Dynamic Epistemic Logic Chapter 7, Completeness (7.3-7.8)

Maria Markella Diamantopoulou **«Applied Mathematical Sciences»** Spring Semester 2021

Overview

- ≻ Reminder
- ≻ Completeness for S5C
- Completeness for PA without common knowledge
- Completeness for PA with common knowledge
- Completeness in a generalised form for logic of action model without common knowledge
- Completeness in a generalised form for logic of action model with common knowledge
- > Introduction to relativised common knowledge

Reminder

The proof system S5

all instantiations of propositional tautologies $K_a(\varphi \rightarrow \psi) \rightarrow (K_a \varphi \rightarrow K_a \psi)$ distribution of K_a over \rightarrow $K_a \varphi \rightarrow \varphi$ truth $K_a \varphi \rightarrow K_a K_a \varphi$ positive introspection $\neg K_a \varphi \rightarrow K_a \neg K_a \varphi$ negative introspection $\neg From \varphi$ and $\varphi \rightarrow \psi$, infer ψ modus ponensFrom φ , infer $K_a \varphi$ necessitation of K_a

- Definition 7.1 (Maximal consistent):
- Let $\Gamma \subseteq \mathcal{L}_K$. Γ is maximal consistent iff
 - − Γ is consistent: $\Gamma \nvDash \bot$
 - Γ is maximal: there is no $\Gamma' \subseteq \mathcal{L}_K$ such that $\Gamma \subset \Gamma'$ and Γ' is consistent.
- Definition 7.2(Canonical model):

The canonical model $M^c = \langle S^c, \sim^c, V^c \rangle$ is defined as follows:

- $S^{c} = \{ \Gamma \mid \Gamma \text{ is maximal consistent} \}$

$$- \Gamma \sim_a^c \Delta \inf \{ K_a \varphi | K_a \varphi \in \Gamma \} = \{ K_a \varphi | K_a \varphi \in \Delta \}$$

- $V_p^c = \{ \Gamma \in S^c | p \in \Gamma \}$
- <u>Lemma 7.3(Lindenbaum):</u>

Every consistent set of formulas is a subset of a maximal consistent set of formulas.

• Definition (out of the book):

In mathematical logic, a set T of logical formulas is deductively closed if it contains every formula φ that can be logically deduced from T formally if $T \vdash \varphi$ always implies $\varphi \in T$.

• <u>Lemma 7.4:</u>

If Γ and Δ are maximal consistent sets, then:

- 1. Γ is deductively closed,
- 2. $\varphi \in \Gamma \text{ iff } \neg \varphi \notin \Gamma$,
- *3.* $(\varphi \land \psi) \in \Gamma$ iff $\varphi \in \Gamma$ and $\psi \in \Gamma$,
- 4. $\Gamma \sim_a^c \Delta \inf \{K_a \varphi | K_a \varphi \in \Gamma\} \subseteq \Delta$,
- 5. $\{K_a \varphi | K_a \varphi \in \Gamma\} \vdash \psi \text{ iff } \{K_a \varphi | K_a \varphi \in \Gamma\} \vdash K_a \psi.$
- Lemma 7.5(Truth):

For every $\varphi \in \mathcal{L}_K$ and every maximal consistent set Γ :

 $\varphi \in \Gamma \text{ iff } (M^c, \Gamma) \vDash \varphi$

• Lemma 7.6 (Canonicity):

The canonical model is reflexive, transitive and Euclidean.

• Theorem 7.7 (Completeness) :

For every $\varphi \in \mathcal{L}_K$

 $\vDash \varphi \text{ implies} \vdash \varphi$

The proof system S5C

all instantiations of propositional tautologies $K_a(\varphi \to \psi) \to (K_a \varphi \to K_a \psi)$ $K_a \varphi \to \varphi$ $K_a \varphi \to K_a K_a \varphi$ $\neg K_a \varphi \rightarrow K_a \neg K_a \varphi$ $C_B(\varphi \to \psi) \to (C_B \varphi \to C_B \psi)$ $C_B \varphi \to (\varphi \wedge E_B C_B \varphi)$ $C_B(\varphi \to E_B \varphi) \to (\varphi \to C_B \varphi)$ From φ and $\varphi \to \psi$, infer ψ From φ , infer $K_a \varphi$ From φ , infer $C_B \varphi$

distribution of K_a over \rightarrow truth positive introspection negative introspection distribution of C_B over \rightarrow mix induction axiom modus ponens necessitation of K_a necessitation of C_B

• <u>Definition 7.8(Closure)</u>:

Let $cl: \mathcal{L}_{KC} \to \mathcal{P}(\mathcal{L}_{KC})$, be the function such that for every $\varphi \in \mathcal{L}_{KC}$, $cl(\varphi)$ is the smallest set such that:

- 1. $\varphi \in cl(\varphi)$,
- 2. If $\psi \in cl(\varphi)$, then $Sub(\psi) \subseteq cl(\varphi)$ (where $Sub(\psi)$ is the set of subformulas of ψ),
- 3. If $\psi \in cl(\varphi)$ and ψ is not a negation, then $\neg \psi \in cl(\varphi)$,
- 4. If $C_B \psi \in cl(\varphi)$, then $\{K_a C_B \psi | a \in B\} \subseteq cl(\varphi)$.
- <u>Lemma 7.9:</u>

 $cl(\varphi)$ is finite for all formulas $\varphi \in \mathcal{L}_{KC}$.

Proof:

By induction to φ .

Base case: If φ is a propositional variable p, then the closure of φ is $\{p, \neg p\}$, which is finite. Induction hypothesis: $cl(\varphi)$ and $cl(\psi)$ are finite.

Induction step:

- The case for $\neg \varphi$: the closure of our case is the set $\{\neg \varphi\} \cup cl(\varphi)$. By induction hypothesis we know that $cl(\varphi)$ is finite so the set is also finite.
- The case for $(\varphi \land \psi)$: the closure of our case is the set $\{(\varphi \land \psi), \neg(\varphi \land \psi)\} \cup cl(\varphi) \cup cl(\psi)$. By induction hypothesis $cl(\varphi)$ and $cl(\psi)$ are finite so our set is also finite.
- The case for $K_a \varphi$: the closure of our case is the set $\{K_a \varphi, \neg K_a \varphi\} \cup cl(\varphi)$. By induction hypothesis we know that $cl(\varphi)$ is finite so our set is also finite.
- The case for $C_B \varphi$: the closure of our case is the set $\{C_B \varphi, \neg C_B \varphi\} \cup \{K_a C_B \varphi, \neg K_a C_B \varphi | a \in B\} \cup cl(\varphi)$. By induction hypothesis we know that $cl(\varphi)$ is finite so our set is also finite.

• Definition 7.10(Maximal consistent in Φ):

Let $\Phi \subseteq \mathcal{L}_{KC}$ be the closure of some formula. Γ is maximal consistent in Φ iff:

- $\quad \Gamma \subseteq \Phi$
- Γ is consistent: Γ ⊬⊥
- Γ is maximal: there is no $\Gamma' \subseteq \mathcal{L}_K$ such that $\Gamma \subset \Gamma'$ and Γ' is consistent.
- Lemma 7.12 (Lindenbaum):

Let Φ be the closure of some formula. Every consistent subset of Φ is a subset of a maximal consistent set in Φ .

Proof:

Let $\Delta \subseteq \Phi$ be a consistent set of formulas. Let $|\Phi| = n$. Let φ_k be the k-th formula in an enumeration of Φ . We consider the sequence of sets of formulas as follows:

 $\Gamma_0 = \Delta$

$$\Gamma_{k+1} = \begin{cases} \Gamma_k \cup \{\varphi_{k+1}\}, \text{ if } \Gamma_k \cup \{\varphi_{k+1}\} \text{ is consistent} \\ \Gamma_k &, \text{ otherwise} \end{cases}$$

We can see that $\Delta \subseteq \Gamma_n$. What we need to show?

We need to show that Γ_n is maximal consistent. In order to see that Γ_n is consistent we will prove that Γ_k is consistent by induction on k, which means that Γ_n is also consistent.

Proof :

By assumption Γ_0 is consistent due to Δ is a consistent set of formulas. We can also see that if Γ_k is consistent then Γ_{k+1} is consistent. Thus we

prove that Γ_n is consistent

To see that Γ_n is maximal in Φ , take an arbitrary formula $\varphi_k \in \Phi$ such that $\varphi_k \notin \Gamma_n$. Then $\varphi_k \notin \Gamma_k$ too. Therefore $\Gamma_k \cup \{\varphi_k\}$ is inconsistent and so $\Gamma_n \cup \{\varphi_k\}$ is inconsistent too. Since φ_k was arbitrary there is no $\Gamma' \subseteq \Phi$ such that $\Gamma_n \subset \Gamma'$ and Γ' is consistent.

• Definition 7.11(Canonical model for Φ):

Let Φ be the closure of some formula. The canonical model $M^c = \langle S^c, \sim^c, V^c \rangle$ is defined as follows:

- $S^{c} = \{ \Gamma \mid \Gamma \text{ is maximal consistent in } \Phi \}$

$$- \Gamma \sim_a^c \Delta \operatorname{iff} \{ K_a \varphi | K_a \varphi \in \Gamma \} = \{ K_a \varphi | K_a \varphi \in \Delta \}$$

 $- V_p^c = \{ \Gamma \in S^c | p \in \Gamma \}$

We construct a finite model for only a finite fragment of the language depending on the formula we are interested in.

- Definition 7.13(Paths):
 - A B-path from Γ is a sequence $\Gamma_0, \ldots, \Gamma_n$ of maximal consistent sets in Φ such that for all k ($0 \le k < n$) there is an agent $a \in B$ such that $\Gamma_k \sim_a^c \Gamma_{k+1}$ and $\Gamma_0 = \Gamma$.
 - A φ -path is a sequence $\Gamma_0, \dots, \Gamma_n$ of maximal consistent sets in Φ such that for all k ($0 \le k < n$) $\varphi \in \Gamma_k$.

Note: We take the length of a path $\Gamma_0, ..., \Gamma_n$ to be n.

• <u>Lemma 7.14:</u>

Let Φ be the closure of some formula. Let $M^c = (S^c, \sim^c, V^c)$ be the canonical model for Φ . If Γ and Δ are maximal consistent sets, then:

- 1. Γ is deductively closed in Φ (for all formulas $\varphi \in \Phi$, if $\vdash \underline{\Gamma} \rightarrow \varphi$, then $\varphi \in \Gamma$. Note that $\underline{\Gamma} = \bigwedge \Gamma$)
- 2. If $\neg \varphi \in \Phi$, then $\varphi \in \Gamma$ iff $\neg \varphi \notin \Gamma$
- 3. If $(\varphi \land \psi) \in \Phi$, then $(\varphi \land \psi) \in \Gamma$ iff $\varphi \in \Gamma$ and $\psi \in \Gamma$
- 4. If $\underline{\Gamma} \wedge \widehat{K_a} \underline{\Delta}$ is consistent, then $\Gamma \sim_a^c \Delta$
- 5. If $K_a \psi \in \Phi$, then $\{K_a \varphi | K_a \varphi \in \Gamma\} \vdash \psi$ iff $\{K_a \varphi | K_a \varphi \in \Gamma\} \vdash K_a \psi$
- 6. If $C_B \varphi \in \Phi$, then $C_B \varphi \in \Gamma$ iff every B-path from Γ is a φ -path.

In other case, it doesn't hold that Γ is maximal consistent set inΦ by the definition of maximal consistent set

Exercise 7.15 Proof :

1. Suppose that $\varphi \in \Phi$. Suppose that $\Gamma \vdash \varphi$. We know by assumption that Γ is maximal consistent which means that Γ is consistent and maximal in Φ . Because of consistency of Γ in Φ , $\Gamma \cup {\varphi}$ is also consistent. Therefore, by maximality of Γ in Φ , it must be the case that $\varphi \in \Gamma$.

2. Suppose
$$\neg \varphi \in \Phi$$
. Therefore $\varphi \in \Phi$.

" \Rightarrow " Suppose that $\varphi \in \Gamma$ then by consistency $\neg \varphi \in \Gamma$

" ⇐ "Suppose that $\neg \varphi \notin \Gamma$. By maximality, $\Gamma \cup \{\neg \varphi\}$ is inconsistent. Therefore $\Gamma \vdash \varphi$ and by the item 1 of this Lemma, $\varphi \in \Gamma$.

3. Suppose that $(\varphi \land \psi) \in \Phi$.

" \Rightarrow "Suppose that $(\varphi \land \psi) \in \Gamma$. Then $\Gamma \vdash \varphi$ and $\Gamma \vdash \psi$. Since Φ is closed, also $\varphi \in \Phi$ and $\psi \in \Phi$. Therefore $\varphi \in \Gamma$ and $\psi \in \Gamma$ by the item 1 of this Lemma.

" \Leftarrow " Suppose that $\varphi \in \Gamma$ and $\psi \in \Gamma$. Therefore $\Gamma \vdash (\varphi \land \psi)$ and by the item 1 of this Lemma $(\varphi \land \psi) \in \Gamma$.

Lemma 7.17 (Truth):

Let Φ be the closure of some formula. Let $M^c = (S^c, \sim^c, V^c)$ be the canonical model for Φ . For all $\Gamma \in S^c$ and all $\varphi \in \Phi$:

$$\varphi \in \Gamma \text{ iff } (M^c, \Gamma) \vDash \varphi$$

<u>**Proof</u>**: Suppose that $\varphi \in \Phi$ </u>

Base case: Suppose that φ is a propositional variable p. Then by the definition of V^c , $p \in \Gamma$ iff $\Gamma \in S^c$

which by semantics is equivalent to $(M^c, \Gamma) \vDash p$.

Induction hypothesis: For every maximal consistent set Γ ,

$$\varphi \in \Gamma \text{ iff } (M^c, \Gamma) \vDash \varphi.$$

Induction step:

2. If
$$\neg \varphi \in \Phi$$
, then $\varphi \in \Gamma$ iff $\neg \varphi \notin \Gamma$
3. If $(\varphi \land \psi) \in \Phi$, then $(\varphi \land \psi) \in \Gamma$ iff $\varphi \in \Gamma$
and $\psi \in \Gamma$
Truth: $K_a \varphi \rightarrow \varphi$

- The case for $\neg \varphi : \neg \varphi \in \Gamma$ is equivalent to $\varphi \notin \Gamma$ by the item 2 in Lemma 7.14. By induction hypothesis and the semantics this is equivalent to $(M^c, \Gamma) \models \neg \varphi$.
- The case for $(\varphi \land \psi)$: $(\varphi \land \psi) \in \Gamma$ is equivalent to $\varphi \in \Gamma$ and $\psi \in \Gamma$ by the item 3 of Lemma 7.14. By induction hypothesis this is equivalent to $(M^c, \Gamma) \vDash \varphi$ and $(M^c, \Gamma) \vDash \psi$ which by semantics is equivalence to $(M^c, \Gamma) \vDash (\varphi \land \psi)$.
- The case for $K_a \varphi$:

Suppose that $K_a \varphi \in \Gamma$. Take an arbitrary maximal consistent set Δ in Φ . Suppose that $\Gamma \sim_a^c \Delta$, so $K_a \varphi \in \Delta$ by the definition of the relation \sim_a^c . Since $\vdash K_a \varphi \rightarrow \varphi$ by the truth, and Δ is deductively closed (due to Δ is maximal consistent and by the item 1 in Lemma 7.14) then $\varphi \in \Delta$. By the induction hypothesis, this is equivalent to $(M^c, \Delta) \models \varphi$. Since we chose an arbitrary Δ , then $(M^c, \Delta) \models \varphi$ holds for all Δ such that $\Gamma \sim_a^c \Delta$. Therefore by semantics this is equivalence to $(M^c, \Gamma) \models K_a \varphi$.

- The case for $C_B \varphi$: Suppose that $C_B \varphi \in \Gamma$. From item 6 in Lemma 7.14 this is the case iff every B-path from Γ is a φ -path. By induction hypothesis, this is the case that iff every B-path along φ is true. Therefore by semantics this is equivalence to $(M^c, \Gamma) \models C_B \varphi$.
- Lemma 7.18(Canonicity):

Let Φ be the closure of some formula. The canonical model for Φ is reflexive, transitive and Euclidean.

Proof:

The same as the proof of Lemma 7.6 which follows straightforwardly from the definition of the relation \sim_a^c .

• Theorem 7.19 (Completeness):

For every $\varphi \in \mathcal{L}_{KC}$

 $\vDash \varphi \text{ implies} \vdash \varphi$

Proof:

We will prove this theorem by contraposition. Thus we suppose that $\not\vdash \varphi$. Therefore $\{\neg \varphi\}$ is a consistent set. By the Lindenbaum Lemma $\{\neg \varphi\}$ is a subset of some Γ which is maximal consistent in $cl(\neg \varphi)$. Let M^c be the canonical model for $cl(\neg \varphi)$. By the Truth Lemma $(M^c, \Gamma) \vDash \neg \varphi$. Therefore $\nvDash \varphi$.

The proof system PA:

all instantiations of propositional tautologies $K_a(\varphi \to \psi) \to (K_a \varphi \to K_a \psi)$ $K_a \varphi \to \varphi$ $K_a \varphi \to K_a K_a \varphi$ $\neg K_a \varphi \rightarrow K_a \neg K_a \varphi$ $[\varphi]p \leftrightarrow (\varphi \to p)$ $[\varphi] \neg \psi \leftrightarrow (\varphi \rightarrow \neg [\varphi] \psi)$ $[\varphi](\psi \land \chi) \leftrightarrow ([\varphi]\psi \land [\varphi]\chi)$ $[\varphi]K_a\psi \leftrightarrow (\varphi \to K_a[\varphi]\psi)$ $[\varphi][\psi]\chi \leftrightarrow [\varphi \land [\varphi]\psi]\chi$ From φ and $\varphi \to \psi$, infer ψ From φ , infer $K_a \varphi$

distribution of K_a over \rightarrow truth positive introspection negative introspection atomic permanence announcement and negation announcement and conjunction announcement and knowledge announcement composition modus ponens necessitation of K_a

• Definition 7.20 (Translation):

The translation $t: \mathcal{L}_{K[]} \to \mathcal{L}_{K}$ is defined as follows: t(p) = p $t(\neg \varphi) = \neg t(\varphi)$ $t(\varphi \land \psi) = t(\varphi) \land t(\psi)$ $t(K_{a}\varphi) = K_{a}t(\varphi)$ $t([\varphi]p) = t(\varphi \to p)$ $t([\varphi]\neg \psi) = t(\varphi \to \neg [\varphi]\psi)$ $t([\varphi](\psi \land \chi)) = t([\varphi](\psi) \land [\varphi]\chi))$ $t([\varphi]K_{a}\psi) = t(\varphi \to K_{a}[\varphi]\psi)$ $t([\varphi][\psi]\chi) = t([\varphi \land [\varphi]\psi]\chi)$

• Definition 7.21 (Complexity):

The complexity $c : \mathcal{L}_{K[]} \to \mathbb{N}$ is defined as follows: c(p) = 1 $c(\neg \varphi) = 1 + c(\varphi)$ $c(\varphi \land \psi) = 1 + \max(c(\varphi), c(\psi))$ $c(K_a \varphi) = 1 + c(\varphi)$ $c([\varphi]\psi) = (4 + c(\varphi)) \cdot c(\psi)$ Where p is a propositional variable, φ and ψ are formulas

• <u>Lemma 7.22:</u>

For all φ, ψ and χ :

- 1. $c(\psi) \ge c(\varphi)$ if $\varphi \in Sub(\psi)$
- 2. $c([\varphi]p) > c(\varphi \rightarrow p)$
- 3. $c([\varphi] \neg \psi) > c(\varphi \rightarrow \neg [\varphi] \psi)$
- 4. $c([\varphi](\psi \land \chi)) > c([\varphi]\psi \land [\varphi]\chi)$
- 5. $c([\varphi]_{K_a}\psi) > c(\varphi \to K_a[\varphi]\psi)$
- 6. $c([\varphi][\psi]\chi) > c([\varphi \land [\varphi]\psi]\chi)$
- <u>Exercise 7.23</u>:

Prove Lemma 7.22

 $Sub(\psi)$ is the set of subformulas of ψ

2.
$$c([\varphi]p) > c(\varphi \rightarrow p)$$

Proof: ??
 $c([\varphi]p) = (4 + c(\varphi)) = 4 + c(\varphi)$
And
 $c(\varphi \rightarrow p) = c(\neg \varphi \lor p)$
 $= c(\neg(\varphi \land \neg p))$
 $= 1 + c(\varphi \land \neg p)$
 $= 2 + \max(c(\varphi), 2)$
So $c([\varphi]p) > c(\varphi \rightarrow p)$
3. $c([\varphi]\neg\psi) > c(\varphi \rightarrow \neg [\varphi]\psi)$
Proof:??
 $c([\varphi]\neg\psi) = (4 + c(\varphi)) \cdot c(\neg\psi) = (4 + c(\varphi)) \cdot (1 + c(\psi))$
 $= 4 + c(\varphi) + 4c(\psi) + c(\varphi) \cdot c(\psi)$
And
 $c(\varphi \rightarrow \neg [\varphi]\psi) = c(\neg \varphi \lor (\neg [\varphi]\psi)) = c(\neg(\varphi \land \neg (\neg [\varphi]\psi)))$
 $= 1 + c(\varphi \land \neg (\neg [\varphi]\psi)) = c(\neg(\varphi \land \neg (\neg [\varphi]\psi)))$

 $= 1 + c(\varphi \land \neg(\neg[\varphi]\psi))$ $= 1 + 1 + \max\left(c(\varphi), c\left(\neg(\neg[\varphi]\psi)\right)\right)$ $= 2 + \max(c(\varphi), +c(\neg[\varphi]\psi))$ $= 2 + \max(c(\varphi), 2 + c([\varphi]\psi))$ $= 2 + \max\left(c(\varphi), 2 + \left(4 + c(\varphi)\right) \cdot c(\psi)\right)$ $= 2 + \max\left(c(\varphi), 2 + \left(4c(\psi) + c(\varphi)c(\psi)\right)\right)$ $2 + \max(c(\varphi), 2 + 4c(\psi) + c(\varphi)c(\psi))$ Thus $c([\varphi] \neg \psi) > c(\varphi \rightarrow \neg [\varphi] \psi)$. 4. $c([\varphi](\psi \land \chi)) > c([\varphi]\psi \land [\varphi]\chi)$ Proof:??

Assume without loss of generality, that $c(\psi) \ge c(\chi)$. Then :

$$c([\varphi](\psi \land \chi)) = (4 + c(\varphi)) \cdot c(\psi \land \chi) = (4 + c(\varphi))(1 + \max(c(\psi), c(\chi)))$$
$$= (4 + c(\varphi))(1 + c(\psi)) = 4 + 4c(\psi) + c(\varphi) + c(\varphi)c(\psi)$$

And $c([\varphi]\psi \wedge [\varphi]\chi)$ $= 1 + \max\left(\left(4 + c(\varphi)\right)c(\psi), \left(4 + c(\varphi)\right)c(\chi)\right)$ $= 1 + \left(\left(4 + c(\varphi) \right) c(\psi) \right)$ $= 1 + 4c(\psi) + c(\varphi)c(\psi)$ So $c([\varphi](\psi \land \chi)) > c([\varphi]\psi \land [\varphi]\chi).$ 6. $c([\varphi][\psi]\chi) > c([\varphi \land [\varphi]\psi]\chi)$ Proof:?? $c([\varphi][\psi]\chi) = (4 + c(\varphi))(4 + c(\psi))c(\chi)$ $= (16 + 4c(\varphi) + 4c(\psi) + c(\varphi)c(\psi)c(\chi))$ And $c([\varphi \wedge [\varphi]\psi]\chi) = \left(4 + \left(1 + \max\left(c(\varphi), \left(4 + c(\varphi)\right)c(\psi)\right)\right)\right)c(\chi)$ $= \left(5 + \left(\left(4 + c(\varphi)\right)c(\psi)\right)\right)c(\chi)$ $= (5 + 4c(\psi) + c(\varphi)c(\psi)c(\chi))$

 $\frac{\text{Reminder:}}{c(p) = 1}
 c(\neg \varphi) = 1 + c(\varphi)
 c(\varphi \land \psi) =
 1 + \max(c(\varphi), c(\psi))
 c(K_a \varphi) = 1 + c(\varphi)
 c([\varphi]\psi) = (4 + c(\varphi)) \cdot c(\psi)$

We will show that every formula is provably equivalent to its translation.

• <u>Lemma 7.24:</u>

For all formulas $\varphi \in \mathcal{L}_{K[]}$ it is the case that

 $\vdash \varphi \leftrightarrow t(\varphi)$

Proof:

We will prove this Lemma by induction on $c(\varphi)$.

Base case: If φ is a propositional variable p, it's trivial that $\vdash p \leftrightarrow t(p) = p$. Induction hypothesis: For all φ such that $c(\varphi) \leq n \colon \vdash \varphi \leftrightarrow t(\varphi)$.

Induction step: The case for \neg , \land , K_a follows straightforwardly from the induction hypothesis and item 1 of Lemma 7.22.

- The case for $[\varphi]p$: This case follows straightforwardly from the atomic permanence axiom, item 2 of Lemma 7.22 and the induction hypothesis.

atomic permanence axiom:

$$[\varphi]p \leftrightarrow (\varphi \rightarrow p)$$
Item 2 of Lemma 7.22

$$c([\varphi]p) > c(\varphi \rightarrow p)$$

- The case for $[\varphi] \neg \psi$: This case follows straightforwardly from the announcement and negation axiom, item 3 of Lemma 7.22 and the induction hypothesis
- The case for[φ](φ ∧ ψ): This case follows straightforwardly from the announcement and conjunction axiom, item 4 of Lemma 7.22 and the induction hypothesis.
- The case for $[\varphi] K_a \psi$: This case follows straightforwardly from the announcement and knowledge axiom, item 5 of Lemma 7.22 and the induction hypothesis.
- The case for $[\varphi][\psi]\chi$: This case follows straightforwardly from the announcement composition axiom, item 6 of Lemma 7.22 and the induction hypothesis.

$$\begin{split} [\varphi] \neg \psi &\leftrightarrow \varphi \to \neg [\varphi] \psi \\ [\varphi](\psi \land \chi) &\leftrightarrow [\varphi] \psi \land [\varphi] \chi \\ [\varphi] K_a \psi &\leftrightarrow \varphi \to K_a [\varphi] \psi \\ [\varphi] [\psi] \chi &\leftrightarrow [\varphi \land [\varphi] \psi] \chi \end{split}$$

3. $c([\varphi] \neg \psi) > c(\varphi \rightarrow \neg [\varphi]\psi)$ 4. $c([\varphi](\psi \land \chi)) > c([\varphi]\psi \land [\varphi]\chi)$ 5. $c([\varphi]K_a\psi) > c(\varphi \rightarrow K_a[\varphi]\psi)$ 6. $c([\varphi][\psi]\chi) > c([\varphi \land [\varphi]\psi]\chi)$ • <u>Theorem 7.26 (Completeness):</u>

For every $\varphi \in \mathcal{L}_{K[]} \vDash \varphi$ implies $\vdash \varphi$ Proof:

Suppose that $\vDash \varphi$. Therefore $\vDash t(\varphi)$ (by soundness) and by Lemma 7.24 holds that $\vdash \varphi \leftrightarrow t(\varphi)$. Because of the fact that $t(\varphi)$ doesn't contain any announcement operators, $S5 \vdash t(\varphi)$ (Theorem 7.7) We also have that PA $\vdash t(\varphi)$ as S5 is subsystem of PA. Since PA $\vdash \varphi \leftrightarrow t(\varphi)$, it follows that PA $\vdash \varphi$.

The proof system PAC

all instantiations of propositional tautologies $K_a(\varphi \to \psi) \to (K_a \varphi \to K_a \psi)$ $K_a \varphi \to \varphi$ $K_a \varphi \to K_a K_a \varphi$ $\neg K_a \varphi \rightarrow K_a \neg K_a \varphi$ $[\varphi]p \leftrightarrow (\varphi \to p)$ $[\varphi]\neg\psi\leftrightarrow(\varphi\rightarrow\neg[\varphi]\psi)$ $[\varphi](\psi \land \chi) \leftrightarrow ([\varphi]\psi \land [\varphi]\chi)$ $[\varphi]K_a\psi \leftrightarrow (\varphi \to K_a[\varphi]\psi)$ $[\varphi][\psi]\chi \leftrightarrow [\varphi \land [\varphi]\psi]\chi$ $C_B(\varphi \to \psi) \to (C_B \varphi \to C_B \psi)$ $C_B \varphi \to (\varphi \wedge E_B C_B \varphi)$ $C_B(\varphi \to E_B \varphi) \to (\varphi \to C_B \varphi)$ From φ and $\varphi \to \psi$, infer ψ From φ , infer $K_a \varphi$ From φ , infer $C_B \varphi$ From φ , infer $[\psi]\varphi$ From $\chi \to [\varphi] \psi$ and $\chi \land \varphi \to E_B \chi$, infer $\chi \to [\varphi] C_B \psi$

distribution of K_a over \rightarrow truth positive introspection negative introspection atomic permanence announcement and negation announcement and conjunction announcement and knowledge announcement composition distribution of C_B over \rightarrow mix of common knowledge induction of common knowledge modus ponens necessitation of K_a necessitation of C_B necessitation of $[\psi]$ announcement and common knowledge

• <u>Definition 7.27 (Closure)</u>:

Let $cl: \mathcal{L}_{KC[]} \to \mathscr{O}(\mathcal{L}_{KC[]})$, be the function such that for every $\varphi \in \mathcal{L}_{KC[]}$, $cl(\varphi)$ is the smallest set such that:

- 1. $\varphi \in cl(\varphi)$,
- 2. If $\psi \in cl(\varphi)$, then $Sub(\psi) \subseteq cl(\varphi)$ (where $Sub(\psi)$ is the set of subformulas of ψ),
- 3. If $\psi \in cl(\varphi)$ and ψ is not a negation, then $\neg \psi \in cl(\varphi)$,
- 4. If $C_B \psi \in cl(\varphi)$, then $\{K_a C_B \psi | a \in B\} \subseteq cl(\varphi)$,
- 5. If $[\psi]p \in cl(\varphi)$, then $(\psi \rightarrow p) \in cl(\varphi)$,
- 6. If $[\psi] \neg \chi \in cl(\varphi)$, then $(\psi \rightarrow \neg [\psi]\chi) \in cl(\varphi)$,
- 7. If $[\psi](\chi \land \xi) \in cl(\varphi)$, then $([\psi]\chi \land [\psi]\xi) \in cl(\varphi)$,
- 8. If $[\psi]K_a\chi \in cl(\varphi)$, then $(\psi \to K_a[\psi]\chi) \in cl(\varphi)$,
- 9. If $[\psi]C_B \chi \in cl(\varphi)$, then $[\psi]\chi \in cl(\varphi)$ and $\{K_a[\psi]C_B \chi | a \in B\} \subseteq cl(\varphi)$,
- 10. If $[\psi][\chi]\xi \in cl(\varphi)$, then $[\psi \land [\psi]\chi]\xi \in cl(\varphi)$.

- <u>Lemma 7.28:</u>
- $cl(\varphi)$ is finite for all formulas $\varphi \in \mathcal{L}_{KC[]}$.
- Lemma 7.29 (Lindenbaum):

Let Φ be the closure of some formula. Every consistent subset of Φ is a subset of a maximal consistent set in Φ .

Proof:

The same as Lemma 7.12

• Definition 7.30 ($B-\varphi$ -path):

A *B*- φ -path from Γ is a *B*-path that is also φ -path.

• <u>Lemma 7.31:</u>

Let Φ be the closure of some formula. Let $M^c = (S^c, \sim^c, V^c)$ be the canonical model for Φ . If Γ and Δ are maximal consistent sets, then:

- 1. Γ is deductively closed in Φ (for all formulas $\varphi \in \Phi$, if $\vdash \underline{\Gamma} \rightarrow \varphi$, then $\varphi \in \Gamma$. Note that $\underline{\Gamma} = \Lambda \Gamma$)
- 2. If $\neg \varphi \in \Phi$, then $\varphi \in \Gamma$ iff $\neg \varphi \notin \Gamma$
- 3. If $(\varphi \land \psi) \in \Phi$, then $(\varphi \land \psi) \in \Gamma$ iff $\varphi \in \Gamma$ and $\psi \in \Gamma$
- 4. If $\underline{\Gamma} \wedge \widehat{K_a} \underline{\Delta}$ is consistent, then $\Gamma \sim_a^c \Delta$
- 5. If $\overline{K_a\psi} \in \Phi$, then $\{K_a\varphi | K_a\varphi \in \Gamma\} \vdash \psi$ iff $\{K_a\varphi | K_a\varphi \in \Gamma\} \vdash K_a\psi$
- 6. If $C_B \varphi \in \Phi$, then $C_B \varphi \in \Gamma$ iff every B-path from Γ is a φ -path.
- 7. If $[\varphi]C_B\psi \in \Phi$, then $[\varphi]C_B\psi \in \Gamma$ iff every B-path from Γ is a $[\varphi]\psi$ -path.

• Definition 7.32 (Complexity):

The complexity $c : \mathcal{L}_{KC[]} \to \mathbb{N}$ is defined as follows: c(p) = 1 $c(\neg \varphi) = 1 + c(\varphi)$ $c(\varphi \land \psi) = 1 + \max(c(\varphi), c(\psi))$ $c(K_a\varphi) = 1 + c(\varphi)$ $c(C_R \varphi) = 1 + c(\varphi)$ $c([\varphi]\psi) = (4 + c(\varphi)) \cdot c(\psi)$ Lemma 7.33: For all φ, ψ and χ : 1. $c(\psi) \ge c(\varphi)$ for all $\varphi \in Sub(\psi)$ 2. $c([\varphi]p) > c(\varphi \rightarrow p)$ 3. $c([\varphi] \neg \psi) > c(\varphi \rightarrow \neg [\varphi] \psi)$ 4. $c([\varphi](\psi \land \chi)) > c([\varphi]\psi \land [\varphi]\chi)$ 5. $c([\varphi]K_{\alpha}\psi) > c(\varphi \to K_{\alpha}[\varphi]\psi)$ 6. $c([\varphi]C_{R}\psi) > c([\varphi]\psi)$

7. $c([\varphi][\psi]\chi) > c([\varphi \land [\varphi]\psi]\chi)$

• <u>Lemma 7.34 (Truth):</u>

Let Φ be the closure of some formula. Let $M^c = (S^c, \sim^c, V^c)$ be the canonical model for Φ . For all $\Gamma \in S^c$ and all $\varphi \in \Phi$:

 $\varphi \in \Gamma \text{ iff } (M^c, \Gamma) \vDash \varphi$

<u>Proof</u>: (by induction on $c(\varphi)$)

Suppose that $\varphi \in \Phi$.

Base case: Suppose that φ is a propositional variable p. Then by the definition of V^c , $p \in \Gamma$ iff $\Gamma \in S^c$ which by semantics is equivalent to $(M^c, \Gamma) \models p$.

Induction hypothesis: For all φ such that $c(\varphi) \leq n$:

 $\varphi \in \Gamma \text{ iff } (M^c, \Gamma) \vDash \varphi.$

Induction step: Suppose that $c(\varphi) = n + 1$. The cases for \neg , \land , K_a , C_B are just like Lemma 7.17.

- The case for [ψ]p: Suppose that [ψ]p ∈ Γ. Given that [ψ]p ∈ Φ, [ψ]p ∈ Γ is equivalent to (ψ → p) by the atomic permanence axiom. By item 2 of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to

 $(M^c, \Gamma) \vDash (\psi \rightarrow p)$ which is equivalent by semantics to $(M^c, \Gamma) \vDash [\psi]p$.

- The case for $[\psi] \neg \chi$: Suppose that $[\psi] \neg \chi \in \Gamma$. Given that $[\psi] \neg \chi \in \Phi$, $[\psi] p \in \Gamma$ is equivalent to $(\psi \rightarrow \neg [\psi] \chi) \in \Gamma$ by the announcement and negation axiom. By item 3 of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models \psi \rightarrow \neg [\psi] \chi$ which is equivalent by semantics to $(M^c, \Gamma) \models [\psi] \neg \chi$.

- The case for $[\psi](\chi \land \xi)$: Suppose that $[\psi](\chi \land \xi) \in \Gamma$. Given that $[\psi](\chi \land \xi) \in \Phi$, $[\psi](\chi \land \xi) \in \Gamma$ is equivalent to $([\psi]\chi \land [\psi]\xi) \in \Gamma$ by the announcement and conjunction axiom. By item 4 of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models [\psi]\chi \land [\psi]\xi$ which is equivalent by semantics to $(M^c, \Gamma) \models [\psi](\chi \land \xi)$.
- The case $[\psi]K_a\chi$: Suppose that $[\psi]K_a\chi \in \Gamma$. Given that $[\psi]K_a\chi \in \Phi$, $[\psi]K_a\chi \in \Gamma$ is equivalent to $(\psi \to K_a[\psi]\chi) \in \Gamma$ by the announcement and knowledge axiom. By item 5 of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models \psi \to K_a[\psi]\chi$ which is equivalent by semantics to $(M^c, \Gamma) \models [\psi]K_a\chi$.
- The case for $[\psi]C_B\chi$: Suppose that $[\psi]C_B\chi \in \Gamma$. Given that $[\psi]C_B\chi \in \Phi, [\psi]C_B\chi \in \Gamma$ iff every B-path from Γ is a $[\psi]\chi$ -path by item 6 of Lemma 7.31. By item 6 of Lemma 7.33 we can apply the induction hypothesis. Therefore this is equivalent to every B-path from Γ is along which $[\psi]\chi$ is true which is equivalent by semantics to $(M^c, \Gamma) \models [\psi]C_B\chi$.
- The case for $[\psi][\chi]\xi$: Suppose that $[\psi][\chi]\xi \in \Gamma$. Given that $[\psi][\chi]\xi \in \Phi, [\psi][\chi]\xi \in \Gamma$ is equivalent to $[\psi \land [\psi]\chi]\xi \in \Gamma$ by the announcement and composition axiom. By item 7 of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models [\psi \land [\psi]\chi]\xi$ which is equivalent by semantics to

 $(M^c, \Gamma) \vDash [\psi][\chi]\xi.$

• Lemma 7.35 (Canonicity):

The canonical model is reflexive, transitive and Euclidean.

• Theorem 7.36 (Completeness) :

For every $\varphi \in \mathcal{L}_{KC[]}$

 $\vDash \varphi \text{ implies} \vdash \varphi$

Proof:

We will prove this theorem by contraposition. Thus we suppose that $\not\vdash \varphi$. Therefore $\{\neg \varphi\}$ is a consistent set. By the Lindenbaum Lemma $\{\neg \varphi\}$ is a subset of some Γ which is maximal consistent in $cl(\neg \varphi)$. Let M^c be the canonical model for $cl(\neg \varphi)$. By the Truth Lemma $(M^c, \Gamma) \vDash \neg \varphi$.

Therefore $\neq \phi$.

The proof system AM

all instantiations of propositional tautologies $K_a(\varphi \to \psi) \to (K_a \varphi \to K_a \psi)$ $K_a \varphi \to \varphi$ $K_a \varphi \to K_a K_a \varphi$ $\neg K_a \varphi \rightarrow K_a \neg K_a \varphi$ $[\mathsf{M},\mathsf{s}]p \leftrightarrow (\mathsf{pre}(\mathsf{s}) \rightarrow p)$ $[\mathsf{M},\mathsf{s}]\neg\varphi\leftrightarrow(\mathsf{pre}(\mathsf{s})\rightarrow\neg[\mathsf{M},\mathsf{s}]\varphi)$ $[\mathsf{M},\mathsf{s}](\varphi \wedge \psi) \leftrightarrow ([\mathsf{M},\mathsf{s}]\varphi \wedge [\mathsf{M},\mathsf{s}]\psi)$ $[\mathsf{M},\mathsf{s}]K_a\varphi \leftrightarrow (\mathsf{pre}(\mathsf{s}) \to \bigwedge_{\mathsf{s}\sim_a\mathsf{t}} K_a[\mathsf{M},\mathsf{t}]\varphi)$ $[\mathsf{M},\mathsf{s}][\mathsf{M}',\mathsf{s}']\varphi \leftrightarrow [(\mathsf{M},\mathsf{s});(\mathsf{M}',\mathsf{s}')]\varphi$ $[\alpha \cup \alpha']\varphi \leftrightarrow ([\alpha]\varphi \land [\alpha']\varphi)$ From φ and $\varphi \to \psi$, infer ψ From φ , infer $K_a \varphi$ From φ , infer $[\mathsf{M}, \mathsf{s}]\varphi$

distribution of K_a over \rightarrow truth positive introspection negative introspection atomic permanence action and negation action and conjunction action and knowledge action composition non-deterministic choice modus ponens necessitation of K_a necessitation of (M, s)

• Definition 7.37 (Translation):

The translation $t: \mathcal{L}_{K \otimes} \to \mathcal{L}_{K}$ is defined as follows: t(p) = p $t(\neg \varphi) = \neg t(\varphi)$ $t(\varphi \land \psi) = t(\varphi) \land t(\psi)$ $t(K_a \varphi) = K_a t(\varphi)$ $t([M,s]p) = t(pre(s) \rightarrow p)$ $t([M,s]\neg \varphi) = t(pre(s) \rightarrow \neg [M,s]\varphi)$ $t([M,s](\varphi \land \psi)) = t([M,s]\varphi \land [M,s]\psi)$ $t([M, s]K_{\alpha}\varphi) = t(pre(s) \rightarrow K_{\alpha}[M, s]\varphi)$ $t([M,s][M',s']\varphi) = t([M,s;M',s']\varphi)$ $t([\alpha \cup \alpha']\varphi) = t([\alpha]\varphi) \wedge t([\alpha']\varphi)$

Definition 7.38 (Complexity):

The complexity $c : \mathcal{L}_{K\otimes} \to \mathbb{N}$ is defined as follows: c(p) = 1 $c(\neg \varphi) = 1 + c(\varphi)$ $c(\varphi \land \psi) = 1 + \max(c(\varphi), c(\psi))$ $c(K_a \varphi) = 1 + c(\varphi)$ $c([\alpha]\varphi) = (4 + c(\alpha)) \cdot c(\varphi)$ $c([M,s]) = \max\{c(pre(t))|t \in M\}$ $c([\alpha \cup \alpha']) = 1 + \max(c(\alpha), c(\alpha'))$

• <u>Lemma 7.39:</u>

For all φ, ψ and χ :

- 1. $c(\psi) \ge c(\varphi)$ if $\varphi \in Sub(\psi)$
- 2. $c([M,s]p) > c(pre(s) \rightarrow p)$
- 3. $c([M,s]\neg \varphi) > c(pre(s) \rightarrow \neg [M,s]\varphi)$
- 4. $c([M,s](\varphi \land \psi)) > c([M,s]\varphi \land [M,s]\psi)$
- 5. $c([M,s]K_a\varphi) > c(pre(s) \rightarrow K_a[M,s]\varphi)$
- 6. $c([M, s][M', s']\varphi) > c([M, s; M', s']\varphi)$
- 7. $c([\alpha \cup \alpha']\varphi) > c([\alpha]\varphi \land [\alpha']\varphi)$

• <u>Lemma 7.40:</u>

For all formulas $\varphi \in \mathcal{L}_{K\otimes}$ it is the case that

 $\vdash \varphi \leftrightarrow t(\varphi)$

(i.e. every formula is provably equivalent to its translation)

Proof:

Is similar to the proof of Lemma 7.24

• Theorem 7.41 (Completeness):

For every $\varphi \in \mathcal{L}_{K\otimes} \vDash \varphi$ implies $\vdash \varphi$

Proof:

Suppose that $\vDash \varphi$. Therefore $\vDash t(\varphi)$ (by the soundness) and by Lemma 7.40 holds that $\vdash \varphi \leftrightarrow t(\varphi)$. Because of the fact that $t(\varphi)$ doesn't contain any action models, $S5 \vdash t(\varphi)$ (Theorem 7.7) We also have that $AM \vdash t(\varphi)$ as S5 is subsystem of AM. Since $AM \vdash \varphi \leftrightarrow t(\varphi)$, it follows that $AM \vdash \varphi$.

The proof system AMC

all instantiations of propositional tautologies $K_a(\varphi \to \psi) \to (K_a \varphi \to K_a \psi)$ $K_a \varphi \to \varphi$ $K_a \varphi \to K_a K_a \varphi$ $\neg K_a \varphi \rightarrow K_a \neg K_a \varphi$ $[\mathsf{M},\mathsf{s}]p \leftrightarrow (\mathsf{pre}(\mathsf{s}) \rightarrow p)$ $[M, s] \neg \varphi \leftrightarrow (pre(s) \rightarrow \neg [M, s] \varphi)$ $[\mathsf{M},\mathsf{s}](\varphi \wedge \psi) \leftrightarrow ([\mathsf{M},\mathsf{s}]\varphi \wedge [\mathsf{M},\mathsf{s}]\psi)$ $[\mathsf{M},\mathsf{s}]K_a\varphi \leftrightarrow (\mathsf{pre}(\mathsf{s}) \to \bigwedge_{\mathsf{s}\sim_a\mathsf{t}} K_a[\mathsf{M},\mathsf{t}]\varphi)$ $[M, s][M', s']\varphi \leftrightarrow [(M, s); (M', s')]\varphi$ $[\alpha \cup \alpha']\varphi \leftrightarrow ([\alpha]\varphi \land [\alpha']\varphi)$ $C_B(\varphi \to \psi) \to (C_B \varphi \to C_B \psi)$ $C_B \varphi \to (\varphi \wedge E_B C_B \varphi)$ $C_B(\varphi \to E_B \varphi) \to (\varphi \to C_B \varphi)$ From φ and $\varphi \to \psi$, infer ψ From φ , infer $K_a \varphi$ From φ , infer $C_B \varphi$ From φ , infer $[\mathsf{M}, \mathsf{s}]\varphi$ Let (M, s) be an action model and let a set of formulas χ_t for every t such that $\mathbf{s} \sim_B$ t be given. From $\chi_t \to [\mathsf{M}, \mathsf{t}]\varphi$ and $(\chi_t \wedge$ pre(t) $\rightarrow K_a \chi_u$ for every $t \in S$, $a \in B$ and $t \sim_a u$, infer $\chi_s \to [M, s]C_B \varphi$.

distribution of K_a over \rightarrow truth positive introspection negative introspection atomic permanence action and negation action and conjunction action and knowledge action composition non-deterministic choice distribution of C_B over \rightarrow mix induction axiom modus ponens necessitation of K_a necessitation of C_B necessitation of (M, s)action and common knowledge

• Definition 7.42 (Closure):

Let $cl: \mathcal{L}_{KC\otimes} \to \mathscr{P}(\mathcal{L}_{KC\otimes})$, be the function such that for every $\varphi \in \mathcal{L}_{KC\otimes}$, $cl(\varphi)$ is the smallest set such that:

- 1. $\varphi \in cl(\varphi)$,
- 2. If $\psi \in cl(\varphi)$, then $Sub(\psi) \subseteq cl(\varphi)$ (where $Sub(\psi)$ is the set of subformulas of ψ),
- 3. If $\psi \in cl(\varphi)$ and ψ is not a negation, then $\neg \psi \in cl(\varphi)$,
- 4. If $C_B \psi \in cl(\varphi)$, then $\{K_a C_B \psi | a \in B\} \subseteq cl(\varphi)$,
- 5. If $[M, s]p \in cl(\varphi)$, then $(pre(s) \rightarrow p) \in cl(\varphi)$,
- 6. If $([M, s] \neg \psi) \in cl(\varphi)$, then $(pre(s) \rightarrow \neg [M, s]\psi) \in cl(\varphi)$,
- 7. If $[M, s](\psi \land \chi) \in cl(\varphi)$, then $([M, s]\psi \land [M, s]\chi) \in cl(\varphi)$,
- 8. If $[M, s]K_a \varphi \in cl(\varphi)$ and $s \sim_{\alpha} t$, then $(pre(s) \rightarrow K_a[M, s]\varphi) \in cl(\varphi)$,
- 9. If $[M, s]C_B \psi \in cl(\varphi)$, then $\{[M, t]\psi | s\sim_B t\} \subseteq cl(\varphi)$ and $\{K_a[M, t]C_B\psi | a \in B ands\sim_B t\} \subseteq cl(\varphi)$,
- 10. If $[M, s][M', s']\psi \in cl(\varphi)$, then $[M, s; M', s']\psi \in cl(\varphi)$,
- 11. if $[\alpha \cup \alpha']\psi \in cl(\varphi)$, then $([\alpha]\psi \wedge [\alpha']\psi) \in cl(\varphi)$,
• <u>Lemma 7.43:</u>

 $cl(\varphi)$ is finite for all formulas $\varphi \in \mathcal{L}_{KC\otimes}$.

• Lemma 7.44 (Lindenbaum):

Let Φ be the closure of some formula. Every consistent subset of Φ is a subset of a maximal consistent set in Φ .

Proof:

The same as Lemma 7.12

• <u>Definition 7.45 (BMst-path):</u>

A *B*Mst-path from Γ is a *B*-path $\Gamma_0, ..., \Gamma_n$ from Γ such that there is a *B*-path $s_0, ..., s_n$ from *s* to *t* in M and for all k < n there is an agent $a \in B$ such that $\Gamma_k \sim_a^c \Gamma_{k+1}$ and $s_k \sim_a s_{k+1}$ and for all $k \leq n$ it is the case that $pre(s_k) \in \Gamma_k$.

• <u>Lemma 7.46:</u>

Let Φ be the closure of some formula. Let $M^c = (S^c, \sim^c, V^c)$ be the canonical model for Φ . If Γ and Δ are maximal consistent sets, then:

- 1. Γ is deductively closed in Φ
- 2. If $\neg \varphi \in \Phi$, then $\varphi \in \Gamma$ iff $\neg \varphi \notin \Gamma$
- 3. If $(\varphi \land \psi) \in \Phi$, then $(\varphi \land \psi) \in \Gamma$ iff $\varphi \in \Gamma$ and $\psi \in \Gamma$
- 4. If $\underline{\Gamma} \wedge \widehat{K_a} \underline{\Delta}$ is consistent, then $\Gamma \sim_a^c \Delta$
- 5. If $K_a \psi \in \Phi$, then $\{K_a \varphi | K_a \varphi \in \Gamma\} \vdash \psi$ iff $\{K_a \varphi | K_a \varphi \in \Gamma\} \vdash K_a \psi$
- 6. If $C_B \varphi \in \Phi$, then $C_B \varphi \in \Gamma$ iff every B-path from Γ is a φ -path.
- 7. If $[M, s]C_B \varphi \in \Phi$, then $[M, s]C_B \varphi \in \Gamma$ iff for all $t \in S$ every BMst-path from Γ ends in a $[M, t]\varphi$ -state.

```
• Definition 7.47 (Complexity):
```

The complexity $c : \mathcal{L}_{KC\otimes} \to \mathbb{N}$ is defined as follows: c(p) = 1 $c(\neg \varphi) = 1 + c(\varphi)$ $c(\varphi \land \psi) = 1 + \max(c(\varphi), c(\psi))$ $c(K_a \varphi) = 1 + c(\varphi)$ $c(C_B \varphi) = 1 + c(\varphi)$ $c([\alpha] \varphi) = (4 + c(\alpha)) \cdot c(\varphi)$ $c([M, s]) = \max\{c(pre(t)) | t \in M\}$ $c([\alpha \cup \alpha']) = 1 + \max(c(\alpha), c(\alpha'))$

• <u>Lemma 7.48:</u>

For all φ, ψ and χ :

- 1. $c(\psi) \ge c(\varphi)$ for all $\varphi \in Sub(\psi)$
- 2. $c([M,s]p) > c(pre(s) \rightarrow p)$
- 3. $c([M,s]\neg \varphi) > c(pre(s) \rightarrow \neg [M,s]\varphi)$
- 4. $c([M, s](\varphi \land \psi)) > c([M, s]\varphi \land [M, s]\psi)$
- 5. $c([M, s]K_a\varphi) > c(pre(s) \rightarrow K_a[M, t]\varphi)$ for all $t \in M$
- 6. $c([M, s]C_B \varphi) > c([M, t]\varphi)$ for all $t \in M$
- 7. $c([M, s][M', s']\varphi) > c([(M, s); (M', s')]\varphi)$
- 8. $c([\alpha \cup \alpha']\varphi) > c([\alpha]\varphi \land [\alpha']\varphi)$

• <u>Lemma 7.50 (Truth):</u>

Let Φ be the closure of some formula. Let $M^c = (S^c, \sim^c, V^c)$ be the canonical model for Φ . For all $\Gamma \in S^c$ and all $\varphi \in \Phi$:

$$\varphi \in \Gamma \text{ iff } (M^c, \Gamma) \vDash \varphi$$

<u>Proof</u>: (by induction on $c(\varphi)$)

Suppose that $\varphi \in \Phi$.

Base case: Suppose that φ is a propositional variable p. Then by the definition of V^c , $p \in \Gamma$ iff $\Gamma \in S^c$ which by semantics is equivalent to $(M^c, \Gamma) \models p$.

Induction hypothesis: For all φ such that $c(\varphi) \leq n$:

 $\varphi \in \Gamma \text{ iff } (M^c, \Gamma) \vDash \varphi.$

Induction step: Suppose that $c(\varphi) = n + 1$. The cases for \neg , \land , K_a , C_B are just like Lemma 7.17.

- The case for [M, s]p: Suppose that $[M, s]p \in \Gamma$. Given that $[M, s]p \in \Phi$, $[M, s]p \in \Gamma$ is equivalent to $(pre(s) \rightarrow p)$ by the atomic permanence axiom. By item 2 of Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models (pre(s) \rightarrow p)$ which is equivalent by semantics to $(M^c, \Gamma) \models [M, s]p$.

- The case for $[M, s] \neg \chi$: Suppose that $[M, s] \neg \chi \in \Gamma$. Given that $[M, s] \neg \chi \in \Phi$, $[M, s] \neg \chi \in \Gamma$ is equivalent to $(pre(s) \rightarrow \neg [M, s]\chi) \in \Gamma$ by the action and negation axiom. By item 3 of Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to

 $(M^c, \Gamma) \vDash pre(s) \rightarrow \neg [M, s] \chi$ which is equivalent by semantics to $(M^c, \Gamma) \vDash [M, s] \neg \chi$.

- The case for $[M, s](\chi \land \xi)$: Suppose that $[M, s](\chi \land \xi) \in \Gamma$. Given that $[M, s](\chi \land \xi) \in \Phi$, $[M, s](\chi \land \xi) \in \Gamma$ is equivalent to $([M, s]\chi \land [M, s]\xi) \in \Gamma$ by the action and conjunction axiom. By item 4 of Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models [M, s]\chi \land [M, s]\xi$ which is equivalent by semantics to $(M^c, \Gamma) \models [M, s](\chi \land \xi)$.
- The case $[M, s]K_a \chi$: Suppose that $[M, s]K_a \chi \in \Gamma$. Given that $[M, s]K_a \chi \in \Phi$, $[M, s]K_a \chi \in \Gamma$ is equivalent to $(pre(s) \rightarrow K_a[M, t]\chi) \in \Gamma$ for all $t \in M$ by the action and knowledge axiom. By item 5 of Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models pre(s) \rightarrow K_a[M, t]\chi$ which is equivalent by semantics to $(M^c, \Gamma) \models [M, s]K_a \chi$.
- The case for $[M, s][M', s']\xi$: Suppose that $[M, s][M', s']\xi \in \Gamma$. Given that $[M, s][M', s']\xi \in \Phi$, $[M, s][M', s']\xi \in \Gamma$ is equivalent to $[M, s; M', s']\xi \in \Gamma$ by the action and composition axiom. By item 7 of Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models [M, s; M', s']\xi$ which is equivalent by semantics to $(M^c, \Gamma) \models [M, s][M', s']\xi$.
- The case for $[\alpha \cup \alpha']\xi$: Suppose that $[\alpha \cup \alpha']\xi \in \Gamma$. Given that $[\alpha \cup \alpha']\xi \in \Phi$, $[\alpha \cup \alpha']\xi \in \Gamma$ is equivalent to $[\alpha]\xi \wedge [\alpha']\xi \in \Gamma$ by the non-deterministic choice axiom. By item 8 of Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to $(M^c, \Gamma) \models [\alpha]\xi \wedge [\alpha']\xi$ which is equivalent by semantics to $(M^c, \Gamma) \models [\alpha \cup \alpha']\xi$.

5

• Lemma 7.51 (Canonicity):

The canonical model is reflexive, transitive and Euclidean.

• Theorem 7.52 (Completeness) :

For every $\varphi \in \mathcal{L}_{KC\otimes}$

 $\vDash \varphi \text{ implies} \vdash \varphi$

Proof:

We will prove this theorem by contraposition. Thus we suppose that $\not\vdash \varphi$. Therefore $\{\neg \varphi\}$ is a consistent set. By the Lindenbaum Lemma $\{\neg \varphi\}$ is a subset of some Γ which is maximal consistent in $cl(\neg \varphi)$. Let M^c be the canonical model for $cl(\neg \varphi)$. By the Truth Lemma

 $(M^c, \Gamma) \vDash \neg \varphi$. Therefore $\nvDash \varphi$.

The proof system S5RC

all instantiations of propositional tautologies $K_a(\varphi \to \psi) \to (K_a \varphi \to K_a \psi)$ $K_a \varphi \to \varphi$ $K_a \varphi \to K_a K_a \varphi$ $\neg K_a \varphi \rightarrow K_a \neg K_a \varphi$ $C_B(\varphi, \psi \to \chi) \to (C_B(\varphi, \psi) \to C_B(\varphi, \chi))$ $C_B(\varphi, \psi) \leftrightarrow E_B(\varphi \to (\psi \land C_B(\varphi, \psi)))$ $C_B(\varphi, \psi \to E_B(\varphi \to \psi)) \to (E_B(\varphi \to \psi))$ $\rightarrow C_B(\varphi, \psi))$ From φ and $\varphi \to \psi$, infer ψ From φ , infer $K_a \varphi$ From φ , infer $C_B(\psi, \varphi)$

distribution of K_a over \rightarrow truth positive introspection negative introspection distribution of $C_B(\cdot, \cdot)$ over \rightarrow mix of relativised common knowledge induction of relativised common knowledge modus ponens necessitation of K_a necessitation of $C_B(\cdot, \cdot)$

• Definition 7.53:

Given are a set of agents A and a set of atoms P. The language \mathcal{L}_{KRC} consists of all formulas given by the following BNF:

 $\varphi ::= p | \neg \varphi | (\varphi \land \varphi) | K_{\alpha} \varphi | C_B(\varphi, \varphi)$ Where $p \in P, a \in A$ and $B \subseteq A$.

• Definition 7.54(Semantics):

Given is an epistemic model $M = \langle S, \sim, V \rangle$. The semantics for atoms, negations, conjunctions and individuals operators are as usual.

$$(M, s) \vDash C_B(\varphi, \psi)$$
 iff $(M, s) \vDash \psi$ for all t such that $(s, t) \in (\bigcup_{a \in B} \sim_a \cap (S \times \llbracket \varphi \rrbracket_M))^+$

• <u>Theorem 7.56:</u>

The proof system S5RC is sound , i.e., if $\vdash \varphi$, then $\models \varphi$

• Definition 7.58 (Closure):

Let $cl: \mathcal{L}_{KRC} \to \mathscr{O}(\mathcal{L}_{KRC})$, be the function such that for every $\varphi \in \mathcal{L}_{KRC}$, $cl(\varphi)$ is the smallest set such that:

- 1. $\varphi \in cl(\varphi)$,
- 2. If $\psi \in cl(\varphi)$, then $Sub(\psi) \subseteq cl(\varphi)$ (where $Sub(\psi)$ is the set of subformulas of ψ),
- 3. If $\psi \in cl(\varphi)$ and ψ is not a negation, then $\neg \psi \in cl(\varphi)$,

4. If $C_B(\psi, \chi) \in cl(\varphi)$, then $\{K_a(\psi \to (\chi \land C_B(\psi, \chi))) | a \in B\} \subseteq cl(\varphi)$

• <u>Lemma 7.59:</u>

 $cl(\varphi)$ is finite for all formulas $\varphi \in \mathcal{L}_{KRC}$.

• <u>Lemma 7.60:</u>

Let Φ be the closure of some formula. Let $M^c = (S^c, \sim^c, V^c)$ be the canonical model for Φ . Let Γ be maximal consistent set in Φ . If $C_B(\varphi, \psi) \in \Phi$, then $C_B(\varphi, \psi) \in \Gamma$ iff every $B \cdot \varphi$ -path from a $\Delta \in S^c$ such that there is an agent $a \in B$ and $\Gamma \sim^c_a \Delta$ is a ψ -path.

• <u>Lemma 7.61 (Truth):</u>

Let Φ be the closure of some formula. Let $M^c = (S^c, \sim^c, V^c)$ be the canonical model for Φ . For all $\Gamma \in S^c$ and all $\varphi \in \Phi$:

 $\varphi \in \Gamma \text{ iff } (M^c, \Gamma) \vDash \varphi$

Proof : Suppose $\varphi \in \Phi$. We will prove this Lemma by induction on φ . We focus on the case for relativised common knowledge due to the fact that the other cases are the same as in proof of Lemma 7.17.

- The case for $C_B(\varphi, \psi)$: Suppose that $C_B(\varphi, \psi) \in \Gamma$.

From the Lemma 7.60 this is the case iff every $B - \varphi$ -path from a $\Delta \in S^c$ such that there is an agent $a \in B$ and $\Gamma \sim_a^c \Delta$ is a ψ -path. By induction hypothesis this is the case iff every B-path where φ is true along the path, is a path along which ψ is true. By semantics this is equivalent to $(M^c, \Gamma) \models C_B(\varphi, \psi)$. • Theorem 7.62 (Completeness) :

For every $\varphi \in \mathcal{L}_{KRC}$

 $\vDash \varphi \text{ implies} \vdash \varphi$

Proof:

We will prove this theorem by contraposition. Thus we suppose that $\nvDash \varphi$. Therefore $\{\neg \varphi\}$ is a consistent set. By the Lindenbaum Lemma $\{\neg \varphi\}$ is a subset of some Γ which is maximal consistent in $cl(\neg \varphi)$. Let M^c be the canonical model for $cl(\neg \varphi)$. By the Truth Lemma

$$(M^c, \Gamma) \vDash \neg \varphi$$
. Therefore $\nvDash \varphi$.

The proof system PARC

all instantiations of propositional tautologies

$$K_a(\varphi \to \psi) \to (K_a\varphi \to K_a\psi)$$

 $K_a\varphi \to \varphi$
 $K_a\varphi \to K_aK_a\varphi$
 $\neg K_a\varphi \to K_a \neg K_a\varphi$
 $C_B(\varphi, \psi \to \chi) \to (C_B(\varphi, \psi) \to C_B(\varphi, \chi))$
 $C_B(\varphi, \psi) \leftrightarrow E_B(\varphi \to (\psi \land C_B(\varphi, \psi)))$
 $C_B(\varphi, \psi \to E_B(\varphi \to \psi)) \to (E_B(\varphi \to \psi))$

$$\rightarrow C_B(\varphi, \psi))$$
From φ and $\varphi \rightarrow \psi$, infer ψ
From φ , infer $K_a \varphi$
From φ , infer $C_B(\psi, \varphi)$

distribution of K_a over \rightarrow truth positive introspection negative introspection distribution of $C_B(\cdot, \cdot)$ over \rightarrow mix of relativised common knowledge induction of relativised common knowledge modus ponens necessitation of K_a necessitation of $C_B(\cdot, \cdot)$

 $[\varphi]p \leftrightarrow (\varphi \to p)$ $[\varphi] \neg \psi \leftrightarrow (\varphi \rightarrow \neg [\varphi] \psi)$ $[\varphi](\psi \land \chi) \leftrightarrow ([\varphi]\psi \land [\varphi]\chi)$ $[\varphi]K_a\psi \leftrightarrow (\varphi \to K_a[\varphi]\psi)$ $[\varphi]C_B(\psi,\chi) \leftrightarrow (\varphi \to C(\varphi \land [\varphi]\psi, [\varphi]\chi))$ announcement and relativised $[\varphi][\psi]\chi \leftrightarrow [\varphi \land [\varphi]\psi]\chi$ From ψ , infer $[\varphi]\psi$

atomic permanence announcement and negation announcement and conjunction announcement and knowledge common knowledge announcement composition necessitation of $[\varphi]$

• Definition 7.63:

Given are a set of agents A and a set of atoms P. The language $\mathcal{L}_{KRC[]}$ consists of all formulas given by the following BNF:

 $\varphi ::= p | \neg \varphi | (\varphi \land \varphi) | K_{\alpha} \varphi | C_{B}(\varphi, \varphi) | [\varphi] \varphi$ Where $p \in P, a \in A$ and $B \subseteq A$.

Lemma 7.65:

 $\vDash [\varphi] C_a(\psi, \chi) \leftrightarrow \varphi \rightarrow C_a(\varphi \wedge [\varphi] \psi, [\varphi] \chi)$

• Definition 7.66 (Translation):

The translation $t: \mathcal{L}_{KRC[]} \to \mathcal{L}_{KRC}$ is defined as follows: t(p) = p $t(\neg \varphi) = \neg t(\varphi)$ $t(\varphi \land \psi) = t(\varphi) \land t(\psi)$ $t(K_a \varphi) = K_a t(\varphi)$ $t([\varphi]p) = t(\varphi \to p)$ $t([\varphi]\neg \psi) = t(\varphi \to \neg [\varphi]\psi)$ $t([\varphi](\psi \land \chi)) = t([\varphi](\psi) \land [\varphi]\chi))$ $t([\varphi]K_a\psi) = t(\varphi \to K_a[\varphi]\psi)$ $t([\varphi]C_a(\psi, \chi)) = t(\varphi \to C_a(\varphi \land [\varphi]\psi, [\varphi]\chi))$ $t([\varphi][\psi]\chi) = t([\varphi \land [\varphi]\psi]\chi)$

• <u>Definition 7.67 (Complexity):</u>

The complexity $c : \mathcal{L}_{KRC[]} \to \mathbb{N}$ is defined as follows: c(p) = 1 $c(\neg \varphi) = 1 + c(\varphi)$ $c(\varphi \land \psi) = 1 + \max(c(\varphi), c(\psi))$ $c(K_a \varphi) = 1 + c(\varphi)$ $c(C_B(\varphi, \psi)) = 1 + \max(c(\varphi), c(\psi))$ $c([\varphi]\psi) = (5 + c(\varphi)) \cdot c(\psi)$

• <u>Lemma 7.68:</u>

For all φ , ψ and χ :

- 1. $c(\psi) \ge c(\varphi)$ if $\varphi \in Sub(\psi)$
- 2. $c([\varphi]p) > c(\varphi \rightarrow p)$
- 3. $c([\varphi] \neg \psi) > c(\varphi \rightarrow \neg [\varphi] \psi)$
- 4. $c([\varphi](\psi \land \chi)) > c([\varphi]\psi \land [\varphi]\chi)$
- 5. $c([\varphi]K_a\psi) > c(\varphi \to K_a[\varphi]\psi)$
- 6. $c([\varphi]C_B(\psi,\chi)) > c(\varphi \to C_B(\varphi \land [\varphi]\psi, [\varphi]\chi))$
- 7. $c([\varphi][\psi]\chi) > c([\varphi \land [\varphi]\psi]\chi)$

Droof

Proof:

$$c([\varphi]C_B(\psi,\chi)) > c(\varphi \to C_B(\varphi \land [\varphi]\psi, [\varphi]\chi))$$
Assume without loss of generality, that $c(\psi) \ge c(\chi)$. Then :

$$c([\varphi]C_B(\psi,\chi)) = (5 + c(\varphi)) (1 + \max(c(\psi), c(\chi)))$$

$$= 5 + c(\varphi) + 5 \max(c(\psi), c(\chi)) + c(\varphi) \max(c(\psi), c(\chi))$$

$$= 5 + c(\varphi) + 5c(\psi) + c(\varphi)c(\psi)$$
And

$$c(\varphi \to C_B(\varphi \land [\varphi]\psi, [\varphi]\chi)) = c \left(\neg(\varphi \land \neg C_B(\varphi \land [\varphi]\psi, [\varphi]\chi))\right)$$

$$= 2 + \max\left(c(\varphi), 1 + 1 + \max\left(1 + \max\left(c(\varphi), (5 + c(\varphi))c(\psi)\right), (5 + c(\varphi))c(\chi)\right)\right)$$

$$= 5 + \left((5 + c(\varphi))c(\psi)\right)$$

 $= 5 + 5 c(\psi) + c(\varphi) c(\psi)$

• <u>Lemma 7.69:</u>

For all formulas $\varphi \in \mathcal{L}_{KRC[]}$ it is the case that

 $\vdash \varphi \leftrightarrow t(\varphi)$

Proof:

Is similar to the proof of Lemma 7.24

• Theorem 7.70 (Completeness):

For every $\varphi \in \mathcal{L}_{KRC[]} \vDash \varphi$ implies $\vdash \varphi$ Proof:

Suppose that $\vDash \varphi$. Therefore $\vDash t(\varphi)$ (by the soundness) and by Lemma 7.69 holds that $\vdash \varphi \leftrightarrow t(\varphi)$. Because of the fact that $t(\varphi)$ doesn't contain any announcement operators, $S5RC \vdash t(\varphi)$ (Theorem 7.62) We also have that PARC $\vdash t(\varphi)$ as S5RC is subsystem of PARC. Since PARC $\vdash \varphi \leftrightarrow t(\varphi)$, it follows that PARC $\vdash \varphi$.