \in \mathcal{X}} \left[u_{t}(x) - \mathcal{U}_{t}(x_{t}) \right] dt$$

No regret:
$$\operatorname{Reg}(T) = o(T)$$

[the smaller the better]

"The chosen policy is as good as the best fixed strategy in hindsight."

Prolific literature:

- Economics
- Mathematics
- Computer science

[Hannan; Fudenberg & Levine; Hart & Mas-Colell...]

[Robinson; Blackwell; Hofbauer; Sorin...]

[Littlestone & Warmuth; Vovk; Cesa-Bianchi & Lugosi ...]

6

	ew Online learning - cont. time	Multi-agent learning - cont. time 000000000	Learning in discrete time	
CINIS	liniahhai -	l		

Learning with exponential weights

The "exponential weights" dynamics

$$\dot{y}_t = V_t$$
 $x_t = \Lambda(y_t)$ (EWD)

where Λ is the logit map

$$\Lambda(y) = \frac{(\exp(y_a))_{a \in \mathcal{A}}}{\sum_{a \in \mathcal{A}} \exp(y_a)} \text{ for all } y \in \mathbb{R}^{\mathcal{A}}$$
Possible approach: Look at distance between x_t and benchmerk x

$$D_t = \frac{1}{2} ||x_t - x||^2$$

$$D_t = \langle x_t - x_t, x_t \rangle = \underbrace{U_g h_g}.$$

	Online learning - cont. time 00●00000	Multi-agent learning - cont. time 000000000	Learning in discrete time	
cnrs .				

Learning with exponential weights

The "exponential weights" dynamics

$$\dot{y}_t = V_t \qquad x_t = \Lambda(y_t)$$
 (EWD)

where Λ is the logit map

$$\Lambda(y) = \frac{(\exp(y_a))_{a \in \mathcal{A}}}{\sum_{a \in \mathcal{A}} \exp(y_a)} \quad \text{for all } y \in \mathbb{R}^{\mathcal{A}}$$

• KL divergence relative to a target strategy $x \in \mathcal{X}$

$$D_t \coloneqq D_{\mathrm{KL}}(x, x_t) = \sum_{a \in \mathcal{A}} x_a \log \frac{x_a}{x_{a,t}}$$

Evolution over time

$$\dot{D}_{t} = \cdots = \langle V_{t}, x_{t} - x \rangle = u_{t}(x_{t}) - u_{t}(x)$$

$$D_{t} = D_{o} + \int_{o}^{t} \left[\mathcal{U}_{t}(x_{s}) - \mathcal{U}_{t}(x) \right] d\mathbf{1}$$

	Online learning - cont. time 00●00000	Multi-agent learning - cont. time 000000000	Learning in discrete time	
cnrs .				

Learning with exponential weights

The "exponential weights" dynamics

$$\dot{y}_t = V_t \qquad x_t = \Lambda(y_t)$$
 (EWD)

where Λ is the logit map

$$\Lambda(y) = \frac{(\exp(y_a))_{a \in \mathcal{A}}}{\sum_{a \in \mathcal{A}} \exp(y_a)} \quad \text{for all } y \in \mathbb{R}^{\mathcal{A}}$$

• KL divergence relative to a target strategy $x \in \mathcal{X}$

$$D_t \coloneqq D_{\mathrm{KL}}(x, x_t) = \sum_{a \in \mathcal{A}} x_a \log \frac{x_a}{x_{a,t}}$$

Evolution over time

$$\dot{D}_t = \cdots = \langle V_t, x_t - x \rangle = u_t(x_t) - u_t(x)$$

Integrate:

$$\operatorname{Reg}(T) \leq \max_{x \in \mathcal{X}} D_{\operatorname{KL}}(x, x_0) = \mathcal{O}(1)$$

	Online learning - cont. time 000●0000	Multi-agent learning - cont. time 000000000	Learning in discrete time	
CITS F-1		d		

Follow the regularized leader

Are the no-regret propeties of (EWD) a "fluke"?

Are the no-regret propeties of (EWD) a "fluke"?

• $\Lambda(y)$ approximates the best response correspondence (the "leader")

 $y \mapsto \arg \max_{x \in \mathcal{X}} (y, x)$ Observe $v = (v_1, \dots, v_n)$ $(v_1, \chi) = \sum_n v_n \chi_n$ $\max_n v_n = \max_{x \in \mathcal{X}} (v_1, \chi) = \max_{x \in \mathcal{X}} \sum_{x \in \mathcal{X}} v_n \chi_n$

	Online learning - cont. time 000●0000	Multi-agent learning – cont. time 000000000	Learning in discrete time	
CITS Follo	ow the regularized lead	ler		

Are the no-regret propeties of (EWD) a "fluke"?

• $\Lambda(y)$ approximates the best response correspondence (the "leader")

 $y \mapsto \arg \max_{x \in \mathcal{X}} \{(y, x) - h(x)\}$ where $h(x) = \sum_{a \in \mathcal{A}} x_a \log x_a$ is the (negative) entropy of $x \in \mathcal{X}$ Exercise: Show that $\bigwedge (y)$ maximizes $\langle y, x \rangle - \sum_{a, za} \log x_a$ for $z_a = 1$, $z_a \ge 0$

	Online learning - cont. time 000●0000	Multi-agent learning – cont. time 000000000	Learning in discrete time	
Follo	ow the regularized lead	der		

Are the no-regret propeties of (EWD) a "fluke"?

• $\Lambda(y)$ approximates the best response correspondence (the "leader")

 $y \mapsto \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$

where $h(x) = \sum_{a \in \mathcal{A}} x_a \log x_a$ is the (negative) entropy of $x \in \mathcal{X}$

Regularized best responses

$$Q(y) = \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$$

where $h: \mathcal{X} \to \mathbb{R}$ is a (strictly) convex regularizer function

	Online learning - cont. time 0000€000	Multi-agent learning – cont. time 000000000	Learning in discrete time	
CITS The	brainstion dynamics			

The projection dynamics

Example: Quadratic (Euclidean) regularization

$$h(x) = \frac{1}{2} \sum_{a} x_a^2$$

Overview	Online learning - cont. time	Multi-agent learning - cont. time	Learning in discrete time	References
0000	0000€000	000000000		O
CITS The	projection dynamics			

Example: Quadratic (Euclidean) regularization

$$h(x) = \frac{1}{2} \sum_{a} x_a^2$$

Choice map \rightsquigarrow closest point projection:

$$\Pi(y) = \underset{x \in \mathcal{X}}{\arg\max}\{\langle y, x \rangle - (1/2) \|x\|_{2}^{2}\} = \underset{x \in \mathcal{X}}{\arg\min}\|y - x\|$$

	Online learning - cont. time 0000●000	Multi-agent learning - cont. time 000000000	Learning in discrete time	
CINIS TI	ne proiection dynamics			

Example: Quadratic (Euclidean) regularization

$$h(x) = \frac{1}{2} \sum_{a} x_a^2$$

Choice map \sim closest point projection:

$$\Pi(y) = \underset{x \in \mathcal{X}}{\arg \max}\{\langle y, x \rangle - (1/2) \|x\|_{2}^{2}\} = \underset{x \in \mathcal{X}}{\arg \min} \|y - x\|$$

Projection dynamics

[M & Sandholm, 2016]

$$\dot{y}_t = V_t$$

$$x_t = \Pi(y_t)$$
(PL)

 Overview
 Online learning - cont. time
 Multi-agent learning - cont. time
 Learning in discrete time
 References

 0000
 00000000
 0000000000
 0000000000
 0

In and out of the boundary

CNI

 Overview
 Online learning - cont. time
 Multi-agent learning - cont. time
 Learning in discrete time
 Reference

 0000
 000000000
 0000000000
 0

Key difference with replicator: faces no longer forward invariant

Cn

The Tsallis-Havrda -Charvát kernel: $h(x) = [q(1-q)]^{-1} \sum_{a} (x_a - x_a^q)$

The Tsallis-Havrda -Charvát kernel: $h(x) = [q(1-q)]^{-1} \sum_{a} (x_a - x_a^q)$

	Online learning - cont. time 0000000●	Multi-agent learning - cont. time 00000000	Learning in discrete time	
enrs				

No regret under FTRL

Do the no-regret properties of (EWD) extend to (FTRL)?
Do the no-regret properties of (EWD) extend to (FTRL)?

Require primal-dual analogue of KL divergence

	ew Online learning - cont. time	Multi-agent learning - cont. time 000000000	Learning in discrete time	
cnrs	No regret under FTRL			

Do the no-regret properties of (EWD) extend to (FTRL)?

- Require primal-dual analogue of KL divergence
- Fenchel coupling

[M & Sandholm, 2016; M & Zhou, 2019]

$$F_t = h(x) + h^*(y_t) - \langle y_t, x \rangle$$

where $h^*(y) = \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$ is the convex conjugate of h

Overvie 0000	w Online learning - cont. time 0000000●	Multi-agent learning - cont. time 000000000	Learning in discrete time	
cnrs	No regret under FTRL			
	Do the no-regret properties	s of (EWD) extend to (FTRL)?	

- Require primal-dual analogue of KL divergence
- Fenchel coupling

[M & Sandholm, 2016; M & Zhou, 2019]

$$F_t = h(x) + h^*(y_t) - \langle y_t, x \rangle$$

where $h^*(y) = \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$ is the convex conjugate of h

By Danskin's theorem:

 $[\nabla h^*(y) = Q(y)]$

$$\dot{F}_{t} = (\dot{y}_{t}, Q(\sigma_{t})) + (\dot{y}_{t}, x) = \langle V_{t}, x_{t} - x \rangle$$

	ew Online learning - cont. time	Multi-agent learning – cont. time 000000000	Learning in discrete time	
cnrs	No regret under FTRL			

Do the no-regret properties of (EWD) extend to (FTRL)?

- Require primal-dual analogue of KL divergence
- Fenchel coupling

[M & Sandholm, 2016; M & Zhou, 2019]

$$F_t = h(x) + h^*(y_t) - \langle y_t, x \rangle$$

where $h^*(y) = \max_{x \in \mathcal{X}} \{ (y, x) - h(x) \}$ is the convex conjugate of h

By Danskin's theorem:

 $[\nabla h^*(y) = Q(y)]$

$$\dot{F}_t = \langle \dot{y}_t, Q(y_t) \rangle - \langle \dot{y}_t, x \rangle = \langle V_t, x_t - x \rangle$$

Theorem (Kwon & M, 2017)

Under (FTRL), the optimizer enjoys the regret bound

$$\operatorname{Reg}(T) \leq \max_{x \in \mathcal{X}} F(x, y_0) = \mathcal{O}(1)$$

Overvi 0000	iew O	Online learning - cont. time 00000000	Multi-agent learning - cont. time ●00000000	Learning in discrete time 000000000000	References O
CITS	Outline				
		W			
		learning - cont. time			
	Multi-aç	gent learning - cont. tim	e		

Learning in discrete time

			Multi-agent learning - cont. time ○●○○○○○○○	Learning in discrete time	
cnrs	Multi-agent le	arning			

- Multiple agents, individual objectives
- Payoffs determined by actions of all agents
- Agents receive payoffs, adjust actions, and the process repeats

		Multi-agent learning - cont. time O●0000000	Learning in discrete time	
CITS	Multi-agent learning			

Multiple agents, individual objectives

Example: select a route from home to work

Payoffs determined by actions of all agents

Example: outcome of auction revealed

Agents receive payoffs, adjust actions, and the process repeats

Example: change bid next time

			Multi-agent learning - cont. time ○●○○○○○○○	Learning in discrete time	
cnrs	Multi-agent lea	Irning			

Multiple agents, individual objectives

Example: select a route from home to work

Payoffs determined by actions of all agents

Example: outcome of auction revealed

• Agents receive payoffs, **adjust actions**, and the process repeats

Example: change bid next time

Does no-regret learning lead to equilibrium?

		Multi-agent learning - cont. time	
		00000000	
Fini	te games		

• Players: $\mathcal{N} = \{1, \ldots, N\}$

[atomic player roles]

- Actions: finite action sets $A_i = \{a_{i,1}, a_{i,2}, ...\}$
- [routes, bids, products,...]

- Payoffs: depend on all players' strategies
 - Action profiles $(a_i; a_{-i}) \coloneqq (a_1, \ldots, a_i, \ldots, a_N) \in \mathcal{A} = \prod_i \mathcal{A}_i$
 - Mixed strategies

$$\begin{split} & x_{ia_i} = \text{probability that player } i \text{ chooses } a_i \in \mathcal{A}_i \\ & x_i = (x_{ia_i})_{a_i \in \mathcal{A}_i} \in \mathcal{X}_i \coloneqq \Delta(\mathcal{A}_i) \\ & x = (x_1, \dots, x_N) \in \mathcal{X} \coloneqq \prod_i \mathcal{X}_i \end{split}$$

Payoff functions

 $u_i(a_i; a_{-i}) = \text{payoff to player } i \text{ when playing } a_i \text{ against } a_{-i}$

Mean payoff per strategy

$$u_{ia_i}(x)\coloneqq u_i(a_i;x_{-i})=\sum_{a_{-i}}x_{-i,a_{-i}}u_i(a_i;a_{-i})$$

Payoff vector

$$V_i(x) = (u_{ia_i}(x))_{a_i \in \mathcal{A}_i}$$

	Multi-agent learning - cont. time 000●00000	Learning in discrete time	
enre			

Correlated strategies

Instead of mixing, correlated strategies respond to the "state of the world"

$$\chi_a = \chi_{a_1,\ldots,a_N} \in \Delta(\mathcal{A})$$

 $[\mathsf{NB}:\prod_i \Delta(\mathcal{A}_i) \ll \Delta(\prod_i \mathcal{A}_i)]$

CNRS & Criteo Al Lab

	Multi-agent learning – cont. time 000●00000	Learning in discrete time	
onrs			

Correlated strategies

Instead of mixing, correlated strategies respond to the "state of the world"

$$\chi_a = \chi_{a_1,\ldots,a_N} \in \Delta(\mathcal{A})$$

 $[\mathsf{NB}:\prod_i \Delta(\mathcal{A}_i) \ll \Delta(\prod_i \mathcal{A}_i)]$

Marginals of χ :

$$x_{ia_i} = \sum_{a_{-i} \in \mathcal{A}_{-i}} \chi_{a_i;a_{-i}}$$

[NB: χ mixed $\iff \chi_a = \prod_i x_{ia_i}$]

		Multi-agent learning - cont. time	
		00000000	
Corrs			
Cor	related strategies		

Instead of mixing, correlated strategies respond to the "state of the world"

$$\chi_a = \chi_{a_1,\ldots,a_N} \in \Delta(\mathcal{A})$$

 $[\mathsf{NB}:\prod_i \Delta(\mathcal{A}_i) \ll \Delta(\prod_i \mathcal{A}_i)]$

Marginals of χ :

$$x_{ia_i} = \sum_{a_{-i} \in \mathcal{A}_{-i}} \chi_{a_i;a_{-i}}$$

[NB: χ mixed $\iff \chi_a = \prod_i x_{ia_i}$]

Correlated equilibrium:

[Aumann, 1974, 1987]

$$\sum_{a_{-i}\in\mathcal{A}_{-i}}\chi^*_{a_i;a_{-i}}u_i(a_i;a_{-i})\geq \sum_{a_{-i}\in\mathcal{A}_{-i}}\chi^*_{a_i;a_{-i}}u_i(a_i';a_{-i}) \quad \text{for all } a_i,a_i'$$

		Multi-agent learning – cont. time 000●00000	Learning in discrete time	
CITS	Correlated strategies			
	Instead of mixing, correlate	d strategies respond to the	"state of the world"	

$$\chi_a = \chi_{a_1,\ldots,a_N} \in \Delta(\mathcal{A})$$

 $[\mathsf{NB}:\prod_i \Delta(\mathcal{A}_i) \ll \Delta(\prod_i \mathcal{A}_i)]$

Marginals of
$$\chi$$
:

$$x_{ia_i} = \sum_{a_{-i} \in \mathcal{A}_{-i}} \chi_{a_i;a_{-i}}$$

[NB: χ mixed $\iff \chi_a = \prod_i x_{ia_i}$]

Correlated equilibrium:

[Aumann, 1974, 1987]

$$\sum_{a_{-i} \in \mathcal{A}_{-i}} \chi^*_{a_i; a_{-i}} u_i(a_i; a_{-i}) \ge \sum_{a_{-i} \in \mathcal{A}_{-i}} \chi^*_{a_i; a_{-i}} u_i(a'_i; a_{-i}) \quad \text{for all } a_i, a'_i$$

Coarse correlated equilibrium:

[Hannan, 1957]

$$\sum_{a_i \in \mathcal{A}_i} \sum_{a_{-i} \in \mathcal{A}_{-i}} \chi^*_{a_i;a_{-i}} u_i(a_i;a_{-i}) \geq \sum_{a_i \in \mathcal{A}_i} \sum_{a_{-i} \in \mathcal{A}_{-i}} \chi^*_{a_i;a_{-i}} u_i(a'_i;a_{-i})$$

	Multi-agent learning - cont. time 0000€0000	Learning in discrete time	
Corre			

No regret and equilibrium

No-regret learning converges to equilibrium!

	Multi-agent learning - cont. time 0000●0000	Learning in discrete time	
cnrs			

No regret and equilibrium

Under no-regret learning, empirical frequencies converge to equilibrium ...

	Multi-agent learning - cont. time 0000●0000	Learning in discrete time	
CITS			

No regret and equilibrium

Under no-regret learning, empirical frequencies of play converge to coarse correlated equilibrium

Overview	Online learning - cont. time	Multi-agent learning – cont. time	Learning in discrete time	References
0000	00000000	0000●0000		O
	lo regret and equilibrium			

Under no-regret learning, **empirical frequencies of play** converge to **coarse correlated** equilibrium 「_(ツ)_/

		Multi-agent learning - cont. time 000000000	Learning in discrete time	
CITS	No-regret learning and ratio	nality		

What is the interplay between online and multi-agent learning?

		Multi-agent learning - cont. time 000000●00	Learning in discrete time	
CITS Dor	ninated strategies			

Suppose $a \in \mathcal{A}$ is *dominated* by $a' \in \mathcal{A}$

Consistent difference in payoffs/scores:

$$u_a(x) \le u_{a'}(x) - \varepsilon \quad \text{for some } \varepsilon > 0$$
$$y_{a,t} = \int_0^t u_a(x_\tau) \, d\tau \le \int_0^t [u_{a'}(x_\tau) - \varepsilon] \, d\tau = y_{a',t} - \varepsilon t$$

		Multi-agent learning - cont. time 000000●00	Learning in discrete time	
CITS	Dominated strategies			

Suppose $a \in \mathcal{A}$ is *dominated* by $a' \in \mathcal{A}$

Consistent difference in payoffs/scores:

$$u_a(x) \le u_{a'}(x) - \varepsilon \quad \text{for some } \varepsilon > 0$$
$$y_{a,t} = \int_0^t u_a(x_\tau) \, d\tau \le \int_0^t \left[u_{a'}(x_\tau) - \varepsilon \right] d\tau = y_{a',t} - \varepsilon t$$

Translation to choice probabilities not clear

Want: large score difference
$$y_{a',t} - y_{a,t} \implies x_{a,t} \rightarrow 0$$
 (???)

		Multi-agent learning - cont. time 000000●00	Learning in discrete time	
CITS	Dominated strategies			

Suppose $a \in A$ is dominated by $a' \in A$

Consistent difference in payoffs/scores:

$$u_{a}(x) \leq u_{a'}(x) - \varepsilon \quad \text{for some } \varepsilon > 0$$
$$y_{a,t} = \int_{0}^{t} u_{a}(x_{\tau}) d\tau \leq \int_{0}^{t} [u_{a'}(x_{\tau}) - \varepsilon] d\tau = y_{a',t} - \varepsilon t$$

Translation to choice probabilities not clear

Want: large score difference
$$y_{a',t} - y_{a,t} \implies x_{a,t} \to 0$$
 (???)

Theorem (M & Sandholm, 2016)

Under (FTRL):

- lim $_{t\to\infty} x_{ia_i,t} = 0$ whenever a_i is dominated
- If h is (sub)differentiable on X, elimination occurs in finite time

	Multi-agent learning - cont. time	
	000000000	

Stability and convergence

Primal-dual nature of dynamics requires redefinition:

Definition

- 1. x^* is stable if $Q(y_t)$ stays close to x^* when $Q(y_0)$ starts close enough to x^*
- 2. x^* is attracting if $Q(y_t) \rightarrow x^*$ whenever $Q(y_0)$ starts close enough to x^*
- 3. x^* is asymptotically stable if it is stable and attracting

	Multi-agent learning - cont. time	
	000000000	

Stability and convergence

Primal-dual nature of dynamics requires redefinition:

Definition

- 1. x^* is stable if $Q(y_t)$ stays close to x^* when $Q(y_0)$ starts close enough to x^*
- 2. x^* is attracting if $Q(y_t) \rightarrow x^*$ whenever $Q(y_0)$ starts close enough to x^*
- 3. x^* is asymptotically stable if it is stable and attracting

Theorem (M & Sandholm, 2016; Flokas et al., 2020)

- I. If $x_t \rightarrow x^*$, then x^* is a Nash equilibrium.
- II. If $x^* \in \mathcal{X}$ is stable, then x^* is Nash.
- III. x^* is asymptotically stable if and only if it is a strict Nash equilibrium.

[Special case: "folk theorem" of EGT]

P. Mertikopoulos

	Multi-agent learning - cont. time 00000000●	Learning in discrete time	
CITS No.			

Non-convergence in zero-sum games

In bilinear zero-sum games:

 x^* is full-support equilibrium \implies (FTRL) admits constant of motion

 $F(x^*, y) = h(x^*) + h^*(y) - \langle y, x^* \rangle$

	Multi-agent learning - cont. time 00000000●	Learning in discrete time	
enre			

Non-convergence in zero-sum games

In bilinear zero-sum games:

 x^* is full-support equilibrium \implies (FTRL) admits constant of motion

$$F(x^*, y) = h(x^*) + h^*(y) - \langle y, x^* \rangle$$

Theorem (M & Sandholm, 2016; M, Piliouras & Papadimitriou, 2018)

Assume (FTRL) is run in a bilinear zero-sum game with an interior equilibrium. Then:

- The dynamics are Poincaré recurrent
- Time-averages $\bar{x}_t = t^{-1} \int_0^t x_\tau d\tau$ converge to Nash equilibrium

			Multi-agent learning - cont. time 000000000	Learning in discrete time ●00000000000	
CITS	Outline	2			
		9W			
		learning - cont. time			
	Multi-a	gent learning - cont. tim			
	Loomin	er in diagrata time			

Learning in discrete time

Learning in discrete time 00000000000 CI Learning with a finite number of actions Online decision-making with mixed strategies repeat STOCHASTIC PROCESS At each epoch $t = 1, 2, \ldots$ Choose mixed strategy $X_t \in \mathcal{X} \coloneqq \Delta(\mathcal{A})$ Choose **action** $a_t \sim X_t$ Encounter payoff vector $V_t \in \mathbb{R}^{\mathcal{A}}$ [depends on context] Get payoff $u_t(a_t) = V_{a_t,t}$ Receive feedback [maybe] until end

		Multi-agent learning - cont. time 000000000	Learning in discrete time 000000000000000000000000000000000000	
Lea	rning with a finite num	ber of actions		

Online decision-making with mixed strategies

repeat

```
At each epoch t = 1, 2, ...

Choose mixed strategy X_t \in \mathcal{X} := \Delta(\mathcal{A})

Choose action a_t \sim X_t

Encounter payoff vector V_t \in \mathbb{R}^{\mathcal{A}}

Get payoff u_t(a_t) = V_{a_t,t}

Receive feedback

until end
```

[depends on context]

[maybe]

Key considerations

- Players: //d/////d//s///discrete
- Actions: /dd//ti/W/d//s//d/ discrete
- Losses: determined by other players or "Nature"?
- Feedback: full info? payoff-based?

	Multi-agent learning - cont. time 000000000	Learning in discrete time 00●000000000	
cmrs			

Multi-armed bandits

Robbins' multi-armed bandit problem: how to play in a (rigged) casino?

	Multi-agent learning - cont. time 000000000	Learning in discrete time	

Multi-armed bandits

Robbins' multi-armed bandit problem: how to play in a (rigged) casino?

[Lec. 6: What if the arms are players themselves?]

	Learning in discrete time	
	00000000000	

Online viewpoint: regret minimization

The agent's regret in discrete time

Realized regret:
$$\operatorname{Reg}(T) = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} [u_t(a) - u_t(a_t)]$$

Mean regret: $\overline{\operatorname{Reg}}(T) = \max_{x \in \mathcal{X}} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)] = \max_{x \in \mathcal{X}} \sum_{t=1}^{T} \langle V_t, x - X_t \rangle$

	Learning in discrete time	
	00000000000	

Online viewpoint: regret minimization

The agent's regret in discrete time

Realized regret:
$$\operatorname{Reg}(T) = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} [u_t(a) - u_t(a_t)]$$

Mean regret: $\overline{\operatorname{Reg}}(T) = \max_{x \in \mathcal{X}} \sum_{t=1}^{T} [u_t(x) - u_t(X_t)] = \max_{x \in \mathcal{X}} \sum_{t=1}^{T} \langle V_t, x - X_t \rangle$

- Adversarial framework: regret guarantees against any given sequence V_t
- No distinction between mean regret and pseudo-regret

[Bubeck and Cesa-Bianchi, 2012]

Not here: stochastic, Markovian, oblivious/non-oblivious,...
		Multi-agent learning - cont. time 000000000	Learning in discrete time	
CITS Feed	dback			

Three types of feedback (from best to worst):

- Full, exact information: observe entire payoff vector V_t
- Full, inexact information: observe estimate V_t of V_t
- Partial information / Bandit: only chosen component $u_t(a_t) = V_{a_t,t}$

		Multi-agent learning - cont. time 000000000	Learning in discrete time 0000●0000000	
CITS Feed	dback			

Three types of feedback (from best to worst):

- Full, exact information: observe entire payoff vector V_t
- ▶ Full, inexact information: observe estimate V_t of V_t
- Partial information / Bandit: only chosen component $u_t(a_t) = V_{a_t,t}$

Typically V_t

$$V_t = V_t + Z_t + b_t$$

where Z_t is **zero-mean** and b_t is the **bias** of V_t

		Multi-agent learning - cont. time 000000000	Learning in discrete time 0000●0000000	
CITS Feed	lback			

Three types of feedback (from best to worst):

- Full, exact information: observe entire payoff vector V_t
- Full, inexact information: observe estimate V_t of V_t
- Partial information / Bandit: only chosen component $u_t(a_t) = V_{a_{t,t}}$

Typically V_t

$$V_t = V_t + Z_t + b_t$$

where Z_t is **zero-mean** and b_t is the **bias** of V_t

Assumptions

- Assumptions Bias: $||b_t|| \le B_t$ (a.s.) $\mathcal{F}_t = c(X_1, ..., X_t)$ Variance: $\mathbb{E}[||Z_t||^2 | \mathcal{F}_t] \le \sigma_t^2$ (a.s.)

 - Second moment: $\mathbb{E}[||V_t||^2 | \mathcal{F}_t] \leq M_t^2$ (a.s.)

		Multi-agent learning - cont. time 000000000	Learning in discrete time 00000●000000	
cnrs	Follow the regularized lead	der		
	Implementing FTRL with full	information (exact or ine	xact):	1 100 , 1009
		$Y_{t+1} = Y_t + V_t$ $X_{t+1} = Q(\eta_{t+1}Y_{t+1})$	DUAL AVERNOR (F	TRL)

where η_t is a variable learning rate parameter

Overview	Online learning - cont. time	Multi-agent learning – cont. time	Learning in discrete time	References
0000	00000000	000000000	000000000000	O
CITS Foll	ow the regularized lead	der		

Implementing FTRL with full information (exact or inexact):

$$Y_{t+1} = Y_t + \gamma_t V_t$$

$$X_{t+1} = Q(Y_{t+1})$$
(FTRL)

where γ_t is a variable step-size parameter

Technical: Will need Q Lipschitz continuous $\iff h$ is strongly convex

$$h(x') \ge h(x) + \langle \nabla h(x), x' - x \rangle + \frac{K}{2} ||x' - x||^2$$

Example: Multiplicative / Exponential Weights algorithm

$$Y_{t+1} = Y_t + \gamma_t V_t$$

$$X_{t+1} = \frac{(\exp(Y_{a,t+1}))_{a \in \mathcal{A}}}{\sum_{a \in \mathcal{A}} \exp(Y_{a,t+1})} \qquad \qquad \underbrace{Y_{a,t+1}}_{\text{Lecd } Y_{a,t+1}} \quad (EW)$$

[Vovk, 1990; Littlestone and Warmuth, 1994; Auer et al., 1995; Freund and Schapire, 1999; Sorin, 2009; Arora et al., 2012]

		Multi-agent learning - cont. time 000000000	Learning in discrete time ○○○○○○●○○○○○	
CITS Reg	ret guarantees of FTRI			

Regret guarantees of FTRL

Work as in continuous-time case

Fenchel coupling

$$F_t = h(x) + h^*(Y_t) - \langle Y_t, x \rangle$$

Overview	Online learning - cont. time	Multi-agent learning - cont. time	Learning in discrete time	References
0000	00000000	000000000		O
CITS				

Regret guarantees of FIRL

Work as in continuous-time case

Fenchel coupling

$$F_t = h(x) + h^*(Y_t) - \langle Y_t, x \rangle$$

Discrete-time evolution

$$F_{t+1} \leq F_t - \gamma \langle V_t, X_t - x \rangle + \frac{\gamma^2}{2K} \| V_t \|_*^2$$

Aggregate/Telescope:

$$\overline{\text{Reg}}(T) = \mathcal{O}\left(\frac{\max h - \min h}{\gamma} + \sum_{t=1}^{T} B_t + \gamma \sum_{t=1}^{T} M_t^2\right)$$

• Take $\gamma \propto 1/\sqrt{T}$:

$$\overline{\operatorname{Reg}}(T) = \mathcal{O}\left(\sqrt{T} + \sum_{t=1}^{T} B_t + \frac{\sum_{t=1}^{T} M_t^2}{\sqrt{T}}\right)$$

[Why?]

Overview	Online learning - cont. time	Multi-agent learning – cont. time	Learning in discrete time	Reterences
0000	00000000	000000000	0000000●0000	O
Chrs Ram				

Regret guarantees of FTRL

Theorem (?Shalev-Shwartz, 2011)

- Assume:
 - ▶ feedback unbiased and bounded in mean square ($B_t = 0$, $\sup_t M_t < M$)
 - $\gamma = (2/M)\sqrt{KH/T}$ with $H = \max h \min h$
- Then: FTRL enjoys the bound

 $\overline{\text{Reg}}(T) \leq 2M\sqrt{(H/K)T} = \mathcal{O}(\sqrt{T})$

		Multi-agent learning – cont. time 000000000	Learning in discrete time 0000000●0000	
CITS Reg	ret guarantees of FTRI	<u>_</u>		

Theorem (?Shalev-Shwartz, 2011)

- Assume:
 - feedback unbiased and bounded in mean square ($B_t = 0$, $\sup_t M_t < M$)
 - $\gamma = (2/M)\sqrt{KH/T}$ with $H = \max h \min h$
- Then: FTRL enjoys the bound

$$\overline{\operatorname{Reg}}(T) \leq 2M\sqrt{(H/K)T} = \mathcal{O}(\sqrt{T})$$

Observe:

- This bound is tight [Nesterov, 2004; Abernethy et al., 2008; Bubeck, 2015]
- Cannot achieve $\mathcal{O}(1)$ regret as in continuous time

[Why?]

How to do if T is unknown?

	Multi-agent learning - cont. time 000000000	Learning in discrete time	References O

- J. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari. Optimal strategies and minimax lower bounds for online convex games. In COLT '08: Proceedings of the 21st Annual Conference on Learning Theory, 2008.
- S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: A meta-algorithm and applications. *Theory of Computing*, 8(1):121-164, 2012.
- J.-Y. Audibert and S. Bubeck. Regret bounds and minimax policies under partial monitoring. *Journal of Machine Learning Research*, 11:2635-2686, 2010.
- P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In *Proceedings of the 36th Annual Symposium on Foundations of Computer Science*, 1995.
- R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics, 1(1):67-96, March 1974.
- R. J. Aumann. Correlated equilibrium as an expression of Baeysian rationality. *Econometrica*, 55(1):1-18, 1987.
- S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning, 8(3-4):231-358, 2015.
- S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. *Foundations and Trends in Machine Learning*, 5(1):1-122, 2012.
- N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.

		Multi-agent learning - cont. time 000000000	Learning in discrete time	References O
cnrs	References II			
	P. Couchonov, B. Gouial and P. Ma	tikopoulos. Popalty regulated dyn	amics and robust loarning	

- P. Coucheney, B. Gaujal, and P. Mertikopoulos. Penalty-regulated dynamics and robust learning procedures in games. *Mathematics of Operations Research*, 40(3):611–633, August 2015.
- Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29:79-103, 1999.
- D. Fudenberg and D. K. Levine. The Theory of Learning in Games, volume 2 of Economic learning and social evolution. MIT Press, Cambridge, MA, 1998.

D. Fudenberg and J. Tirole. Game Theory. The MIT Press, 1991.

- J. Hannan. Approximation to Bayes risk in repeated play. In M. Dresher, A. W. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, Volume III, volume 39 of Annals of Mathematics Studies, pages 97–139. Princeton University Press, Princeton, NJ, 1957.
- S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. *Econometrica*, 68(5):1127-1150, September 2000.
- S. Hart and A. Mas-Colell. Uncoupled dynamics do not lead to Nash equilibrium. American Economic Review, 93(5):1830-1836, 2003.
- J. Hofbauer and K. Sigmund. *Evolutionary Games and Population Dynamics*. Cambridge University Press, Cambridge, UK, 1998.
- T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, Cambridge, UK, 2020.

		Multi-agent learning - cont. time 000000000	Learning in discrete time	References O
CITS Re	ferences III			

- N. Littlestone and M. K. Warmuth. The weighted majority algorithm. *Information and Computation*, 108 (2):212-261, 1994.
- P. Mertikopoulos and W. H. Sandholm. Learning in games via reinforcement and regularization. *Mathematics of Operations Research*, 41(4):1297-1324, November 2016.
- Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Number 87 in Applied Optimization. Kluwer Academic Publishers, 2004.
- N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, editors. *Algorithmic Game Theory*. Cambridge University Press, 2007.
- W. H. Sandholm. Population Games and Evolutionary Dynamics. MIT Press, Cambridge, MA, 2010.
- S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107-194, 2011.
- S. Sorin. Exponential weight algorithm in continuous time. *Mathematical Programming*, 116(1):513-528, 2009.
- Y. Viossat and A. Zapechelnyuk. No-regret dynamics and fictitious play. *Journal of Economic Theory*, 148(2):825-842, March 2013.
- V. G. Vovk. Aggregating strategies. In COLT '90: Proceedings of the 3rd Workshop on Computational Learning Theory, pages 371–383, 1990.
- J. W. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.