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Overview

Learning in finite games

▸ Frequencies (population shares)! Choice probabilities (mixed strategies)

▸ Dynamics (continuous time)! Algorithms (discrete time)
▸ Information available to the players:

▸ Perfect payoff vector
▸ Noisy payoff vector
▸ Bandit (only rewards)

▸ Big picture: Focus on concepts + selected deep dives

▸ Multi-agent (game-theoretic) v. online (“playing against anything”)

▸ Notation: losses (“ℓ”)↭ utilities (“u”); actions↭ pure strategies; etc.

P. Mertikopoulos CNRS & Criteo AI Lab
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Learning with a finite number of actions

Online decision-making withmixed strategies

repeat
At each epoch t ≥ 

Choosemixed strategy xt ∈ X ∶= ∆(A)
Encounter payoff vector Vt ∈ RA [depends on context]

Getmean payoff ut(xt) = ⟨Vt , xt⟩
Receive feedback [depends on context]

until end

Key considerations
▸ Time: continuous or discrete?
▸ Players: //////////////continuous////or discrete
▸ Actions: ///////////////continuous///or discrete
▸ Payoffs: determined by other players or “Nature”?
▸ Feedback: full info? payoff-based?

P. Mertikopoulos CNRS & Criteo AI Lab
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Online v. multi-agent learning

How are payoffs generated?

▸ Online viewpoint
▸ Single, focal agent
▸ Different payoff function encountered at each stage
▸ Agnostic: no assumptions on mechanism generating ut (dispassionate Nature)

▸ Multi-agent viewpoint
▸ Several agents
▸ Individual payoff functions depend on actions of other agents
▸ Game-theoretic: underlying mechanism is a (finite) game

What is the interplay between online and multi-agent learning?

P. Mertikopoulos CNRS & Criteo AI Lab
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Online viewpoint: regret minimization

The most widely used online performance measure is the agent’s regret

Reg(T) = max
x∈X ∫ T


[

ut(x) − ut(xt)

] dt = max
x∈X ∫ T


⟨Vt , x − xt⟩ dt

No regret: Reg(T) = o(T) [the smaller the better]

”The chosen policy is as good as the best fixed strategy in hindsight.”

Prolific literature:
▸ Economics [Hannan; Fudenberg & Levine; Hart & Mas-Colell…]

▸ Mathematics [Robinson; Blackwell; Hofbauer; Sorin…]

▸ Computer science [Littlestone &Warmuth; Vovk; Cesa-Bianchi & Lugosi …]

P. Mertikopoulos CNRS & Criteo AI Lab
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Learning with exponential weights

The “exponential weights” dynamics

ẏt = Vt xt = Λ(yt) (EWD)

where Λ is the logit map

Λ(y) = (exp(ya))a∈A∑a∈A exp(ya) for all y ∈ RA

▸ KL divergence relative to a target strategy x ∈ X
Dt ∶= DKL(x , xt) =∑a∈A xa log

xa
xa ,t

▸ Evolution over time

Ḋt = ⋯ = ⟨Vt , xt − x⟩ = ut(xt) − ut(x)
▸ Integrate:

Reg(T) ≤ max
x∈X DKL(x , x) = O()

P. Mertikopoulos CNRS & Criteo AI Lab
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Follow the regularized leader

Are the no-regret propeties of (EWD) a “fluke”?

▸ Λ(y) approximates the best response correspondence (the “leader”)

y ↦ argmaxx∈X
where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses

Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}
where h∶X → R is a (strictly) convex regularizer function

▸ Follow the regularized leader

ẏt = Vt

xt = Q(yt) (FTRL)

P. Mertikopoulos CNRS & Criteo AI Lab
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ẏt = Vt

xt = Q(yt) (FTRL)

P. Mertikopoulos CNRS & Criteo AI Lab



9/37

Overview Online learning – cont. time Multi-agent learning – cont. time Learning in discrete time References

Follow the regularized leader

Are the no-regret propeties of (EWD) a “fluke”?

▸ Λ(y) approximates the best response correspondence (the “leader”)

y ↦ argmaxx∈X{⟨y, x⟩ − h(x)}
where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses

Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}
where h∶X → R is a (strictly) convex regularizer function

▸ Follow the regularized leader

ẏt = Vt

xt = Q(yt) (FTRL)

P. Mertikopoulos CNRS & Criteo AI Lab

uJY3I5 \xyz
l":56FL!

Y5

A
B l"!$"JFo

=ww+

{ t934"J t9P3J$&
| t56C"J =ww}



10/37

Overview Online learning – cont. time Multi-agent learning – cont. time Learning in discrete time References

The projection dynamics

Example: Quadratic (Euclidean) regularization

h(x) = 
∑a x


a

Choice map! closest point projection:

Π(y) = argmax
x∈X {⟨y, x⟩ − (/)∥x∥} = argmin

x∈X ∥y − x∥

Projection dynamics [M & Sandholm, 2016]

ẏt = Vt

xt = Π(yt) (PL)

P. Mertikopoulos CNRS & Criteo AI Lab
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In and out of the boundary

Payoff space Strategy space

yt xt = Q(yt)Q
choice map

Key difference with replicator: faces no longer forward invariant

P. Mertikopoulos CNRS & Criteo AI Lab
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Portraits and examples

The Tsallis–Havrda –Charvát kernel: h(x) = [q( − q)]−∑a(xa − xq
a)

H1, -1L

H-1, 1L

H-1, 1L

H1, -1L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Projection Dynamics Hq=2L

Figure: Phase portraits of (FTRL) in Matching Pennies for diferrent values of q > 
P. Mertikopoulos CNRS & Criteo AI Lab
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No regret under FTRL

Do the no-regret properties of (EWD) extend to (FTRL)?

▸ Require primal-dual analogue of KL divergence

▸ Fenchel coupling [M & Sandholm, 2016; M & Zhou, 2019]

Ft = h(x) + h∗(yt) − ⟨yt , x⟩
where h∗(y) = maxx∈X{⟨y, x⟩ − h(x)} is the convex conjugate of h

▸ By Danskin’s theorem: [∇h∗(y) = Q(y)]
Ḟt = ⟨ ẏt ,Q(yt)⟩ − ⟨ ẏt , x⟩ = ⟨Vt , xt − x⟩

Theorem (Kwon & M, 2017)
Under (FTRL), the optimizer enjoys the regret bound

Reg(T) ≤ max
x∈X F(x , y) = O()

P. Mertikopoulos CNRS & Criteo AI Lab
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Multi-agent learning

▸ Multiple agents, individual objectives

Example: select a route from home to work

▸ Payoffs determined by actions of all agents

Example: outcome of auction revealed

▸ Agents receive payoffs, adjust actions, and the process repeats

Example: change bid next time

Does no-regret learning lead to equilibrium?

P. Mertikopoulos CNRS & Criteo AI Lab
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Finite games

▸ Players: N = {, . . . ,N} [atomic player roles]

▸ Actions: finite action setsAi = {ai , , ai , , . . . } [routes, bids, products,…]

▸ Payoffs: depend on all players’ strategies
▸ Action profiles (ai ; a−i) ∶= (a , . . . , ai , . . . , aN) ∈ A =∏i Ai▸ Mixed strategies

xiai = probability that player i chooses ai ∈ Ai

xi = (xiai )ai∈Ai ∈ Xi ∶= ∆(Ai)
x = (x , . . . , xN) ∈ X ∶=∏i Xi

▸ Payoff functions

ui(ai ; a−i) = payoff to player i when playing ai against a−i
▸ Mean payoff per strategy

uiai (x) ∶= ui(ai ; x−i) =∑a−i x−i ,a−i ui(ai ; a−i)
▸ Payoff vector

Vi(x) = (uiai (x))ai∈Ai

P. Mertikopoulos CNRS & Criteo AI Lab
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Correlated strategies

Instead of mixing, correlated strategies respond to the “state of the world”

χa = χa , . . . ,aN ∈ ∆(A)
[NB:∏i ∆(Ai)≪ ∆(∏i Ai)]

Marginals of χ:
xiai =∑a−i∈A−i χai ;a−i

[NB: χ mixed ⇐⇒ χa =∏i x iai ]

Correlated equilibrium: [Aumann, 1974, 1987]

∑
a−i∈A−i

χ∗ai ;a−i ui(ai ; a−i) ≥ ∑
a−i∈A−i

χ∗ai ;a−i ui(a′i ; a−i) for all ai , a′i

Coarse correlated equilibrium: [Hannan, 1957]

∑
ai∈Ai

∑
a−i∈A−i

χ∗ai ;a−i ui(ai ; a−i) ≥ ∑
ai∈Ai

∑
a−i∈A−i

χ∗ai ;a−i ui(a′i ; a−i)

P. Mertikopoulos CNRS & Criteo AI Lab
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No regret and equilibrium

No-regret learning converges to equilibrium!

! Very weak notion of "convergence"
! stray arbitrarily far from equilibrium infinitely often

[Hart and Mas-Colell, 2000, 2003]

! Very weak notion of "equilibrium"
! assign positive weight only to strictly dominated strategies

[Viossat and Zapechelnyuk, 2013]

P. Mertikopoulos CNRS & Criteo AI Lab



18/37

Overview Online learning – cont. time Multi-agent learning – cont. time Learning in discrete time References

No regret and equilibrium

Under no-regret learning, empirical frequencies converge to equilibrium…

! Very weak notion of "convergence"
! stray arbitrarily far from equilibrium infinitely often

[Hart and Mas-Colell, 2000, 2003]

! Very weak notion of "equilibrium"
! assign positive weight only to strictly dominated strategies

[Viossat and Zapechelnyuk, 2013]

P. Mertikopoulos CNRS & Criteo AI Lab



18/37

Overview Online learning – cont. time Multi-agent learning – cont. time Learning in discrete time References

No regret and equilibrium

Under no-regret learning, empirical frequencies of play
converge to coarse correlated equilibrium

! Very weak notion of "convergence"
! stray arbitrarily far from equilibrium infinitely often

[Hart and Mas-Colell, 2000, 2003]

! Very weak notion of "equilibrium"
! assign positive weight only to strictly dominated strategies

[Viossat and Zapechelnyuk, 2013]

P. Mertikopoulos CNRS & Criteo AI Lab



18/37

Overview Online learning – cont. time Multi-agent learning – cont. time Learning in discrete time References

No regret and equilibrium

Under no-regret learning, empirical frequencies of play
converge to coarse correlated equilibrium

! Very weak notion of "convergence"
! stray arbitrarily far from equilibrium infinitely often

[Hart and Mas-Colell, 2000, 2003]

! Very weak notion of "equilibrium"
! assign positive weight only to strictly dominated strategies

[Viossat and Zapechelnyuk, 2013]

P. Mertikopoulos CNRS & Criteo AI Lab



18/37

Overview Online learning – cont. time Multi-agent learning – cont. time Learning in discrete time References

No regret and equilibrium

Under no-regret learning, empirical frequencies of play
converge to coarse correlated equilibrium

! Very weak notion of "convergence"
! stray arbitrarily far from equilibrium infinitely often

[Hart and Mas-Colell, 2000, 2003]

! Very weak notion of "equilibrium"
! assign positive weight only to strictly dominated strategies

[Viossat and Zapechelnyuk, 2013]

P. Mertikopoulos CNRS & Criteo AI Lab



18/37

Overview Online learning – cont. time Multi-agent learning – cont. time Learning in discrete time References

No regret and equilibrium

Under no-regret learning, empirical frequencies of play
converge to coarse correlated equilibrium

! Very weak notion of "convergence"
! stray arbitrarily far from equilibrium infinitely often

[Hart and Mas-Colell, 2000, 2003]

! Very weak notion of "equilibrium"
! assign positive weight only to strictly dominated strategies

[Viossat and Zapechelnyuk, 2013]

P. Mertikopoulos CNRS & Criteo AI Lab



19/37

Overview Online learning – cont. time Multi-agent learning – cont. time Learning in discrete time References

No-regret learning and rationality

What is the interplay between online and multi-agent learning?

▸ Do dominated strategies die out under no-regret learning?

▸ Are Nash equilibria stationary?

▸ Are they stable? Are they attracting?

▸ What other behaviors can occur?

P. Mertikopoulos CNRS & Criteo AI Lab
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Dominated strategies

Suppose a ∈ A is dominated by a′ ∈ A
▸ Consistent difference in payoffs/scores:

ua(x) ≤ ua′(x) − ε for some ε > 
ya ,t = ∫ t


ua(xτ) dτ ≤ ∫ t


[ua′(xτ) − ε] dτ = ya′ ,t − εt

▸ Translation to choice probabilities not clear

Want: large score difference ya′ ,t − ya ,t $⇒ xa ,t →  (???)

Theorem (M & Sandholm, 2016)
Under (FTRL):

▸ limt→∞ xiai ,t =  whenever ai is dominated

▸ If h is (sub)differentiable on X , elimination occurs in finite time

P. Mertikopoulos CNRS & Criteo AI Lab
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Stability and convergence

Primal-dual nature of dynamics requires redefinition:

Definition
1. x∗ is stable if Q(yt) stays close to x∗ when Q(y) starts close enough to x∗
2. x∗ is attracting if Q(yt)→ x∗ whenever Q(y) starts close enough to x∗
3. x∗ is asymptotically stable if it is stable and attracting

Theorem (M & Sandholm, 2016; Flokas et al., 2020)
I. If xt → x∗, then x∗ is a Nash equilibrium.
II. If x∗ ∈ X is stable, then x∗ is Nash.
III. x∗ is asymptotically stable if and only if it is a strict Nash equilibrium.

[Special case: ”folk theorem” of EGT]

P. Mertikopoulos CNRS & Criteo AI Lab
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Non-convergence in zero-sum games

In bilinear zero-sum games:

x∗ is full-support equilibrium $⇒ (FTRL) admits constant of motion

F(x∗ , y) = h(x∗) + h∗(y) − ⟨y, x∗⟩

Theorem (M & Sandholm, 2016; M, Piliouras & Papadimitriou, 2018)
Assume (FTRL) is run in a bilinear zero-sum game with an interior equilibrium.
Then:

▸ The dynamics are Poincaré recurrent

▸ Time-averages x̄t = t− ∫ t
 xτ dτ converge to Nash equilibrium

P. Mertikopoulos CNRS & Criteo AI Lab
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Learning with a finite number of actions

Online decision-making withmixed strategies

repeat
At each epoch t = , , . . .

Choosemixed strategy Xt ∈ X ∶= ∆(A)
Choose action at ∼ Xt

Encounter payoff vector Vt ∈ RA [depends on context]

Get payoff ut(at) = Vat ,t

Receive feedback [maybe]

until end

Key considerations▸ Time: //////////////continuous////or discrete▸ Players: //////////////continuous////or discrete▸ Actions: ///////////////continuous///or discrete▸ Losses: determined by other players or “Nature”?▸ Feedback: full info? payoff-based?

P. Mertikopoulos CNRS & Criteo AI Lab
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Multi-armed bandits

Robbins’ multi-armed bandit problem: how to play in a (rigged) casino?

[Lec. 6: What if the arms are players themselves?]

P. Mertikopoulos CNRS & Criteo AI Lab
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Online viewpoint: regret minimization

The agent’s regret in discrete time

Realized regret: Reg(T) = max
a∈A

T∑
t=
[ut(a) − ut(at)]

Mean regret: Reg(T) = max
x∈X

T∑
t=
[ut(x) − ut(Xt)] = max

x∈X
T∑
t=
⟨Vt , x − Xt⟩

▸ Adversarial framework: regret guarantees against any given sequence Vt

▸ No distinction betweenmean regret and pseudo-regret
[Bubeck and Cesa-Bianchi, 2012]

▸ Not here: stochastic, Markovian, oblivious/non-oblivious,…
[Cesa-Bianchi and Lugosi, 2006]

P. Mertikopoulos CNRS & Criteo AI Lab
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Feedback

Three types of feedback (from best to worst):

▸ Full, exact information: observe entire payoff vector Vt

▸ Full, inexact information: observe estimate Vt of Vt

▸ Partial information / Bandit: only chosen component ut(at) = Vat ,t

Typically Vt
Vt = Vt + Zt + bt

where Zt is zero-mean and bt is the bias of Vt

Assumptions

▸ Bias: ∥bt∥ ≤ Bt (a.s.)

▸ Variance: E[∥Zt∥ ∣Ft] ≤ σ 
t (a.s.)

▸ Second moment: E[∥Vt∥ ∣Ft] ≤ M
t (a.s.)

P. Mertikopoulos CNRS & Criteo AI Lab
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Follow the regularized leader

Implementing FTRL with full information (exact or inexact):

Yt+ = Yt + γtVt

Xt+ = Q(Yt+) (FTRL)

where γt is a variable step-size parameter

Technical: Will need Q Lipschitz continuous ⇐⇒ h is strongly convex

h(x′) ≥ h(x) + ⟨∇h(x), x′ − x⟩ + K

∥x′ − x∥

Example: Multiplicative / Exponential Weights algorithm

Yt+ = Yt + γtVt

Xt+ = (exp(Ya ,t+))a∈A∑a∈A exp(Ya ,t+)
(EW)

[Vovk, 1990; Littlestone and Warmuth, 1994; Auer et al., 1995; Freund and
Schapire, 1999; Sorin, 2009; Arora et al., 2012]
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Follow the regularized leader

Implementing FTRL with full information (exact or inexact):

Yt+ = Yt + Vt

Xt+ = Q(ηt+Yt+) (FTRL)

where ηt is a variable learning rate parameter

Technical: Will need Q Lipschitz continuous ⇐⇒ h is strongly convex

h(x′) ≥ h(x) + ⟨∇h(x), x′ − x⟩ + K
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(EW)
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Regret guarantees of FTRL

Work as in continuous-time case

▸ Fenchel coupling
Ft = h(x) + h∗(Yt) − ⟨Yt , x⟩

▸ Discrete-time evolution

Ft+ ≤ Ft − γ⟨Vt , Xt − x⟩ + γ

K
∥Vt∥∗

▸ Aggregate/Telescope:

Reg(T) = O(max h −min h
γ

+ T∑
t=

Bt + γ T∑
t=

M
t )

▸ Take γ ∝ /√T: [Why?]

Reg(T) = O(√T + T∑
t=

Bt + ∑T
t= M

t√
T
)
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Regret guarantees of FTRL

Theorem (?Shalev-Shwartz, 2011)
▸ Assume:▸ feedback unbiased and bounded in mean square (Bt = , supt Mt < M)

▸ γ = (/M)√KH/T with H = max h −min h

▸ Then: FTRL enjoys the bound

Reg(T) ≤ M√(H/K)T = O(√T)

Observe:

▸ This bound is tight [Nesterov, 2004; Abernethy et al., 2008; Bubeck, 2015]

▸ Cannot achieveO() regret as in continuous time [Why?]

▸ How to do if T is unknown? [Exercise]
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