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Overview

» Reminder

» Completeness for S5C

» Completeness for PA without common knowledge
» Completeness for PA with common knowledge

» Completeness 1n a generalised form for logic of action
model without common knowledge

» Completeness 1n a generalised form for logic of action
model with common knowledge

» Introduction to relativised common knowledge




Reminder

The proof system S5

all instantiations of propositional tautologies

Kao(p — 1Y) — (Ko — Ka) distribution of K, over —
Ko, — o truth

Kop — Ko Ko positive introspection
Ko — Ko Ko negative introspection
From ¢ and ¢ — ), infer v modus ponens

From ¢, infer K, necessitation of K,




e Definition 7.1 (Maximal consistent):

LetI' © L. I' is maximal consistent iff
— Tisconsistent: I' #L
— T'is maximal: thereis no I'" € L such that I' c I'"and I''is consistent.

e Definition 7.2(Canonical model):

The canonical model M€ = (S¢, ~¢, V) is defined as follows:
—  S¢={I'| T is maximal consistent}

— T ~q Aiff{K,0|Kap € T} = {Ky0|Kq € A}
- Vy={IeS°lpeT}
e Lemma 7.3(Lindenbaum):

Every consistent set of formulas is a subset of a maximal consistent set

>

of formulas.

Adolf Lindenbaum (12 June 1904 — August 1941) i
Polish-Jewish logician and mathematician



 Definition (out of the book):

In mathematical logic, a set T of logical formulas is deductively closed if it contains
every formula @ that can be logically deduced from T formally if T F ¢ always implies
@ €T.

* Lemmal7/.4:
If I' and A are maximal consistent sets, then:
1. T'is deductively closed,
2. @eTliff-perl,
3 (pny)eTiffoelandy €T,
4. T ~S Aiff{K,p|K,0 €T} C A,
5 {Kap|Kap €T} Y iff{K,0|Kap €T} F Ko
e Lemma 7.5(Truth):
For every ¢ € L and every maximal consistent set I':
@ € Tiff (MS,T) E @

e Lemma 7.6 (Canonicity):

The canonical model is reflexive, transitive and Euclidean.
e Theorem 7.7 (Completeness) :

Forevery ¢ € Lg

E @ implies - @



The proof system S5C

all instantiations of propositional tautologies

Ko(p — 1) — (Kap — K1) distribution of K, over —
Kaop — @ truth

Kop — K Ky positive introspection
Ko — Ko Ko negative introspection
Cp(p — ) — (Cpp — Cpv) distribution of C'p over —
Crp — (¢ AN ErCRp) mix

Ce(p — Ep) — (p — Cpy) induction axiom

From ¢ and ¢ — 1, infer o modus ponens

From ¢, infer K,p necessitation of K,

From ¢, infer C'py necessitation of C'p




 Definition 7.8(Closure):

Let cl: L = 0 (Lkc), be the function such that for every ¢ € L., cl(¢) is the smallest set
such that:

1. @ €ecl(p),
2. Ify € cl(p), then Sub(yY) < cl(p) (where Sub(y) is the set of subformulas of Y),
3. Ify € cl(ep) and Y is not a negation, then =y € cl(yp),
4. If Cgy € cl(g), then{K, Cgy|a € B} S cl(yp).
* Lemma?/.9:
cl(¢p) is finite for all formulas ¢ € L.
Proof:
By induction to ¢.
Base case: If @ is a propositional variable p, then the closure of ¢ is {p, =p}, which is finite.
Induction hypothesis: cl(¢) and cl() are finite.
Induction step:

—  The case for =¢: the closure of our case is the set {—=¢} U cl(¢). By induction
hypothesis we know that cl(¢) is finite so the set is also finite.

— The case for (¢ A ): the closure of our caseisthe set {(@ A ),~ (@ AP )} U cl(p) U
cl(3y). By induction hypothesis cl(¢) and cl(y) are finite so our set is also finite.

—  The case for K, ¢: the closure of our case is the set {K, ¢, 7K, ¢} U cl(¢). By induction
hypothesis we know that cl(¢) is finite so our set is also finite.

— The case for Cz@: the closure of our case is the set
{Cgp,~Cgp} U{K,Czgp,~K,Czp|a € B} U cl(¢p). By induction hypothesis we know

that cl(¢) is finite so our set is also finite.



e Definition 7.10(Maximal consistent in ®):

Let ® C Ly be the closure of some formula. I' is maximal consistent in ® iff:
- T'cod
— Tisconsistent: T L
— Tis maximal: thereisno I'" € Ly such that' c I'"and I'' is consistent.

* Lemma 7.12 (Lindenbaum):

Let @ be the closure of some formula. Every consistent subset of @ is a subset of a
maximal consistent set in .

Proof:

Let A € @ be a consistent set of formulas. Let |®| = n. Let ¢;, be the k-th formula in an
enumeration of ®. We consider the sequence of sets of formulas as follows:

FOZA

I, U{@ki1},if I U {@y41} is consistent
l—‘k+1 — I .
% ,otherwise
We can see that A € I, What we need to show?

We need to show that I}, is maximal consistent. In order to see that [}, is consistent we
will prove that I} is consistent by induction on k, which means that [}, is also
consistent.



Proof :

By assumption I}, is consistent due to A is a consistent set of formulas.
We can also see that if [}, is consistent then [}, is consistent. Thus we

prove thatl’, is consistent é’

To see that I}, is maximal in &, take an arbitrary formula ¢,€ ® such that
@, €,,. Then ¢, ¢ I, too. Therefore [} U{g;} is inconsistent and so
I, U {g,} is inconsistent too. Since ¢, was arbitrary there is no I'' € @ such

that I;, € I''and I'' is consistent. é

e Definition 7.11(Canonical model for ®):

Let @ be the closure of some formula. The canonical model M¢ =
(S€¢,~€,V°¢)is defined as follows:

—  S¢={I'| T' is maximal consistent in ®} é We construct a finite
— T~ Aiff{K,0|K,0 €T} ={K,p|K,p € A} model for only a finite

fragment of the language
_ z{)«' ={I' € S¢|p € T’} depending on the formula

we are interested in. 7




e Definition 7.13(Paths):

— A B-path from I' is a sequence I, ..., [}, of maximal consistent sets in @ such

that for all k (0 < k < n) thereis an agent a € B such that [}, ~§ I, and
FO =T.

— A
allk (0 <k <n) @ €I}.

@-path is a sequence [, ..., [}, of maximal consistent sets in ®@ such that for

Note: We take the length of a path [, ..., I}, to be n.
* lLemma /.14:

Let @ be the closure of some formula. Let M¢ = (S¢, ~€,V°) be the canonical
model for ®. If ' and A are maximal consistent sets, then:

1.

o es WwN

I"is deductively closed in @ (for all formulas ¢ € @, if - I' - ¢, then ¢ €T.
Note thatI' = AT)

If = € O, thenp €T iff 7@ & 7T

If (p AY) € D, then(pAY) ETiffo elandyp €T

If T A K Ais consistent, then T ~§ A

If K,y € &, then{K,@|K,p €T} -y iff {K,0|K,0 €T} - K,y
If Cpp € ®,then Cgp €T iff every B-path from I' is a @-path.



In other case, it doesn’t hold that
[ is maximal consistent set in®
by the definition of maximal

consistent set 74

Exercise 7.15

Proof :

1. Suppose that ¢ € ®. Suppose that I' + ¢. We know by assumption that
I is maximal consistent which means that I' is consistent and maximal in
®. Because of consistency of I in @, I' U {@} is also consistent.
Therefore, by maximality of I" in @, it must be the case that ¢ € T..

2. Suppose =@ € ®. Therefore @ € .
" = " Suppose that ¢ € I' then by consistency =@ €T’

" & " Suppose that =@ & I'. By maximality, ' U {—¢} is inconsistent.
Therefore I' -+ ¢ and by the item 1 of this Lemma, ¢ € T.

3. Suppose that (¢ AY) € D.

"= " Supposethat(p AY) ET.ThenT' - ¢ andT . Since @ is closed,
alsop € ®and Y € @ . Therefore ¢ € I'and Y € T by the item 1 of this
Lemma.

" & " Suppose that @ € 'and y € ' . Therefore I' + (@ A ) and by the
item 1 of this Lemma (@ AY) € T.




Lemma 7.17 (Truth):

Let @ be the closure of some formula. Let M¢ = (S¢, ~¢, V) be the canonical model for ®. For all
[eSandall p € O

@ eTiff (M,T) E o
Proof: Suppose that ¢ € ®
Base case: Suppose that ¢ is a propositional variable p. Then by the definition of V¢, p € TiffI' € S

which by semantics is equivalent to (M€, T) E p. 2.1f 7 € d,then @ €T iff ~p & T
Induction hypothesis: For every maximal consistent set T, 3. ':;E;}P /\Il{i) € @, then (pA) €Tiffp €T
. c andy €
Q E F-Iff (M, T) E o. Truth: K, — o
Induction step: 7

— The case for =¢ : =@ € I'is equivalent to ¢ & I' by the item 2 in Lemma 7.14. By induction
hypothesis and the semantics this is equivalent to

(MC, F) E —Q.

—  Thecase for (o AY): (¢ AY) € Tis equivalentto ¢ € I'and Y € I by the item 3 of Lemma
7.14 . By induction hypothesis this is equivalent to (M€, T) E ¢ and
(M€, T) = ¢ which by semantics is equivalence to (M¢,T) E (¢ AY).

— The case for K, :

Suppose that K, @ € I'.Take an arbitrary maximal consistent set A in ®@. Suppose that
' ~¢ A,so K, € A by the definition of the relation ~§. Since - K, — ¢ by the truth, and A is
deductively closed (due to A is maximal consistent and by the item 1 in Lemma 7.14) then
@ € A. By the induction hypothesis, this is equivalent to (M€, A) E ¢ . Since we chose an arbitrary
A, then (M€, A) E @ holds for all A such that T' ~¢ A. Therefore by semantics this is equivalence to
(MS,T) E K, .



— The case for Cz: Suppose that Czp € I'. From item 6 in Lemma 7.14 this is the
case iff every B-path from I' is a ¢-path. By induction hypothesis, this is the case

that iff every B-path along ¢ is true. Therefore by semantics this is equivalence to
(M, T) E Cgep. &

e Lemma 7.18(Canonicity):

Let @ be the closure of some formula. The canonical model for @ is reflexive, transitive and
Euclidean.

Proof:

The same as the proof of Lemma 7.6 which follows straightforwardly from the definition of
the relation ~§.

e Theorem 7.19 (Completeness):
Forevery ¢ € Lk,

E @ implies + @
Proof:

We will prove this theorem by contraposition. Thus we suppose that i+ ¢. Therefore {—¢} is
a consistent set. By the Lindenbaum Lemma {—¢} is a subset of some I" which is maximal
consistent in cl(—¢). Let M€ be the canonical model for cl(—¢). By the Truth Lemma

(M€, T) E —¢. Therefore I;écp.é’



The proof system PA:

all instantiations of propositional tautologies
Ko(p — ¢) = (Kap — Ka¥)

Kaop — ¢

Kaop — KoKap

T NgP — Ka_'Ka,SO

plp < (¢ — p)

Y < (¢ — =[plyY)

(¥ A x) < ([elv Alelx)

(| Kb < (0 — Kalp]y)

ol[Y]x < e A lplY]x

From ¢ and ¢ — 1, infer v

?
:(fo:
)
2

From ¢, infer K ¢

distribution of K, over —
truth

positive introspection
negative introspection

atomic permanence
announcement and negation
announcement and conjunction
announcement and knowledge
announcement composition
modus ponens

necessitation of K,




Definition 7.20 (Translation):

The translation t: Lg) = Lk is defined as follows:

tlp) =p

t(—p) = ~t(e)

t(p AY) =t(p) At(Y)
t(Ka§0) — Kat(QD)
t([elp) =t(p — p)

t([e]l=y) = t(p = =lely)
t([plW A X)) = t([el@) Alelx))
t([plKa) = t(e = Kyloly)
t([ellwlx) = t(o A lellx)

Definition 7.21 (Complexity):

The complexity ¢ : Lg = N is defined as follows:

c(p) =1

c(mp) =1+ c(p)

c(p AYP) =1+ max(c(g), c@))
c(Kap) =1+ c(p)

c([plY) = (4 + c(9)) - c(@)

Where pis a
propositional

variable, @ and Y

are formulas

4




* Lemma /.22:
For all ¢,y and y:

1. c(y) =c(p)ifp € Sub(y) Sub(1) is the set of
c(lelp) > c(p - p) sulstiosiles ot o)
c(le]=y) > c(p - —loly) 4
c([ol@ A X)) > c(ply Alelx)

c(lolkp) > c(o — K lolyP)

c(lellylx) > c(lo A lelplx)

e Exercise 7.23:
Prove Lemma /.22

A




2. c([@lp) > c(p = p)

Proof: ?? Reminder:
c([olp) = (4 + c(@) =4+ c(o) c(p) =1
And c(mp) =1+ c(p)
c(p>p)=c(-pVp) clony) =

= c(=(p A —p)) 1 + max(c(¢p), c(¥))

=14 c(p A -p) c(Kqp) =1+ c(o)

=2+ max(c(¢),2) c([ply) = (4 + c(@)) - c@)
Soc([@lp) > c(e — p) 4
3. c([o]-y¥) > c(p — —loly)
Proof:??

c(lp]-) = (4 +c(9) - c(=p) = (4 + c(9) - (1 + c(¥))
=4+ c(p) +4c@) + c(e) - c(@) 4

And

c(p — =[plP) = c(~¢ v (Slelw)) = ¢ (~(¢ A ~(=lel)))
=1+ c(pA=(=lelp) =



=1+ c((p A _,(_,[(p]l/))) o) = 1 Reminder:

=14+ 1+ max (c(q)), C(—l(—l[<P]1/J))) c(ap) =1+ c(p)

= 2 + max(c(p), +c(=lely)) clpny) =

=2+ max(c(<p), 2 + c([<p]¢)) Z(; TT:;XSEQU-B»;((;/J)))

= 2 + max (c(<p), 24+ (4+c()- c(w>) c([qj]lp) =(4+c(p)) - c@)
= 2 4+ max (c(<p), 2+ (4c(@) + C(QD)C(VJ))) 7

2 + max(c(go), 2+ 4c(@) + c(p)c@))

Thus c([p]=y) > c(p = =[e]Y).
4. c([pl@ A x)) > c(ply Alplx)

Proof:??
Assume without loss of generality, that c(y) = c(x). Then:

C([QO] (Y /\X)) =(4+cl@) c@ Ay = (4 + C(go)) (1 + max(c(lp),c()()))
= (4+c(@)(1+c@) =4+ 4c@) + c(@) + c(@c@)



And

c(loly Alelx)
= 1 + max ((4 + c(cp))c(lp), (4 + c(cp))c()())

=1+ ((4+c(@)c@®))
=1+ 4c() + clp)c)

soc([@]@ A x)) > c([old Alplx).
6. c([ellwlx) > c([o Alolylx)

Proo1c 27

c([olllx) = (4 + c(@) (4 + c@))c(r)

= (16 + 4c(@) + 4c@) + c(@Ic@P)c(n))
And

Reminder:
c(p) =1
c(ngp) =1+ c(e)
clpAy) =
1+ max(c(go), C(l/)))

c(Kqap) =1+ c(p)

c([plp) = (4 +c(@) - c@)

4

c(lp A TpTl0) = (4 + (1 +max (c(e), (4 + c(w))c(w)))) )

= (5+((4+ c@)ew))) e
= (5 +4c) + c(@cW)c(p)) @



We will show that every formula is provably equivalent to its translation.
* Lemma /.24.

For all formulas ¢ € Lk it is the case that

=@ o t(p)

Proof:

We will prove this Lemma by induction on c(¢).

Base case: If ¢ is a propositional variable p, it’s trivial that - p & t(p) = p.
Induction hypothesis: For all ¢ such that c(p) < n: + ¢ < t(p).

Induction step: The case for =, A, K, follows straightforwardly from the
induction hypothesis and item 1 of Lemma 7.22.

— The case for|@]p: This case follows straightforwardly from the atomic
permanence axiom, item 2 of Lemma 7.22 and the induction
hypothesis.

atomic permanence axiom:

[plp © (¢ — p)
ltem 2 of Lemma 7.22

c([elp) > c(p - p)

4




The case for|@]—y: This case follows straightforwardly from the
announcement and negation axiom, item 3 of Lemma 7.22 and
the induction hypothesis

The case for[@](¢@ A Y): This case follows straightforwardly
from the announcement and conjunction axiom, item 4 of
Lemmma 7.22 and the induction hypothesis.

The case for|@] K,y : This case follows straightforwardly from
the announcement and knowledge axiom, item 5 of Lemma 7.22
and the induction hypothesis.

The case for|@][W]x: This case follows straightforwardly from
the announcement composition axiom, item 6 of Lemmma 7.22
and the induction hypothesis.

c(([cp]—n/J) > C)(<p - =lelP)
cllel@Ax)) > clloly Alelx)
el A x) < Lol Alwlx c([plKa) > c(p = Kololy)

[p]Kp © @ — Ky [oly
[o][Y]y © [0 A[o]wlx c([oll]x) > c(lo A loldlx) y

7

o]y © ¢ - =[ely

L




e Theorem 7.26 (Completeness):
For every ¢ € L E @ implies - ¢
Proof:

Suppose that E ¢ . Therefore E t(@) (by soundness) and by
Lemma 7.24 holds that + @ < t(@). Because of the fact that
t(¢) doesn’t contain any announcement operators, S5 + t(¢)
(Theorem 7.7) We also have that PA  t(¢) as S5 is subsystem of
PA. Since PA + ¢ & t(g), it follows that PA + ¢.

&




"'he proof system PAC

all instantiations of propositional tautologies
Ka(p — ¢) — (Kap — Ka¥)

Kap — ¢

Ka{,:) — KQK,J{,:}

Ko — Ko Kap

elp < (¢ — p)

Y < (¢ — g]Y)

(¥ Ax) < ([elv Alelx)

plKath < (¢ = Kalp]Y)

el[Ylx < o Alelv]x

Ce(p = ¢) — (Cpyp — CpY)
Cpy — (p A EBCByp)

Ce(¢ — EBp) — (¢ — Ubyp)
From ¢ and ¢ — %, infer v

From ¢, infer K @

From ¢, infer Cpyp

From ¢, infer [¢]¢

From x — [¢]Y and x A ¢ — EBX,
infer x — [¢]CBY

{f:):
:{j:):
f‘j:):
{f:):

distribution of K, over —
truth

positive introspection

negative introspection

atomic permanence
announcement and negation
announcement and conjunction
announcement and knowledge
announcement composition
distribution of Cg over —

mix of common knowledge
induction of common knowledge
modus ponens

necessitation of K,
necessitation of Cp
necessitation of [¢]
announcement and

common knowledge




e Definition 7.27 (Closure):

Let cl: Lgcp — 80(131«:[]), be the function such that for every ¢ € Lgcp, cl(@)
is the smallest set such that:

1. ¢ €cl(y),
If Y € cl(@), then Sub(Y) < cl(p) (where Sub(y) is the set of
subformulas of Y),

If Y € cl(p) and Y is not a negation, then = € cl(p),

If Cg € cl(p), then{K,Cg|a € B} S cl(¢p),

If []p € cl(g), then (Y — p) € cl(p),

|=x € cl(), then (Y - =[h]x) € cl(gp),

1(x A &) € cl(e), then ([Y]x A [Y]€) € cl(e),

1Kax € cl(p), then (¥ = Kq[Yplx) € cl(o),

1Csx € cl(e), then [Y]x € cl(p) and {K,[y]Cpxla € B} S cl(¢),

N




e Lemma7.28:
cl() is finite for all formulas ¢ € L.
e Lemma 7.29 (Lindenbaum):

Let @ be the closure of some formula. Every consistent subset of ® is a subset of a maximal consistent
setin @.

Proof:

The same as Lemma 7.12

e Definition 7.30 (B-@-path):

A B-@-path from I' is a B-path that is also ¢-path.
* Lemma7.31:

Let @ be the closure of some formula. Let M€ = (§¢, ~¢, V) be the canonical model for ®@. If " and A
are maximal consistent sets, then:

1. Tis ded;Jctiver closed in @ (for all formulas ¢ € @, if - I' = ¢, then ¢ € I'. Note that
[=AT

If = € O, thenp €T iff 7 €T

If (p AY) € D, then (@ AY) ETiffpelandy €T

If T A K, A is consistent, then T ~¢ A

If K,y € ®, then {K,0|K,0 €T} -y iff {K,0|K,0 €T} - K,y

If Cpp € @, then Czp €T iff every B-path from I' is a @-path.

If [p]Cgy € D, then [@]Cgy € T iff every B-path from I' is a [¢]y—path.

NOoUAEWN



 Definition 7.32 (Complexity):

The complexity ¢ : Lgc = Nis defined as follows:
c(p) =1

c(np) =1+ c(p)

c(p AY) =1+ max(c(@), c(¥))

c(Kqp) =1+ c(p)

c(Cgp) =1+ c(o)

c([oly) = (4 + c(@)) - c@)

* lLemma/.33:
For all @,y and y:

1. c(l_/))_ > c(¢) forall ¢ € Sub(y)

2.  c([plp) > c(p - p)

3. c([p]-y) > clp = =lplyY)

4. c([el@ A ) > c(oly Alpln)
5. c([plKay) > c(p = Kqloly)

6. c(lelCs) > c(loly)

7. c(lellylx) > c(o Alelylx)



e Lemma 7.34 (Truth):

Let ® be the closure of some formula. Let M€ = (S¢, ~¢, V) be the canonical model for ®. For
alll € S€and all ¢ € :

@ eTiff (MS,T) E o
Proof: (by induction on c(¢))
Suppose that ¢ € .

Base case: Suppose that ¢ is a propositional variable p. Then by the definition of V¢, p € T iff
I' € S¢ which by semantics is equivalent to (M€, T’) E p.

Induction hypothesis: For all ¢ such that c(¢p) < n:
@ € Tiff (M, T) E .
Induction step: Suppose that c(¢) = n + 1. The cases for -, A, K, Cg are just like Lemma 7.17.

—  The case for []p: Suppose that [(]p € T'. Given that [ ]p € ®, [Y]p € T is equivalent
to (1 — p) by the atomic permanence axiom. By item 2 of Lemma 7.33, we can apply
the induction hypothesis. Therefore this is equivalent to

(M€, T) = (y = p) which is equivalent by semantics to (M€, T) E [Y]p.

—  The case for []—y: Suppose that []—y € I'. Given that[y] -y € D, [Y]p € T is
equivalent to (1 = —[Y]x) € I by the announcement and negation axiom. By item 3 of
Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to

(M€, T) =Y - =[yp]ywhich is equivalent by semantics to (M€, T) E [Y]—y.



The case for[Y](x A &): Suppose that[y](y A &) € T. Given that[y](y A &) €

D,[Y](x A &) € Tis equivalent to ([W]x A [Y]é) € T by the announcement and
conjunction axiom. By item 4 of Lemma 7.33, we can apply the induction hypothesis.
Therefore this is equivalent to (M¢,T) E [Y]x A [Y]é which is equivalent by semantics
to (M5, T) E [Yp](x A ).

The case [Y]K,x: Suppose that [W]K,x € I'. Given that[y]K,x € ®,[Y]K, x €T is
equivalent to (3 = K,[Y]x) € I by the announcement and knowledge axiom. By item
5 of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to
(M€, T) =y — K []x which is equivalent by semantics to (M€, T") & [Y]K,x.

The case for [Y]Cg x: Suppose that[y]Czx¥ € T. Given that[y]|Czx € ®,[Y]Cgx €T

iff every B—path from I is a [Y]x-path by item 6 of Lemma 7.31. By item 6 of Lemma
7.33 we can apply the induction hypothesis. Therefore this is equivalent to every
B-path from I' is along which [y ]y is true which is equivalent by semantics to

(MCI F) = [l/)]CBX
The case for [Y][x]¢: Suppose that[y][x]é € T. Given that[y][x]é € &,[yY][x]é €T is

equivalent to [y A [P]x]€ € T by the announcement and composition axiom. By item 7
of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to
(M€, T) = [y A [Y]x]éwhich is equivalent by semantics to

(M, T) = [Y]lx]¢E. =



e Lemma 7.35 (Canonicity):
The canonical model is reflexive, transitive and Euclidean.
e Theorem 7.36 (Completeness) :

For every ¢ € Licy

E @ implies - @
Proof:

We will prove this theorem by contraposition. Thus we
suppose that i @. Therefore {—¢} is a consistent set. By
the Lindenbaum Lemma {—¢} is a subset of some I" which
is maximal consistent in cl(—¢). Let M€ be the canonical
model for cl(—¢). By the Truth Lemma (M€, T") E —¢.

Therefore F . %



The proof system AM

all instantiations of propositional tautologies

Kao(p — ¢) — (Kap — Kat)) distribution of K, over —
Kop— truth

Kop — Ko Ko positive introspection

- K ap — K., K,p negative introspection
M, s|p < (pre(s) — p) atomic permanence

M, s|]—p <« (pre(s) — —[M,s|y) action and negation
:M,s (e A) « ([M,s]e A [M,s]y) action and conjunction
M, s|Kaop < (pre(s) — A\ , Ka[M, t]p) action and knowledge
M, s] [M" o < [(M,s); (M s’)}c,.o action composition
aUa']e < ([ale A [ To) non-deterministic choice
From ¢ and ¢ — 1), infer 1 modus ponens

From ¢, infer K, necessitation of K,

From ¢, infer [M, sy necessitation of (M, s)




* Definition 7.37 (Translation):
The translation t: Lgyg — Lk is defined as follows:
t(p) =p

t(—p) = ~t(p)

t(p AY) =t(p) At()

t(KaQD) = Kat(QD)

t([M, s]p) = t(pre(s) - p)

t([M, s]—@) = t(pre(s) - —[M, s]p)
t([M,s](@ AY)) = t([M,s]o A [M, s]p)
t([M, s]K,p) = t(pre(s) = K;[M, s]o)
t([M, s][M',s']@) = t([M, s; M, s'|p)
t([a v a'lp) = t([alp) At([a']p)




e Definition 7.38 (Complexity):

The complexity ¢ : Lxg — Nis defined as follows:
c(p) =1

c(np) =1+ c(p)

c(p AYp) = 1+ max(c(e), c@))

c(Kap) =1+ c(p)

c([alp) = (4 + c(a)) - c(p)

c([M,s]) = max{c(pre(t))|t S M}

c(lavua’]) =1+ max(c(a), c(a’))




* Lemma /.39:
For all ¢,y and y:

c(y) = c(op) if p € Sub(y)

N o U s W

M,s
M, s
M, s
M,s.

M, s

p) > c(pre(s) - p)
) > c(pre(s) - =[M, s]p)
(p AY)) > c([M, sl A M, s]p)

Kqp) > c(pre(s) = K4 [M, s]p)
(M, s']@) > c(IM, s; M', s'] )

aua]e)>c(alenlad]e)



* Lemma 7.40:

For all formulas ¢ € Lig it is the case that

=@ < tp)

(i.e. every formula is provably equivalent to its translation)
Proof:

Is similar to the proof of Lemmma 7.24

e Theorem 7.41 (Completeness):

Forevery ¢ € Lyg F @ implies - ¢

Proof:

Suppose that E ¢ . Therefore = t(@) (by the soundness) and by Lemma
7.40 holds that - ¢ < t(@). Because of the fact that t(¢) doesn’t
contain any action models, §5 F t(@) (Theorem 7.7) We also have that

AM I t(p) as S5 is subsystem of AM. Since AM + ¢ < t(p), it follows
that AM + ¢.
&




The proof system AMC

all instantiations of propositional tautologies
Ka(p — ¢) — (Kayp — Ka?)
Kaop — @
Kap — KoK

ay — Ku_"Kuﬁ'j
(M, s]p < {PrE(s} — p)
M, s|—gp < (pre 5} — —[M, s]y)
M)l (9 A ) — (M, sl A M, 5J)
(M, 5] Kap < (pre(s) — A, Ka[M, )
MS][M, ) > [(M, ); (W)
[aUa’]p — ([eJe Ala]p)
Ce(g — v) — (Cey — Cp1)
Cee — (0N EgCryp)
Cely — EBp) — (¢ — Cbyp)
From ¢ and ¢ — 1, infer 4
From ¢, infer K,y
From ¢, infer C'gyp
From ¢, infer [M, s|p
Let (M,s) be an action model and let a set
of formulas y: for every t such that s ~g
t be given. From y: — [M,t]e and (x: A
pre(t)) — K,y forevery t €S, a € B and
t ~a u, infer xo — [M,s|Cgre.

distribution of K, over —
truth

positive introspection
negative introspection
atomic permanence
action and negation
action and conjunction
action and knowledge
actlon composition
non-deterministic choice
distribution of C'g over —
mix

induction axiom

modus ponens
necessitation of K,
necessitation of Cg
necessitation of (M, s)
action and common
knowledge




e Definition 7.42 (Closure):

Let cl: Lxcg — #(Lkcg), be the function such that for every ¢ € Licg, cl(@) is the
smallest set such that:

1. ¢ €ecl(p),

If Y € cl(p), then Sub(Y) S cl(p) (where Sub(1) is the set of subformulas of 1),
If Y € cl(¢p) and Y is not a negation, then =y € cl(p),

If Cg € cl(g), then{K,Cg|a € B} S cl(¢p),

If [M, s]p € cl(¢), then (pre(s) — p) € cl(p),

If (IM, s]=y) € cl(e), then(pre(s) - =[M, s]p) € cl(y),

If [M, s](¥ A x) € cl(e), then ([M, sy A [M, s]x) € cle),

If [M, s]K ¢ € cl(@) and s~,t, then (pre(s) = K, [M, s]e) € cl(yp),

If [M, s]Cgy € cl(@), then {[M, t]y| s~5t} S cl(¢) and
{K,IM, t]Cgy|a € Bands~gt} < cl(p),

10. If [M,s][M',s']y € cl(g), then [M,s; M, s'ly € cl(p),
11. if [a U ']y € cl(p), then ([a]y Ala']y) € cl(p),

W ® N O ULk WDN




* Lemma 7.43:
cl() is finite for all formulas ¢ € L .
e Lemma 7.44 (Lindenbaum):

Let ® be the closure of some formula. Every consistent subset of
® is a subset of a maximal consistent set in P.

Proof:
The same as Lemma 7.12
e Definition 7.45 (BMst-path):

A BMst-path from I' is a B-path I, ..., [, from I' such that there is
a B-path sy, ...,s,, fromstotin M and for all k < n thereis an
agent a € B such that I}, ~§ I+ and s, ~, Sx+1 and for all

k < n itis the case that pre(sy) € I}.




 Lemma 7.46:

Let @ be the closure of some formula. Let M€ = (§¢, ~¢,V°) be the
canonical model for @. If I' and A are maximal consistent sets, then:

1. T is deductively closed in ®

If = € D, thenp €T iff = €T

f (@ AY) ED, then(pAY) ETiffo elandy €T

If T A K A is consistent, then T ~¢ A

If K, € ®,then{K,¢|K,p €T} -y iff {K,0|K,p €T} I

Kqp

If Cgp € @, then Czp €T iff every B-path from I' is a ¢-
path.

7. If[M,s|Czp € ®, then [M,s]|Czep €T iffforallt € S every
BMst—path from I" ends in a |[M, t] ¢-state.

Al S

o



Definition 7.47 (Complexity):
The complexity ¢ : Lgcg — N is defined as follows:
c(p) =1
c(—p) =1+ c(o)
c(e AY) = 1+ max(c(e),c(¥))
c(Kap) =1+ c(p)
c(Cpp) =1+ c(o)
c([alp) = (4 + c(@)) - c(9)
c([M,s]) = max{c(pre(t))|t € M}
c(lava]) =1+ max(c(a), c(a’))

Lemma 7.48:
For all ¢,y and y:
c(y) = c(@) for all @ € Sub(y)
c([M,s]p) > c(pre(s) - p)
c([M, s]—¢) > c(pre(s) —» —[M, s]p)
c([M,s]p A)) > c([M, s]g A [M, s]i)
c([M, s]K @) > c(pre(s) -» K,[M, t]p) forallt € M
c([M,s]Cgp) > c([M, t]e) forallt € M
c([M, s][M',s']@) > c([(M, s); (M',s")]p)
c(faua']lp) > c(lalp Ala']p)

O N hE WN R



e Lemma 7.50 (Truth):

Let ® be the closure of some formula. Let M¢ = (S¢, ~¢, V) be the canonical model for ®. ForallT € S¢
and all ¢ € ®:

@ eTiff (M5,T) E ¢
Proof: (by induction on c(¢))
Suppose that ¢ € .

Base case: Suppose that ¢ is a propositional variable p. Then by the definition of V¢, p € T iff
' € S¢ which by semantics is equivalent to (M€, T) E p.

Induction hypothesis: For all ¢ such that c(¢) < n:
@ € I'iff (MS,T) E o.
Induction step: Suppose that c(¢) = n + 1. The cases for -, A, K, Cg are just like Lemma 7.17.

—  The case for [M, s]p: Suppose that [M, s]p € I'. Given that[M,s|p € ®,[M,s]p € Tis
equivalent to (pre(s) — p) by the atomic permanence axiom. By item 2 of Lemma 7.48,
we can apply the induction hypothesis. Therefore this is equivalent to

(M€, T) & (pre(s) — p) which is equivalent by semantics to (M€, T") = [M, s]p.

—  The case for [M, s]—y: Suppose that [M, s|]—y € I'. Given that[M, s]-y € ®, [M, s]—yx €
I'is equivalent to (pre(s) = =[M, s]y) € I by the action and negation axiom. By item
3 of Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to

(M€, T) & pre(s) = =[M, s]ywhich is equivalent by semantics to (M€, T") & [M, s]—y.



The case for[M, s](y A €): Suppose that[M, s](y A &) € I'. Given that[M,s](y A &) €
d,[M,s](x A &) € Tis equivalent to ([M, s]x A [M, s]€) € T by the action and
conjunction axiom. By item 4 of Lemma 7.48, we can apply the induction hypothesis.
Therefore this is equivalent to (M€, T) E [M, s]x A [M, s]& which is equivalent by
semantics to (M6, T") E [M,s](x A §).
The case [M, s]K,x: Suppose that [M, s]K,x € I'. Given that|[M,s]K, y € ®,[M,s]K, x €
I'is equivalent to (pre(s) —» K, [M, t]x) € I for allt € M by the action and knowledge
axiom. By item 5 of Lemma 7.48, we can apply the induction hypothesis. Therefore this
is equivalent to (M€, T") = pre(s) — K [M, t]x which is equivalent by semantics to
(M€,T) E [M,s]Kx.

The case for [M, s][M’, s']é: Suppose that[M, s][M’, s']é € I'. Given that[M, s][M',s']¢ €
®,[M, s][M',s']€é € T is equivalent to[M, s; M', s'|€ € T by the action and composition
axiom. By item 7 of Lemma 7.48, we can apply the induction hypothesis. Therefore this
is equivalent to (M€, T) E [M, s; M', s"|éwhich is equivalent by semantics to

(M€, T) E [M,s][M, s']é.
The case for [@ U a']€: Suppose that[a U a']é € T. Given thatfa U '] € ®,[a U a']é €
I'is equivalent to[a]é A [a']é € T by the non-deterministic choice axiom. By item 8 of

Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to
(M€, T) E [a]é A [a']é which is equivalent by semantics to

(M, T) E [aU a']é.



e Lemma 7.51 (Canonicity):

The canonical model is reflexive, transitive and Euclidean.
e Theorem 7.52 (Completeness) :

Forevery ¢ € Licg

= @ implies F @
Proof:
We will prove this theorem by contraposition. Thus we suppose that
i+ ¢@. Therefore { ¢} is a consistent set. By the Lindenbaum Lemma

{—p} is a subset of some I" which is maximal consistent in cl(—¢).
Let M€ be the canonical model for cl(—¢). By the Truth Lemma

(M€, T) E —¢. Therefore . %



The proof system S5RC

all instantiations of propositional tautologies
Ka(p — ¢) — (Kap — Ka?)

Kap — ¢

Koo — KoKy

Ko — Ko Kgp

Ce(p. ¥ — x) — (Ce(p,¥) — Cr(p: X))
Ce(p,¢) < EB(¢ — (¥ A Cr(p,¥)))

Ce(p, ¥ = E(p — ¢)) — (Es(p — ¥)
— CB (':15’1 “‘#’)))

From ¢ and ¢ — 1), infer ¢

From ¢, infer Kq,p

From ¢, infer C'g (v, ¢)

distribution of K, over —
truth

positive introspection
negative introspection
distribution of Cg(-,-) over —
mix of relativised
common knowledge
induction of relativised
common knowledge
modus ponens
necessitation of K,
necessitation of Cp(-,-)




e Definition 7.53:

Given are a set of agents A and a set of atoms P. The
language Ly rc consists of all formulas given by the
following BNF:

@ ==pla@| (@A) | Ky | Cple,p)
Wherep € P,a€ Aand B C A.
 Definition 7.54(Semantics):

Given is an epistemic model M = (S, ~, V). The semantics
for atoms, negations, conjunctions and individuals
operators are as usual.

(M,s) E Cg(p,y) iff (M, s) E 1 for all t such that

(U

(s,) € (Ugep~a N (S X [@ly))”

~a N (S X |I<P]]M))
a€eB

is the transitive closure




e Theorem 7.56:
The proof system S5RCis sound, i.e., if - @, then E @
e Definition 7.58 (Closure):

Let cl: Lxpe = £ (Lkrc), be the function such that for every @ € Ly,
cl(p) is the smallest set such that:

1. @ € cl(y),
2. IfyY € cl(p), then Sub(yY) < cl(¢p) (where Sub() is the set of
subformulas of ),

3. Ify € cl(e) and Y is not a negation, then =y € cl(¢p),
4. 1ECp(p, 2) € cl(@), thenfK, (¥ — (x A Cs($, ) ) la € B} € cl(g)

 Lemma 7.59:

cl() is finite for all formulas ¢ € Lgpc.



 Lemma 7.60:

Let @ be the closure of some formula. Let M€ = (S¢, ~¢,V°) be the
canonical model for ®. Let I be maximal consistent set in ®. If Cgz(¢p,Y) €
®, then Cz(p,yY) € T iff every B-@p-path from a A € S€ such that there is an
agenta € Band T ~{ Ais ay-path.

e Lemma 7.61 (Truth):

Let @ be the closure of some formula. Let M€ = (S§¢, ~¢,V°) be the
canonical model for ®. ForallT € S¢ and all ¢ € &:

@ €Tiff (M°,T) E @

Proof : Suppose ¢ € ®. We will prove this Lemma by induction on ¢. We
focus on the case for relativised common knowledge due to the fact that the
other cases are the same as in proof of Lemma 7.17.




— The case for Cz (@, ): Suppose that Cz (¢, ) €T.

From the Lemma 7.60 this is the case iff every B-@-path from a
A € §¢ such that thereisan agenta € BandI' ~{ Ais a -path.
By induction hypothesis this is the case iff every B-path where ¢
is true along the path, is a path along which 1y is true. By
semantics this is equivalent to (M€, T) E Cz(p, V).



e Theorem 7.62 (Completeness) :

For every ¢ € Lypc
= @ implies - @

Proof:

We will prove this theorem by contraposition. Thus we
suppose that i+ ¢. Therefore {—¢} is a consistent set. By
the Lindenbaum Lemma {—¢} is a subset of some I
which is maximal consistent in cl(—¢). Let M€ be the
canonical model for cl(—¢). By the Truth Lemma

(M€, T) E —¢. Therefore F. %



The proof system PARC

all instantiations of propositional tautologies
Kol = ) = (Kap — Kut)

Kap — ¢

K,p — K, K,p

“Kaop — Ko~ K,p

Ce(e, 9 — x) = (Ce(e,¥) = CB(p, X))
Ca(p,9) < Es(p — (¥ ACs(p,¥)))

Ce(p, ) — Eg(p — ¥)) — (Es(p — ¥)
— CB(p, 1))

From ¢ and ¢ — o, infer ¢

From ¢, infer Kq,p

From ¢, infer Cg (1, )

distribution of K, over —
truth

positive introspection
negative introspection
distribution of Cg(-,-) over —
mix of relativised
common knowledge
induction of relativised
common knowledge
modus ponens
necessitation of K,
necessitation of Cp(-,-)

[elp < %0 — p) atomic permanence

(] — t,o — =[p]) announcement and negation
(] (v /\ X < ([e]¥ A [plx) announcement and conjunction
(0] K, cp — Ky [p]Y) announcement and knowledge
[QO}C' B LZ), & (p = C(p A [p]th, [¢]x)) announcement and relativised

common knowledge
[l [W]x « [¢ A le]v]x announcement composition
From 1, infer [p]v necessitation of [¢]




e Definition 7.63:

Given are a set of agents A and a set of atoms P. The
language Lggcp consists of all formulas given by the
following BNF:

@ =plap| (@A) | Koo | Cale, ) | lple
Wherep € P,a€ Aand B C A.

* Lemma /.65:
F plCa(, x) © @ = Co(o Aloly, [olx)




Definition 7.66 (Translation):

The translation t: Lgpc = Lkrc is defined as follows:
t(p) =p
t(=g) = ~t(e)
tlp AY) =t(p) At(Y)
t(Ka§0) = Kat(QD)
t(lplp) = tle - p)
t(lp]-y) = tlp - -lolyP)
1@ A Y) = t([e]@) Alelx)
]
]

Kp) = t(p - Kyloly)
Ca, 1)) = t(@ - Cole Aol [0]X))
1[wlx) =tle Alelplx)

Definition 7.67 (Complexity):

The complexity ¢ : Lgpep = Nis defined as follows:
c(p) =1
c(=g) =1+ c(e)

c(p AY) =1+ max(c(p), c(¥))
c(Kap) =1+ c(ep)

c(Cg(p, ) = 1+ max(c(g), c(¥))
c([ol) = (5+c(p)) - c@)

t([e
[
[
[
[

t(
t(
t(
t(




 Lemma /.68:

For all ¢,y and y:
1. c(@) = c(p)if o € Sub(y)

2. c(lelp) > c(o » p)

3. c(lo]-y) > cle » —loly)

4. (el Ax)) > c(oly Alelx)

5. c([lKy) > c(@ = KylolY)

6. c(}p: CB(l/J,)()) > C((p - Cg(@ A o]y, [90])())
7. c(ollYlx) > c(o Alelylx)



Proof:

c([plCe W, 1)) > c(@ = Cplo Alpl, [0]x))
Assume without loss of generality, that c(y) = c(x). Then :

c([91Cs @, 1)) = (5 + c(9)) (1 + max(c(), c(x)))
=5+c(p)+5 max(c(t/J), c()()) + c(p) max(c(t/J), c()())

=54+ c(p) +5c@) + c(p)c(W)
And

c(¢ ~ Co(p Aol [911) = ¢ (=9 A ~Cao Aol [012)))

=2+

max (c(<p), 1+ 1+ max (1 + max (c(<p), (5+ c(<p))c(z,b)) ,(5+ c(<p))c()()))
=5+ ((5 + c(@)c@®))

=5+5c)+cle) c(®)




* Lemma /.69:

For all formulas ¢ € Lkpcy it is the case that
- o t(p)

Proof:

Is similar to the proof of Lemma 7.24

e Theorem 7.70 (Completeness):

For every ¢ € Lipcp E @ implies - ¢

Proof:

Suppose that E ¢ . Therefore = t(@) (by the soundness) and by Lemma
7.69 holds that - ¢ < t(¢). Because of the fact that t(¢) doesn’t
contain any announcement operators, SSRC + t(¢) (Theorem 7.62) We
also have that PARC F t(¢) as S5RC is subsystem of PARC. Since
PARC - ¢ < t(¢), it follows that PARC + ¢.

&




