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Reminder 

The proof  system S5 

 



• Definition 7.1 (Maximal consistent):  
Let Γ ⊆ ℒ𝐾. Γ is maximal consistent iff  

– Γ is consistent: Γ ⊬⊥ 
– Γ is maximal: there is no Γ′ ⊆ ℒ𝐾  such that Γ ⊂ Γ′and Γ′is consistent. 

• Definition 7.2(Canonical model): 
The canonical model 𝑀𝑐 = 𝑆𝑐 , ∼𝑐 , 𝑉𝑐  is defined as follows: 

– 𝑆𝑐={Γ| Γ is maximal consistent} 

– Γ ∼𝑎
𝑐 Δ iff 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ = 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Δ  

– 𝑉 𝑝
𝑐 = Γ ∈ 𝑆𝑐|𝑝 ∈ Γ  

• Lemma 7.3(Lindenbaum):  
Every consistent set of formulas is a subset of a maximal consistent set 
of formulas. 
 

Adolf Lindenbaum (12 June 1904 – August 1941)  
Polish-Jewish logician and mathematician 



• Definition (out of the book):  
In mathematical logic, a set T of logical formulas is deductively closed if it contains 
every formula 𝜑 that can be logically deduced from T formally if  T ⊢ 𝜑 always implies 
 𝜑 ∈ T. 
• Lemma 7.4:  
If Γ and Δ are maximal consistent sets, then: 

1. Γ is deductively closed,  
2. φ ∈ Γ iff ≦𝜑 ∉ Γ, 
3. 𝜑 ∧ 𝜓 ∈ Γ iff φ ∈ Γ and ψ ∈ Γ, 
4. Γ ∼𝑎

𝑐 Δ iff 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊆ Δ, 
5. 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊢ 𝜓 iff 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊢ 𝐾𝑎𝜓. 

• Lemma 7.5(Truth): 
For every 𝜑 ∈ ℒ𝐾 and every maximal consistent set Γ: 

φ ∈ Γ iff  𝑀𝑐 , Γ ⊨ 𝜑 
• Lemma 7.6 (Canonicity): 
The canonical model is reflexive, transitive and Euclidean. 
• Theorem 7.7 (Completeness) : 
For every 𝜑 ∈ ℒ𝐾  

⊨ 𝜑 implies ⊢ 𝜑 
 



The proof system S5C 

 



• Definition 7.8(Closure): 
Let 𝑐𝑙: ℒ𝐾𝐶 → ℘ ℒ𝐾𝐶 , be the function such that for every 𝜑 ∈ ℒ𝐾𝐶 , 𝑐𝑙 𝜑  is the smallest set 
such that: 

1.  𝜑 ∈ 𝑐𝑙(𝜑), 
2. If 𝜓 ∈ 𝑐𝑙(𝜑), then 𝑆𝑢𝑏(𝜓) ⊆ 𝑐𝑙(𝜑) (where 𝑆𝑢𝑏(𝜓) is the set of subformulas of 𝜓), 
3. If 𝜓 ∈ 𝑐𝑙 𝜑  and 𝜓 is not a negation, then ≦𝜓 ∈ 𝑐𝑙(𝜑), 
4. If 𝐶𝐵𝜓 ∈ 𝑐𝑙 𝜑 , then 𝐾𝑎𝐶𝐵𝜓|𝑎 ∈ B ⊆ 𝑐𝑙 𝜑 . 

• Lemma 7.9: 
𝑐𝑙 φ  is finite for all formulas 𝜑 ∈ ℒ𝐾𝐶 . 
Proof: 
By induction to 𝜑. 
Base case: If 𝜑 is a propositional variable 𝑝, then the closure of 𝜑 is 𝑝,≦𝑝 , which is finite. 
Induction hypothesis: 𝑐𝑙 𝜑  and 𝑐𝑙 𝜓  are finite. 
Induction step: 

– The case for ≦𝜑: the closure of our case is the set ≦𝜑 ∪ 𝑐𝑙 𝜑 . By induction 
hypothesis we know that 𝑐𝑙 𝜑  is finite so the set is also finite. 

– The case for 𝜑 ∧ 𝜓 : the closure of our case is the set 𝜑 ∧ 𝜓 ,≦ 𝜑 ∧ 𝜓 ∪ 𝑐𝑙 𝜑 ∪
𝑐𝑙 𝜓 . By induction hypothesis 𝑐𝑙 𝜑  and 𝑐𝑙 𝜓  are finite so our set is also finite. 

– The case for 𝐾𝑎𝜑: the closure of our case is the set 𝐾𝑎𝜑,≦𝐾𝑎𝜑 ∪ 𝑐𝑙 𝜑 . By induction 
hypothesis we know that 𝑐𝑙 𝜑  is finite so our set is also finite.  

– The case for 𝐶𝐵𝜑: the closure of our case is the set 
𝐶𝐵𝜑,≦𝐶𝐵𝜑 ∪ 𝐾𝑎𝐶𝐵𝜑,≦𝐾𝑎𝐶𝐵𝜑|𝑎 ∈ B ∪ 𝑐𝑙 𝜑 . By induction hypothesis we know 

that 𝑐𝑙 𝜑  is finite so our set is also finite.    



• Definition 7.10(Maximal consistent in Φ): 
Let Φ ⊆ ℒ𝐾𝐶  be the closure of some formula. Γ is maximal consistent in Φ iff: 

– Γ ⊆ Φ 
– Γ is consistent: Γ ⊬⊥ 
– Γ is maximal: there is no Γ′ ⊆ ℒ𝐾 such that Γ ⊂ Γ′and Γ′ is consistent. 

• Lemma 7.12 (Lindenbaum): 
Let Φ be the closure of some formula. Every consistent subset of Φ is a subset of a 
maximal consistent set in Φ. 
Proof:  
Let Δ ⊆ Φ be a consistent set of formulas. Let Φ = 𝑛. Let 𝜑𝑘 be the 𝑘-th formula in an 
enumeration of Φ. We consider the sequence of sets of formulas as follows: 
Γ0 = Δ 

Γ𝑘+1 =  
𝛤𝑘 ∪ 𝜑𝑘+1 , if 𝛤𝑘 ∪ 𝜑𝑘+1  is consistent
𝛤𝑘                                               , otherwise

 

We can see that Δ ⊆ Γ𝑛.What we need to show? 
We need to show that Γ𝑛 is maximal consistent. In order to see that Γ𝑛 is consistent we 
will prove that Γ𝑘  is consistent by induction on 𝑘, which means that Γ𝑛  is also 
consistent.  
 
 
 



Proof : 
By assumption Γ0 is consistent due to Δ is a consistent set of formulas. 
We can also see that if Γ𝑘  is consistent then Γ𝑘+1 is consistent. Thus we 

prove thatΓ𝑛 is consistent  
To see that Γ𝑛 is maximal in Φ, take an arbitrary formula 𝜑𝑘∈ Φ such that 
𝜑𝑘 ∉ Γ𝑛 . Then 𝜑𝑘 ∉ Γ𝑘  too. Therefore 𝛤𝑘 ∪ 𝜑𝑘  is inconsistent and so 
𝛤𝑛 ∪ 𝜑𝑘  is inconsistent too. Since  𝜑𝑘 was arbitrary  there is no Γ′ ⊆ Φ such 

that 𝛤𝑛 ⊂ Γ
′and Γ′ is consistent.  

• Definition 7.11(Canonical model for Φ): 
Let Φ be the closure of some formula. The canonical model 𝑀𝑐 =
𝑆𝑐 , ∼𝑐 , 𝑉𝑐  is defined as follows: 

– 𝑆𝑐={Γ| Γ is maximal consistent in Φ} 

– Γ ∼𝑎
𝑐 Δ iff 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ = 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Δ  

– 𝑉 𝑝
𝑐 = Γ ∈ 𝑆𝑐|𝑝 ∈ Γ  

 
 

 
 We construct a finite 
model for only a finite 

fragment of the language 
depending on the formula 

we are interested in.  



• Definition 7.13(Paths):  
– A B-path from Γ is a sequence Γ0, … , Γ𝑛 of maximal consistent sets in Φ such 

that for all 𝑘 0 ≤ 𝑘 < 𝑛  there is an agent 𝑎 ∈ 𝐵 such that Γ𝑘 ∼𝑎
𝑐 Γ𝑘+1 and 

Γ0 = Γ. 
– A 𝜑-path is a sequence Γ0, … , Γ𝑛 of maximal consistent sets in Φ such that for 

all 𝑘 0 ≤ 𝑘 < 𝑛  𝜑 ∈ Γ𝑘.  
Note: We take the length of a path Γ0, … , Γ𝑛 to be 𝑛. 
• Lemma 7.14: 
Let Φ be the closure of some formula. Let 𝑀𝑐 = 𝑆𝑐 , ∼𝑐 , 𝑉𝑐  be the canonical 
model for Φ. If Γ and Δ are maximal consistent sets, then: 

1. Γ is deductively closed in Φ (for all formulas 𝜑 ∈ Φ, if ⊢ Γ → 𝜑, then 𝜑 ∈ Γ. 
Note that Γ =  Γ) 

2. If ≦𝜑 ∈ Φ, then 𝜑 ∈ Γ  iff ≦𝜑 ∉ Γ 
3. If 𝜑 ∧ 𝜓 ∈ Φ, then 𝜑 ∧ 𝜓 ∈ Γ iff 𝜑 ∈ Γ and 𝜓 ∈ Γ 

4. If Γ ∧ 𝐾𝑎 Δ is consistent, then Γ ∼𝑎
𝑐 Δ 

5. If 𝐾𝑎𝜓 ∈ Φ, then 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊢ 𝜓 iff 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊢ 𝐾𝑎𝜓 
6. If 𝐶𝐵𝜑 ∈ Φ, then  𝐶𝐵𝜑 ∈ Γ  iff every B-path from Γ is a 𝜑-path. 

 
 



Exercise 7.15 

Proof : 
1. Suppose that 𝜑 ∈ Φ. Suppose that Γ ⊢ 𝜑. We know by assumption that 
Γ is maximal consistent which means that Γ is consistent and maximal in 
Φ. Because of consistency of Γ in Φ, Γ ∪ 𝜑  is also consistent. 
Therefore, by maximality of Γ in Φ, it must be the case that 𝜑 ∈ Γ.  

2. Suppose ≦𝜑 ∈ Φ. Therefore 𝜑 ∈ Φ. 

" ⇒ " Suppose that 𝜑 ∈ Γ then by consistency ≦𝜑 ∈ Γ  

" ⇐ "  Suppose that ≦𝜑 ∉ Γ. By maximality, Γ ∪ ≦𝜑  is inconsistent. 
Therefore Γ ⊢ 𝜑 and by the item 1 of this Lemma, 𝜑 ∈ Γ. 

3. Suppose that 𝜑 ∧ 𝜓 ∈ Φ. 

" ⇒ "  Suppose that 𝜑 ∧ 𝜓 ∈ Γ. Then Γ ⊢ 𝜑  and Γ ⊢ 𝜓 . Since Φ is closed, 
also 𝜑 ∈ Φ and 𝜓 ∈ Φ . Therefore 𝜑 ∈ Γ and 𝜓 ∈ Γ by the item 1 of this 
Lemma. 

" ⇐ " Suppose that 𝜑 ∈ Γ and 𝜓 ∈ Γ . Therefore Γ ⊢ 𝜑 ∧ 𝜓  and by the 
item 1 of this Lemma 𝜑 ∧ 𝜓 ∈ Γ. 

 

 

 

 

 
In other case,  it doesn’t hold that 

Γ is maximal consistent set inΦ 
by the definition of maximal 

consistent set 



Lemma 7.17 (Truth): 
Let Φ be the closure of some formula. Let 𝑀𝑐 = 𝑆𝑐 , ∼𝑐 , 𝑉𝑐  be the canonical model for Φ. For all 
Γ ∈ 𝑆𝑐 and all 𝜑 ∈ Φ: 

φ ∈ Γ iff  𝑀𝑐 , Γ ⊨ 𝜑 
Proof: Suppose that 𝜑 ∈ Φ 
Base case: Suppose that 𝜑 is a propositional variable 𝑝. Then by the definition of 𝑉𝑐, 𝑝 ∈ Γ iff Γ ∈ 𝑆𝑐 
which by semantics is equivalent to 𝑀𝑐 , Γ ⊨ 𝑝. 
Induction hypothesis: For every maximal consistent set Γ, 
𝜑 ∈ Γ iff 𝑀𝑐 , Γ ⊨ 𝜑. 
Induction step:  

– The case for ≦𝜑 : ≦𝜑 ∈ Γ is equivalent to 𝜑 ∉ Γ by the item 2 in Lemma 7.14. By induction 
hypothesis and  the semantics this is equivalent to 

  𝑀𝑐 , Γ ⊨ ≦𝜑. 
– The case for 𝜑 ∧ 𝜓 : 𝜑 ∧ 𝜓 ∈ Γ is equivalent to 𝜑 ∈ Γ and 𝜓 ∈ Γ by the item 3 of Lemma 

7.14 . By induction hypothesis this is equivalent to 𝑀𝑐 , Γ ⊨ 𝜑 and  
 𝑀𝑐 , Γ ⊨ 𝜓 which by semantics is equivalence to 𝑀𝑐 , Γ ⊨ 𝜑 ∧ 𝜓 . 
– The case for 𝐾𝑎𝜑:  

 Suppose that 𝐾𝑎𝜑 ∈ Γ.Take an arbitrary maximal consistent set Δ in Φ. Suppose that 
Γ ∼𝑎
𝑐 Δ , so 𝐾𝑎𝜑 ∈ Δ by the definition of the relation ∼𝑎

𝑐 . Since ⊢ 𝐾𝑎𝜑 → 𝜑 by the truth, and Δ is 
deductively closed (due to Δ is maximal consistent and by the item 1  in Lemma 7.14) then 
𝜑 ∈ Δ. By the induction hypothesis, this is equivalent to 𝑀𝑐 , Δ ⊨ 𝜑 . Since we chose an arbitrary 
Δ , then 𝑀𝑐 , Δ ⊨ 𝜑 holds for all Δ such that  Γ ∼𝑎

𝑐 Δ. Therefore by semantics this is equivalence to 
𝑀𝑐 , Γ ⊨ 𝐾𝑎𝜑. 

 

  
 
 
 

2. If ≦𝜑 ∈ Φ, then 𝜑 ∈ Γ  iff ≦𝜑 ∉ Γ 
3. If 𝜑 ∧ 𝜓 ∈ Φ, then 𝜑 ∧ 𝜓 ∈ Γ iff 𝜑 ∈ Γ 
and 𝜓 ∈ Γ 

Truth: 𝐾𝑎𝜑 → 𝜑  



– The case for 𝐶𝐵𝜑: Suppose that 𝐶𝐵𝜑 ∈ Γ. From item 6 in Lemma 7.14 this is the 
case iff every B-path from Γ is a 𝜑-path. By induction hypothesis, this is the case 
that iff every B-path along 𝜑 is true. Therefore by semantics this is equivalence to 
𝑀𝑐 , Γ ⊨ 𝐶𝐵𝜑.  

• Lemma 7.18(Canonicity): 
Let Φ be the closure of some formula. The canonical model for Φ is reflexive, transitive and 
Euclidean. 
Proof:  
The same as the proof of Lemma 7.6 which follows straightforwardly from the definition of 
the relation ∼𝑎

𝑐 . 
• Theorem 7.19 (Completeness): 
For every 𝜑 ∈ ℒ𝐾𝐶  

⊨ 𝜑 implies ⊢ 𝜑 
Proof: 
We will prove this theorem by contraposition. Thus we suppose that ⊬ 𝜑. Therefore ≦𝜑  is 
a consistent set. By the Lindenbaum Lemma ≦𝜑  is a subset of some Γ which is maximal 
consistent in 𝑐𝑙 ≦𝜑 . Let 𝑀𝑐 be the canonical model for 𝑐𝑙 ≦𝜑 . By the Truth Lemma 

𝑀𝑐 , Γ ⊨ ≦𝜑. Therefore ⊭𝜑. 
 
 

 
 

 
 

  



The proof system PA: 

 



• Definition 7.20 (Translation): 

The translation 𝑡: ℒ𝐾[] → ℒ𝐾 is defined as follows: 

𝑡 𝑝 = 𝑝 
𝑡 ≦𝜑 = ≦𝑡 𝜑  
𝑡 𝜑 ∧ 𝜓 = 𝑡 𝜑) ∧ 𝑡(𝜓  
𝑡 𝐾𝑎𝜑 = 𝐾𝑎𝑡 𝜑  
𝑡 𝜑 𝑝 = 𝑡 𝜑 → 𝑝  
𝑡 𝜑 ≦𝜓 = 𝑡 𝜑 → ≦ 𝜑 𝜓  

𝑡 𝜑 𝜓 ∧ 𝜒 = 𝑡 𝜑 𝜓) ∧ 𝜑 𝜒  

𝑡 𝜑 𝐾𝑎𝜓 = 𝑡 𝜑 → 𝐾𝑎 𝜑 𝜓  
𝑡 𝜑 𝜓 𝜒 = 𝑡 𝜑 ∧ 𝜑 𝜓 𝜒  

 

• Definition 7.21 (Complexity): 

The complexity 𝑐 ∶ ℒ𝐾[] → ℕ is defined as follows:  

𝑐 𝑝 = 1 
𝑐 ≦𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 ∧ 𝜓 = 1 +max 𝑐 𝜑 , 𝑐 𝜓   

𝑐 𝐾𝑎𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 𝜓 = 4 + 𝑐 𝜑 ∙ 𝑐 𝜓  

Where 𝑝 is a 
propositional 
variable, 𝜑 and 𝜓 
are formulas 



• Lemma 7.22: 

For all 𝜑,𝜓 and 𝜒: 
1.  𝑐 𝜓 ≥ 𝑐 𝜑  if 𝜑 ∈ 𝑆𝑢𝑏 𝜓   

2.  𝑐 𝜑 𝑝 > 𝑐 𝜑 → 𝑝  

3.  𝑐 𝜑 ≦𝜓 > 𝑐 𝜑 → ≦ 𝜑 𝜓  

4.  𝑐 𝜑 𝜓 ∧ 𝜒 > 𝑐 𝜑 𝜓 ∧ 𝜑 𝜒  

5.  𝑐 𝜑 𝐾𝑎𝜓 > 𝑐 𝜑 → 𝐾𝑎 𝜑 𝜓  

6.  𝑐 𝜑 𝜓 𝜒 > 𝑐 𝜑 ∧ 𝜑 𝜓 𝜒  

• Exercise 7.23: 

Prove Lemma 7.22  
 

 

𝑆𝑢𝑏(𝜓) is the set of 
subformulas of 𝜓 



2. 𝑐 𝜑 𝑝 > 𝑐 𝜑 → 𝑝   
Proof: ?? 
𝑐 𝜑 𝑝 = 4 + 𝑐 𝜑 = 4 + 𝑐 𝜑  

And  
𝑐 𝜑 → 𝑝 = 𝑐 ≦𝜑 ∨ 𝑝  
          = 𝑐 ≦ 𝜑 ∧ ≦𝑝  
          = 1 + 𝑐 𝜑 ∧ ≦𝑝  
          = 2 +max 𝑐 𝜑 , 2  

So 𝑐 𝜑 𝑝 > 𝑐 𝜑 → 𝑝    
3. 𝑐 𝜑 ≦𝜓 > 𝑐 𝜑 → ≦ 𝜑 𝜓  
Proof:?? 
𝑐 𝜑 ≦𝜓 = 4 + 𝑐 𝜑 ∙ 𝑐 ≦𝜓 = 4 + 𝑐 𝜑 ∙ 1 + 𝑐 𝜓

= 4 + 𝑐 𝜑 + 4𝑐 𝜓 + 𝑐 𝜑 ∙ 𝑐 𝜓  

And  

𝑐 𝜑 → ≦ 𝜑 𝜓 = 𝑐 ≦𝜑 ∨ ≦ 𝜑 𝜓 = 𝑐 ≦ 𝜑 ∧ ≦ ≦ 𝜑 𝜓

= 1 + 𝑐 𝜑 ∧ ≦ ≦ 𝜑 𝜓 = 

 
 
 

Reminder:  

𝑐 𝑝 = 1 
𝑐 ≦𝜑 = 1 + 𝑐 𝜑  
𝑐 𝜑 ∧ 𝜓 =

1 +max 𝑐 𝜑 , 𝑐 𝜓   

𝑐 𝐾𝑎𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 𝜓 = 4 + 𝑐 𝜑 ∙ 𝑐 𝜓  

The abbriviation of 
𝜑 → 𝑝  is ≦𝜑 ∨ 𝑝  



= 1 + 𝑐 𝜑 ∧ ≦ ≦ 𝜑 𝜓   

= 1 + 1 +max 𝑐 𝜑 , 𝑐 ≦ ≦ 𝜑 𝜓  

= 2 +max 𝑐 𝜑 ,+𝑐 ≦ 𝜑 𝜓  

= 2 +max 𝑐 𝜑 , 2 + 𝑐 𝜑 𝜓  

= 2 +max 𝑐 𝜑 , 2 + 4 + 𝑐 𝜑 ∙ 𝑐 𝜓  

= 2 +max 𝑐 𝜑 , 2 + 4𝑐 𝜓 + 𝑐 𝜑 𝑐 𝜓  

2 + max 𝑐 𝜑 , 2 + 4𝑐 𝜓 + 𝑐 𝜑 𝑐 𝜓  

Thus 𝑐 𝜑 ≦𝜓 > 𝑐 𝜑 → ≦ 𝜑 𝜓 . 

4. 𝑐 𝜑 𝜓 ∧ 𝜒 > 𝑐 𝜑 𝜓 ∧ 𝜑 𝜒  
Proof:?? 
Assume without loss of generality, that 𝑐 𝜓 ≥ 𝑐 𝜒 . Then : 

𝑐 𝜑 𝜓 ∧ 𝜒 = 4 + 𝑐 𝜑 ∙ 𝑐 𝜓 ∧ 𝜒 = 4 + 𝑐 𝜑 1 + max 𝑐 𝜓 , 𝑐 𝜒  

= 4 + 𝑐 𝜑 1 + 𝑐 𝜓 = 4 + 4𝑐 𝜓 + 𝑐 𝜑 + 𝑐 𝜑 𝑐 𝜓  

  

 

 

Reminder:  

𝑐 𝑝 = 1 
𝑐 ≦𝜑 = 1 + 𝑐 𝜑  
𝑐 𝜑 ∧ 𝜓 =

1 +max 𝑐 𝜑 , 𝑐 𝜓   

𝑐 𝐾𝑎𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 𝜓 = 4 + 𝑐 𝜑 ∙ 𝑐 𝜓  



And  

𝑐 𝜑 𝜓 ∧ 𝜑 𝜒  

= 1 +max 4 + 𝑐 𝜑 𝑐 𝜓 , 4 + 𝑐 𝜑 𝑐 𝜒  

= 1 + 4 + 𝑐 𝜑 𝑐 𝜓  

= 1 + 4𝑐 𝜓 + 𝑐 𝜑 𝑐 𝜓  

So 𝑐 𝜑 𝜓 ∧ 𝜒 > 𝑐 𝜑 𝜓 ∧ 𝜑 𝜒 . 
6. 𝑐 𝜑 𝜓 𝜒 > 𝑐 𝜑 ∧ 𝜑 𝜓 𝜒  
Proof:?? 

𝑐 𝜑 𝜓 𝜒 = 4 + 𝑐 𝜑 4 + 𝑐 𝜓 𝑐 𝜒  

= 16 + 4𝑐 𝜑 + 4𝑐 𝜓 + 𝑐 𝜑 𝑐 𝜓 𝑐 𝜒  

And  

𝑐 𝜑 ∧ 𝜑 𝜓 𝜒 = 4 + 1 +max 𝑐 𝜑 , 4 + 𝑐 𝜑 𝑐 𝜓 𝑐 𝜒  

= 5 + 4 + 𝑐 𝜑 𝑐 𝜓 𝑐 𝜒  

= 5 + 4𝑐 𝜓 + 𝑐 𝜑 𝑐 𝜓 𝑐 𝜒   
   
 
 

Reminder:  

𝑐 𝑝 = 1 
𝑐 ≦𝜑 = 1 + 𝑐 𝜑  
𝑐 𝜑 ∧ 𝜓 =

1 +max 𝑐 𝜑 , 𝑐 𝜓   

𝑐 𝐾𝑎𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 𝜓 = 4 + 𝑐 𝜑 ∙ 𝑐 𝜓  



We will show that every formula is provably equivalent to its translation. 
• Lemma 7.24: 

For all formulas 𝜑 ∈ ℒ𝐾[] it is the case that  
⊢ 𝜑 ↔ 𝑡 𝜑   
Proof: 
We will prove this Lemma by induction on 𝑐 𝜑 . 
Base case: If 𝜑 is a propositional variable 𝑝, it’s trivial that ⊢ 𝑝 ↔ 𝑡 𝑝 = 𝑝. 
Induction hypothesis: For all 𝜑 such that 𝑐 𝜑 ≤ 𝑛: ⊢ 𝜑 ↔ 𝑡 𝜑 . 
Induction step: The case for ≦, ∧, 𝐾𝑎 follows straightforwardly from the 
induction hypothesis and item 1 of Lemma 7.22. 

– The case for 𝜑 𝑝: This case follows straightforwardly from the atomic 
permanence axiom, item 2 of Lemma 7.22 and the induction 
hypothesis. 

 

  
  

atomic permanence axiom: 
𝜑 𝑝 ↔ 𝜑 → 𝑝  

Item 2 of Lemma 7.22 
𝑐 𝜑 𝑝 > 𝑐 𝜑 → 𝑝  



– The case for 𝜑 ≦𝜓: This case follows straightforwardly from the 
announcement and negation axiom, item 3 of Lemma 7.22 and 
the induction hypothesis 

– The case for 𝜑 𝜑 ∧ 𝜓 : This case follows straightforwardly 
from the announcement and conjunction axiom, item 4 of 
Lemma 7.22 and the induction hypothesis. 

– The case for 𝜑  𝐾𝑎𝜓 : This case follows straightforwardly from 
the announcement and knowledge axiom, item 5 of Lemma 7.22 
and the induction hypothesis. 

– The case for 𝜑 𝜓 𝜒: This case follows straightforwardly from 
the announcement composition axiom, item 6 of Lemma 7.22 
and the induction hypothesis. 

 

 

 

 

3. 𝑐 𝜑 ≦𝜓 > 𝑐 𝜑 → ≦ 𝜑 𝜓  

4.  𝑐 𝜑 𝜓 ∧ 𝜒 > 𝑐 𝜑 𝜓 ∧ 𝜑 𝜒  

5.  𝑐 𝜑 𝐾𝑎𝜓 > 𝑐 𝜑 → 𝐾𝑎 𝜑 𝜓  
6.  𝑐 𝜑 𝜓 𝜒 > 𝑐 𝜑 ∧ 𝜑 𝜓 𝜒  

𝜑 ≦𝜓 ↔ 𝜑 → ≦ 𝜑 𝜓 
  𝜑 𝜓 ∧ 𝜒 ↔ 𝜑 𝜓 ∧ 𝜑 𝜒 
  𝜑 𝐾𝑎𝜓 ↔ 𝜑 → 𝐾𝑎 𝜑 𝜓 
  𝜑 𝜓 𝜒 ↔ 𝜑 ∧ 𝜑 𝜓 𝜒 



• Theorem 7.26 (Completeness): 

For every 𝜑 ∈ ℒ𝐾[] ⊨ 𝜑 implies ⊢ 𝜑 

Proof: 

Suppose that ⊨ 𝜑 . Therefore ⊨ 𝑡 𝜑  (by soundness) and by 
Lemma 7.24 holds that ⊢ 𝜑 ↔ 𝑡 𝜑 . Because of the fact that 
𝑡 𝜑  doesn’t contain any announcement operators, 𝑆5 ⊢ 𝑡 𝜑  
(Theorem 7.7) We also have that PA ⊢ 𝑡 𝜑  as 𝑆5 is subsystem of 
PA. Since PA ⊢ 𝜑 ↔ 𝑡 𝜑 , it follows that PA ⊢ 𝜑. 

       
 



The proof system PAC 

 



• Definition 7.27 (Closure): 

Let 𝑐𝑙: ℒ𝐾𝐶[] → ℘ ℒ𝐾𝐶[] , be the function such that for every 𝜑 ∈ ℒ𝐾𝐶[], 𝑐𝑙 𝜑  

is the smallest set such that: 

1.  𝜑 ∈ 𝑐𝑙(𝜑), 

2. If 𝜓 ∈ 𝑐𝑙(𝜑), then 𝑆𝑢𝑏(𝜓) ⊆ 𝑐𝑙(𝜑) (where 𝑆𝑢𝑏(𝜓) is the set of 
subformulas of 𝜓), 

3. If 𝜓 ∈ 𝑐𝑙 𝜑  and 𝜓 is not a negation, then ≦𝜓 ∈ 𝑐𝑙(𝜑), 

4. If 𝐶𝐵𝜓 ∈ 𝑐𝑙 𝜑 , then 𝐾𝑎𝐶𝐵𝜓|𝑎 ∈ B ⊆ 𝑐𝑙 𝜑 , 

5. If 𝜓 𝑝 ∈ 𝑐𝑙 𝜑 , then 𝜓 → 𝑝 ∈ 𝑐𝑙 𝜑 , 

6. If 𝜓 ≦𝜒 ∈ 𝑐𝑙 𝜑 , then 𝜓 → ≦ 𝜓 𝜒 ∈ 𝑐𝑙 𝜑 , 

7. If 𝜓 𝜒 ∧ 𝜉 ∈ 𝑐𝑙 𝜑 , then 𝜓 𝜒 ∧ 𝜓 𝜉 ∈ 𝑐𝑙 𝜑 , 

8. If 𝜓 𝐾𝑎𝜒 ∈ 𝑐𝑙 𝜑 , then 𝜓 → 𝐾𝑎 𝜓 𝜒 ∈ 𝑐𝑙 𝜑 , 

9. If 𝜓 𝐶𝐵𝜒 ∈ 𝑐𝑙 𝜑 , then 𝜓 𝜒 ∈ 𝑐𝑙 𝜑  𝑎𝑛𝑑 𝐾𝑎 𝜓 𝐶𝐵𝜒|𝑎 ∈ B ⊆ 𝑐𝑙 𝜑 , 

10. If  𝜓 𝜒 𝜉 ∈ 𝑐𝑙 𝜑 , then 𝜓 ∧ 𝜓 𝜒 𝜉 ∈ 𝑐𝑙 𝜑 . 

 

 

 

 



• Lemma 7.28: 

𝑐𝑙 φ  is finite for all formulas 𝜑 ∈ ℒ𝐾𝐶[]. 

• Lemma 7.29 (Lindenbaum): 
Let Φ be the closure of some formula. Every consistent subset of Φ is a subset of a maximal consistent 
set in Φ. 
Proof: 
The same as Lemma 7.12 
• Definition 7.30 (𝐵-𝜑-path): 
A 𝐵-𝜑-path from Γ is a 𝐵-path that is also 𝜑-path. 
• Lemma 7.31: 
Let Φ be the closure of some formula. Let 𝑀𝑐 = 𝑆𝑐 , ∼𝑐 , 𝑉𝑐  be the canonical model for Φ. If Γ and Δ 
are maximal consistent sets, then: 

1. Γ is deductively closed in Φ (for all formulas 𝜑 ∈ Φ, if ⊢ Γ → 𝜑, then 𝜑 ∈ Γ. Note that 
Γ =  Γ) 

2. If ≦𝜑 ∈ Φ, then 𝜑 ∈ Γ  iff ≦𝜑 ∉ Γ 
3. If 𝜑 ∧ 𝜓 ∈ Φ, then 𝜑 ∧ 𝜓 ∈ Γ iff 𝜑 ∈ Γ and 𝜓 ∈ Γ 

4. If Γ ∧ 𝐾𝑎 Δ is consistent, then Γ ∼𝑎
𝑐 Δ 

5. If 𝐾𝑎𝜓 ∈ Φ, then 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊢ 𝜓 iff 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊢ 𝐾𝑎𝜓 
6. If 𝐶𝐵𝜑 ∈ Φ, then  𝐶𝐵𝜑 ∈ Γ  iff every B-path from Γ is a 𝜑-path. 
7. If 𝜑 𝐶𝐵𝜓 ∈ Φ, then  𝜑 𝐶𝐵𝜓 ∈ Γ  iff every B−path from Γ is a 𝜑 𝜓−path. 

 

 
 
 
 



• Definition 7.32 (Complexity):  

The complexity 𝑐 ∶ ℒ𝐾𝐶[] → ℕ is defined as follows:  
𝑐 𝑝 = 1 
𝑐 ≦𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 ∧ 𝜓 = 1 +max 𝑐 𝜑 , 𝑐 𝜓   

𝑐 𝐾𝑎𝜑 = 1 + 𝑐 𝜑  
𝑐 𝐶𝐵𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 𝜓 = 4 + 𝑐 𝜑 ∙ 𝑐 𝜓  

• Lemma 7.33: 
For all 𝜑,𝜓 and 𝜒: 

1.  𝑐 𝜓 ≥ 𝑐 𝜑  for all 𝜑 ∈ 𝑆𝑢𝑏 𝜓   
2.  𝑐 𝜑 𝑝 > 𝑐 𝜑 → 𝑝  
3.  𝑐 𝜑 ≦𝜓 > 𝑐 𝜑 → ≦ 𝜑 𝜓  

4.  𝑐 𝜑 𝜓 ∧ 𝜒 > 𝑐 𝜑 𝜓 ∧ 𝜑 𝜒  
5.  𝑐 𝜑 𝐾𝑎𝜓 > 𝑐 𝜑 → 𝐾𝑎 𝜑 𝜓  
6.  𝑐 𝜑 𝐶𝐵𝜓 > 𝑐 𝜑 𝜓  
7.  𝑐 𝜑 𝜓 𝜒 > 𝑐 𝜑 ∧ 𝜑 𝜓 𝜒  

 
 

 



• Lemma 7.34 (Truth): 
Let Φ be the closure of some formula. Let 𝑀𝑐 = 𝑆𝑐 , ∼𝑐 , 𝑉𝑐  be the canonical model for Φ. For 
all Γ ∈ 𝑆𝑐 and all 𝜑 ∈ Φ: 

φ ∈ Γ iff  𝑀𝑐 , Γ ⊨ 𝜑 
Proof: (by induction on 𝑐 𝜑 ) 
Suppose that 𝜑 ∈ Φ. 
Base case: Suppose that 𝜑 is a propositional variable 𝑝. Then by the definition of 𝑉𝑐, 𝑝 ∈ Γ iff 
Γ ∈ 𝑆𝑐 which by semantics is equivalent to 𝑀𝑐 , Γ ⊨ 𝑝. 
Induction hypothesis: For all 𝜑 such that 𝑐 𝜑 ≤ 𝑛: 
𝜑 ∈ Γ iff  𝑀𝑐 , Γ ⊨ 𝜑. 
Induction step: Suppose that 𝑐 𝜑 = 𝑛 + 1. The cases for ≦, ∧, 𝐾𝑎, 𝐶𝐵 are just like Lemma 7.17. 

– The case for 𝜓 𝑝: Suppose that 𝜓 𝑝 ∈ Γ. Given that 𝜓 𝑝 ∈ Φ, 𝜓 𝑝 ∈ Γ is equivalent 
to 𝜓 → 𝑝  by the atomic permanence axiom. By item 2 of Lemma 7.33, we can apply 
the induction hypothesis. Therefore this is equivalent to 

  𝑀𝑐 , Γ ⊨ 𝜓 → 𝑝  which is equivalent by semantics to 𝑀𝑐 , Γ ⊨ 𝜓 𝑝. 
– The case for 𝜓 ≦𝜒: Suppose that 𝜓 ≦𝜒 ∈ Γ. Given that 𝜓 ≦𝜒 ∈ Φ, 𝜓 𝑝 ∈ Γ is 

equivalent to 𝜓 → ≦ 𝜓 𝜒 ∈ Γ by the announcement and negation axiom. By item 3 of 
Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to 

  𝑀𝑐 , Γ ⊨ 𝜓 → ≦ 𝜓 𝜒which is equivalent by semantics to 𝑀𝑐 , Γ ⊨ 𝜓 ≦𝜒. 
 

 

 



– The case for 𝜓 𝜒 ∧ 𝜉 : Suppose that 𝜓 𝜒 ∧ 𝜉 ∈ Γ. Given that 𝜓 𝜒 ∧ 𝜉 ∈
Φ, 𝜓 𝜒 ∧ 𝜉 ∈ Γ is equivalent to 𝜓 𝜒 ∧ 𝜓 𝜉 ∈ Γ by the announcement and 
conjunction axiom. By item 4 of Lemma 7.33, we can apply the induction hypothesis. 
Therefore this is equivalent to 𝑀𝑐 , Γ ⊨ 𝜓 𝜒 ∧ 𝜓 𝜉 which is equivalent by semantics 
to 𝑀𝑐 , Γ ⊨ 𝜓 𝜒 ∧ 𝜉 . 

– The case 𝜓 𝐾𝑎𝜒: Suppose that 𝜓 𝐾𝑎𝜒 ∈ Γ. Given that 𝜓 𝐾𝑎𝜒 ∈ Φ, 𝜓 𝐾𝑎𝜒 ∈ Γ is 
equivalent to 𝜓 → 𝐾𝑎 𝜓 𝜒 ∈ Γ by the announcement and knowledge axiom. By item 
5 of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to 
𝑀𝑐 , Γ ⊨ 𝜓 → 𝐾𝑎 𝜓 𝜒 which is equivalent by semantics to 𝑀𝑐 , Γ ⊨ 𝜓 𝐾𝑎𝜒. 

– The case for 𝜓 𝐶𝐵𝜒: Suppose that 𝜓 𝐶𝐵𝜒 ∈ Γ. Given that 𝜓 𝐶𝐵𝜒 ∈ Φ, 𝜓 𝐶𝐵𝜒 ∈ Γ 
iff every B−path from Γ is a 𝜓 χ−path by item 6 of Lemma 7.31. By item 6 of Lemma 
7.33 we can apply the induction hypothesis. Therefore this is equivalent to  every 
B−path from Γ is along which 𝜓 χ is true which is equivalent by semantics to 
𝑀𝑐 , Γ ⊨ 𝜓 𝐶𝐵𝜒. 

–  The case for 𝜓 𝜒 𝜉: Suppose that 𝜓 𝜒 𝜉 ∈ Γ. Given that 𝜓 𝜒 𝜉 ∈ Φ, 𝜓 𝜒 𝜉 ∈ Γ is 
equivalent to 𝜓 ∧ 𝜓 𝜒 𝜉 ∈ Γ by the announcement and composition axiom. By item 7 
of Lemma 7.33, we can apply the induction hypothesis. Therefore this is equivalent to 
𝑀𝑐 , Γ ⊨ 𝜓 ∧ 𝜓 𝜒 𝜉which is equivalent by semantics to  

 𝑀𝑐 , Γ ⊨ 𝜓 𝜒 𝜉.  
 

 

 



• Lemma 7.35 (Canonicity): 
The canonical model is reflexive, transitive and Euclidean. 
• Theorem 7.36 (Completeness) : 

For every 𝜑 ∈ ℒ𝐾𝐶[]  

⊨ 𝜑 implies ⊢ 𝜑 

Proof: 
We will prove this theorem by contraposition. Thus we 
suppose that ⊬ 𝜑. Therefore ≦𝜑  is a consistent set. By 
the Lindenbaum Lemma ≦𝜑  is a subset of some Γ which 
is maximal consistent in 𝑐𝑙 ≦𝜑 . Let 𝑀𝑐 be the canonical 
model for 𝑐𝑙 ≦𝜑 . By the Truth Lemma 𝑀𝑐 , Γ ⊨ ≦𝜑. 

Therefore ⊭𝜑.          
 
 
 
 



The proof system AM 

 



• Definition 7.37 (Translation): 
The translation 𝑡: ℒ𝐾⊗ → ℒ𝐾 is defined as follows: 
𝑡 𝑝 = 𝑝 
𝑡 ≦𝜑 = ≦𝑡(𝜑) 
𝑡 𝜑 ∧ 𝜓 = 𝑡 𝜑) ∧ 𝑡(𝜓  
𝑡 𝐾𝑎𝜑 = 𝐾𝑎𝑡 𝜑  
𝑡 Μ, s 𝑝 = 𝑡 𝑝𝑟𝑒 𝑠 → 𝑝  
𝑡 Μ, 𝑠 ≦𝜑 = 𝑡 𝑝𝑟𝑒 𝑠 → ≦ Μ, 𝑠 𝜑  

𝑡 Μ, 𝑠 𝜑 ∧ 𝜓 = 𝑡 Μ, 𝑠 𝜑 ∧ Μ, 𝑠 𝜓  

𝑡 Μ, 𝑠 𝐾𝑎𝜑 = 𝑡 𝑝𝑟𝑒 𝑠 → 𝐾𝑎 Μ, 𝑠 𝜑  
𝑡 Μ, 𝑠 Μ′, 𝑠′ 𝜑 = 𝑡 Μ, 𝑠;Μ′, 𝑠′ 𝜑  
𝑡 𝛼 ∪ 𝛼′ 𝜑 = 𝑡 𝛼 𝜑 ∧ 𝑡 𝛼′ 𝜑  



• Definition 7.38 (Complexity):  

The complexity 𝑐 ∶ ℒ𝐾⨂ → ℕ is defined as follows:  
𝑐 𝑝 = 1 
𝑐 ≦𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 ∧ 𝜓 = 1 +max 𝑐 𝜑 , 𝑐 𝜓   

𝑐 𝐾𝑎𝜑 = 1 + 𝑐 𝜑  

𝑐 𝛼 𝜑 = 4 + 𝑐 𝛼 ∙ 𝑐 𝜑  

𝑐 [Μ, s] = max 𝑐 𝑝𝑟𝑒 𝑡 |𝑡 ∈ Μ  

𝑐 [𝛼 ∪ 𝛼′] = 1 + max 𝑐 𝛼 , 𝑐 𝛼′  

 



• Lemma 7.39: 

For all 𝜑,𝜓 and 𝜒: 

1.  𝑐 𝜓 ≥ 𝑐 𝜑  if 𝜑 ∈ 𝑆𝑢𝑏 𝜓   

2.  𝑐 Μ, s 𝑝 > 𝑐 𝑝𝑟𝑒 𝑠 → 𝑝  

3.  𝑐 Μ, 𝑠 ≦𝜑 > 𝑐 𝑝𝑟𝑒 𝑠 → ≦ Μ, 𝑠 𝜑  

4.  c Μ, 𝑠 𝜑 ∧ 𝜓 > 𝑐 Μ, 𝑠 𝜑 ∧ Μ, 𝑠 𝜓  

5.  c Μ, 𝑠 𝐾𝑎𝜑 > 𝑐 𝑝𝑟𝑒 𝑠 → 𝐾𝑎 Μ, 𝑠 𝜑  

6.  c Μ, 𝑠 Μ′, 𝑠′ 𝜑 > 𝑐 Μ, 𝑠;Μ′, 𝑠′ φ  

7.  c 𝛼 ∪ 𝛼′ 𝜑 > 𝑐 𝛼 𝜑 ∧ 𝛼′ 𝜑  

 



• Lemma 7.40: 
For all formulas 𝜑 ∈ ℒ𝐾⨂ it is the case that  
⊢ 𝜑 ↔ 𝑡 𝜑   
(i.e. every formula is provably equivalent to its translation) 
Proof: 
Is similar to the proof of Lemma 7.24 
• Theorem 7.41 (Completeness): 
For every 𝜑 ∈ ℒ𝐾⊗ ⊨ 𝜑 implies ⊢ 𝜑 
Proof: 
Suppose that ⊨ 𝜑 . Therefore ⊨ 𝑡 𝜑  (by the soundness) and by Lemma 
7.40  holds that ⊢ 𝜑 ↔ 𝑡 𝜑 . Because of the fact that 𝑡 𝜑  doesn’t 
contain any action models, 𝑆5 ⊢ 𝑡 𝜑  (Theorem 7.7) We also have that 
AM ⊢ 𝑡 𝜑  as 𝑆5 is subsystem of AM. Since AM ⊢ 𝜑 ↔ 𝑡 𝜑 , it follows 
that AM ⊢ 𝜑. 

    
 
 



The proof system AMC 

 



• Definition 7.42 (Closure): 

Let 𝑐𝑙: ℒ𝐾𝐶⨂ → ℘ ℒ𝐾𝐶⨂ , be the function such that for every 𝜑 ∈ ℒ𝐾𝐶⨂, 𝑐𝑙 𝜑  is the 
smallest set such that: 

1.  𝜑 ∈ 𝑐𝑙(𝜑), 

2. If 𝜓 ∈ 𝑐𝑙(𝜑), then 𝑆𝑢𝑏(𝜓) ⊆ 𝑐𝑙(𝜑) (where 𝑆𝑢𝑏(𝜓) is the set of subformulas of 𝜓), 

3. If 𝜓 ∈ 𝑐𝑙 𝜑  and 𝜓 is not a negation, then ≦𝜓 ∈ 𝑐𝑙(𝜑), 

4. If 𝐶𝐵𝜓 ∈ 𝑐𝑙 𝜑 , then 𝐾𝑎𝐶𝐵𝜓|𝑎 ∈ B ⊆ 𝑐𝑙 𝜑 , 

5. If Μ, s 𝑝 ∈ 𝑐𝑙 𝜑 , then 𝑝𝑟𝑒 𝑠 → 𝑝 ∈ 𝑐𝑙 𝜑 , 

6. If Μ, 𝑠 ≦𝜓 ∈ 𝑐𝑙 𝜑 , then 𝑝𝑟𝑒 𝑠 → ≦ Μ, 𝑠 𝜓 ∈ 𝑐𝑙 𝜑 , 

7. If Μ, 𝑠 𝜓 ∧ 𝜒 ∈ 𝑐𝑙 𝜑 , then Μ, 𝑠 𝜓 ∧ Μ, 𝑠 𝜒 ∈ 𝑐𝑙 𝜑 , 

8. If Μ, 𝑠 𝐾𝑎𝜑 ∈ 𝑐𝑙 𝜑  and s~𝛼𝑡, then 𝑝𝑟𝑒 𝑠 → 𝐾𝑎 Μ, 𝑠 𝜑 ∈ 𝑐𝑙 𝜑 , 

9. If Μ, 𝑠 𝐶𝐵𝜓 ∈ 𝑐𝑙 𝜑 , then Μ, 𝑡 𝜓| s~𝐵𝑡 ⊆ 𝑐𝑙 𝜑  and 
𝐾𝑎 Μ, 𝑡 𝐶𝐵𝜓|𝑎 ∈ B 𝑎𝑛𝑑s~𝐵𝑡 ⊆ 𝑐𝑙 𝜑 , 

10. If  Μ, 𝑠 Μ′, 𝑠′ 𝜓 ∈ 𝑐𝑙 𝜑 ,  then Μ, 𝑠;Μ′, 𝑠′ 𝜓 ∈ 𝑐𝑙 𝜑 , 

11. if  𝛼 ∪ 𝛼′ 𝜓 ∈ 𝑐𝑙 𝜑 ,  then 𝛼 𝜓 ∧ 𝛼′ ψ ∈ 𝑐𝑙 𝜑 , 

 

 

 

 
 

 

 

 



• Lemma 7.43: 
𝑐𝑙 φ  is finite for all formulas 𝜑 ∈ ℒ𝐾𝐶⨂. 
• Lemma 7.44 (Lindenbaum): 
Let Φ be the closure of some formula. Every consistent subset of 
Φ is a subset of a maximal consistent set in Φ. 
Proof: 
The same as Lemma 7.12 
• Definition 7.45 (𝐵Mst-path): 
A 𝐵Mst-path from Γ is a 𝐵-path Γ0, … , Γ𝑛 from Γ such that there is 
a 𝐵-path s0, … , s𝑛 from 𝑠 to 𝑡 in M and for all 𝑘 < 𝑛 there is an 
agent 𝑎 ∈ 𝐵 such that Γ𝑘 ∼𝑎

𝑐 Γ𝑘+1 and s𝑘 ∼𝑎 s𝑘+1 and for all 
𝑘 ≤ 𝑛 it is the case that 𝑝𝑟𝑒 𝑠𝑘 ∈ Γ𝑘. 

 



• Lemma 7.46: 
Let Φ be the closure of some formula. Let 𝑀𝑐 = 𝑆𝑐 , ∼𝑐 , 𝑉𝑐  be the 
canonical model for Φ. If Γ and Δ are maximal consistent sets, then: 

1. Γ is deductively closed in Φ 
2. If ≦𝜑 ∈ Φ, then 𝜑 ∈ Γ  iff ≦𝜑 ∉ Γ 
3. If 𝜑 ∧ 𝜓 ∈ Φ, then 𝜑 ∧ 𝜓 ∈ Γ iff 𝜑 ∈ Γ and 𝜓 ∈ Γ 

4. If Γ ∧ 𝐾𝑎 Δ is consistent, then Γ ∼𝑎
𝑐 Δ 

5. If 𝐾𝑎𝜓 ∈ Φ, then 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊢ 𝜓 iff 𝐾𝑎𝜑|𝐾𝑎𝜑 ∈ Γ ⊢
𝐾𝑎𝜓 

6. If 𝐶𝐵𝜑 ∈ Φ, then  𝐶𝐵𝜑 ∈ Γ  iff every B-path from Γ is a 𝜑-
path. 

7. If Μ, s 𝐶𝐵𝜑 ∈ Φ, then  Μ, s 𝐶𝐵𝜑 ∈ Γ  iff for all t ∈ S every 
BMst−path from Γ ends in  a Μ, t φ−state. 

 



• Definition 7.47 (Complexity):  
The complexity 𝑐 ∶ ℒ𝐾𝐶⨂ → ℕ is defined as follows:  
𝑐 𝑝 = 1 
𝑐 ≦𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 ∧ 𝜓 = 1 +max 𝑐 𝜑 , 𝑐 𝜓   

𝑐 𝐾𝑎𝜑 = 1 + 𝑐 𝜑  
𝑐 𝐶𝐵𝜑 = 1 + 𝑐 𝜑  

𝑐 𝛼 𝜑 = 4 + 𝑐 𝛼 ∙ 𝑐 𝜑  

𝑐 [Μ, s] = max 𝑐 𝑝𝑟𝑒 𝑡 |𝑡 ∈ Μ  

𝑐 [𝛼 ∪ 𝛼′] = 1 + max 𝑐 𝛼 , 𝑐 𝛼′  

• Lemma 7.48: 
For all 𝜑,𝜓 and 𝜒: 
1.  𝑐 𝜓 ≥ 𝑐 𝜑  for all 𝜑 ∈ 𝑆𝑢𝑏 𝜓   
2.  𝑐 Μ, s 𝑝 > 𝑐 𝑝𝑟𝑒 𝑠 → 𝑝  
3.  𝑐 Μ, 𝑠 ≦𝜑 > 𝑐 𝑝𝑟𝑒 𝑠 → ≦ Μ, 𝑠 𝜑  

4.  c Μ, 𝑠 𝜑 ∧ 𝜓 > 𝑐 Μ, 𝑠 𝜑 ∧ Μ, 𝑠 𝜓   
5.  c Μ, 𝑠 𝐾𝑎𝜑 > 𝑐 𝑝𝑟𝑒 𝑠 → 𝐾𝑎 Μ, 𝑡 𝜑  for all 𝑡 ∈ Μ 
6. c Μ, 𝑠 𝐶𝐵𝜑 > 𝑐 Μ, 𝑡 𝜑  for all 𝑡 ∈ Μ 
7.  c Μ, 𝑠 Μ′, 𝑠′ 𝜑 > 𝑐 Μ, 𝑠 ; Μ′, 𝑠′ φ  
8.  c 𝛼 ∪ 𝛼′ 𝜑 > 𝑐 𝛼 𝜑 ∧ 𝛼′ 𝜑  
 
 



• Lemma 7.50 (Truth): 
Let Φ be the closure of some formula. Let 𝑀𝑐 = 𝑆𝑐, ∼𝑐 , 𝑉𝑐  be the canonical model for Φ. For all Γ ∈ 𝑆𝑐 
and all 𝜑 ∈ Φ: 

φ ∈ Γ iff  𝑀𝑐 , Γ ⊨ 𝜑 

Proof: (by induction on 𝑐 𝜑 ) 
Suppose that 𝜑 ∈ Φ. 
Base case: Suppose that 𝜑 is a propositional variable 𝑝. Then by the definition of 𝑉𝑐, 𝑝 ∈ Γ iff 
Γ ∈ 𝑆𝑐 which by semantics is equivalent to 𝑀𝑐 , Γ ⊨ 𝑝. 
Induction hypothesis: For all 𝜑 such that 𝑐 𝜑 ≤ 𝑛: 
𝜑 ∈ Γ iff  𝑀𝑐 , Γ ⊨ 𝜑. 
Induction step: Suppose that 𝑐 𝜑 = 𝑛 + 1. The cases for ≦, ∧, 𝐾𝑎, 𝐶𝐵 are just like Lemma 7.17. 

– The case for Μ, 𝑠 𝑝: Suppose that Μ, s 𝑝 ∈ Γ. Given that Μ, s 𝑝 ∈ Φ, Μ, s 𝑝 ∈ Γ is 
equivalent to 𝑝𝑟𝑒 𝑠 → 𝑝  by the atomic permanence axiom. By item 2 of Lemma 7.48, 
we can apply the induction hypothesis. Therefore this is equivalent to 

  𝑀𝑐 , Γ ⊨ 𝑝𝑟𝑒 𝑠 → 𝑝  which is equivalent by semantics to 𝑀𝑐 , Γ ⊨ Μ, s 𝑝. 
– The case for Μ, s ≦𝜒: Suppose that Μ, s ≦𝜒 ∈ Γ. Given that Μ, s ≦𝜒 ∈ Φ, Μ, 𝑠 ≦𝜒 ∈
Γ is equivalent to 𝑝𝑟𝑒 𝑠 → ≦ Μ, 𝑠 𝜒 ∈ Γ by the action and negation axiom. By item 
3 of Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to 

  𝑀𝑐 , Γ ⊨ 𝑝𝑟𝑒 𝑠 → ≦ Μ, 𝑠 𝜒which is equivalent by semantics to 𝑀𝑐 , Γ ⊨ Μ, s ≦𝜒. 
 

 



– The case for Μ, 𝑠 𝜒 ∧ 𝜉 : Suppose that Μ, 𝑠 𝜒 ∧ 𝜉 ∈ Γ. Given that Μ, 𝑠 𝜒 ∧ 𝜉 ∈
Φ, Μ, 𝑠 𝜒 ∧ 𝜉 ∈ Γ is equivalent to Μ, 𝑠 𝜒 ∧ Μ, 𝑠 𝜉 ∈ Γ by the action and 
conjunction axiom. By item 4 of Lemma 7.48, we can apply the induction hypothesis. 
Therefore this is equivalent to 𝑀𝑐 , Γ ⊨ Μ, 𝑠 𝜒 ∧ Μ, 𝑠 𝜉 which is equivalent by 
semantics to 𝑀𝑐 , Γ ⊨ Μ, 𝑠 𝜒 ∧ 𝜉 . 

– The case Μ, s 𝐾𝑎𝜒: Suppose that Μ, s 𝐾𝑎𝜒 ∈ Γ. Given that Μ, s 𝐾𝑎𝜒 ∈ Φ, Μ, 𝑠 𝐾𝑎𝜒 ∈
Γ is equivalent to 𝑝𝑟𝑒 𝑠 → 𝐾𝑎 Μ, 𝑡 𝜒 ∈ Γ for all 𝑡 ∈ Μ by the action and knowledge 
axiom. By item 5 of Lemma 7.48, we can apply the induction hypothesis. Therefore this 
is equivalent to 𝑀𝑐 , Γ ⊨ 𝑝𝑟𝑒 𝑠 → 𝐾𝑎 Μ, 𝑡 𝜒 which is equivalent by semantics to 
𝑀𝑐 , Γ ⊨ Μ, s 𝐾𝑎𝜒. 

–  The case for Μ, 𝑠 Μ′, 𝑠′ 𝜉: Suppose that Μ, 𝑠 Μ′, 𝑠′ 𝜉 ∈ Γ. Given that Μ, 𝑠 Μ′, 𝑠′ 𝜉 ∈
Φ, Μ, 𝑠 Μ′, 𝑠′ 𝜉 ∈ Γ is equivalent to Μ, 𝑠;Μ′, 𝑠′ 𝜉 ∈ Γ by the action and composition 
axiom. By item 7 of Lemma 7.48, we can apply the induction hypothesis. Therefore this 
is equivalent to 𝑀𝑐 , Γ ⊨ Μ, 𝑠;Μ′, 𝑠′ 𝜉which is equivalent by semantics to  

 𝑀𝑐 , Γ ⊨ Μ, 𝑠 Μ′, 𝑠′ 𝜉.  
– The case for 𝛼 ∪ 𝛼′ 𝜉: Suppose that 𝛼 ∪ 𝛼′ 𝜉 ∈ Γ. Given that 𝛼 ∪ 𝛼′ 𝜉 ∈ Φ, 𝛼 ∪ 𝛼′ 𝜉 ∈
Γ is equivalent to 𝛼 𝜉 ∧ 𝛼′ 𝜉 ∈ Γ by the non-deterministic choice axiom. By item 8 of 
Lemma 7.48, we can apply the induction hypothesis. Therefore this is equivalent to 
𝑀𝑐 , Γ ⊨ 𝛼 𝜉 ∧ 𝛼′ 𝜉 which is equivalent by semantics to  

 𝑀𝑐 , Γ ⊨ 𝛼 ∪ 𝛼′ 𝜉.  
 

 



• Lemma 7.51 (Canonicity): 

The canonical model is reflexive, transitive and Euclidean. 

• Theorem 7.52 (Completeness) : 

For every 𝜑 ∈ ℒ𝐾𝐶⨂  

⊨ 𝜑 implies ⊢ 𝜑 
Proof: 

We will prove this theorem by contraposition. Thus we suppose that 
⊬ 𝜑. Therefore ≦𝜑  is a consistent set. By the Lindenbaum Lemma 
≦𝜑  is a subset of some Γ which is maximal consistent in 𝑐𝑙 ≦𝜑 . 

Let 𝑀𝑐  be the canonical model for 𝑐𝑙 ≦𝜑 . By the Truth Lemma 

𝑀𝑐 , Γ ⊨ ≦𝜑. Therefore ⊭𝜑.          
 

 



The proof system S5RC 

 



• Definition 7.53:  
Given are a set of agents 𝐴 and a set of atoms 𝑃. The 
language ℒ𝐾𝑅𝐶  consists of all formulas given by the 
following BNF: 

𝜑 ∷= 𝑝  ≦𝜑  𝜑 ∧ 𝜑   𝐾𝛼𝜑  𝐶𝐵 𝜑,𝜑  
Where 𝑝 ∈ 𝑃, 𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝐵 ⊆ 𝐴. 
• Definition 7.54(Semantics): 
Given is an epistemic model 𝑀 = 𝑆,~, 𝑉 . The semantics 
for atoms, negations, conjunctions and individuals 
operators are as usual.  
Μ, s ⊨ 𝐶𝐵 𝜑,𝜓  iff Μ, s ⊨ 𝜓 for all 𝑡 such that 
𝑠, 𝑡 ∈  ~𝑎 ∩ 𝑆 × 𝜑 𝑀𝑎∈𝐵

+ 
 ~𝑎 ∩ 𝑆 × 𝜑 𝑀
𝑎∈𝐵

+

 

is the transitive closure 



• Theorem 7.56: 

The proof system S5RC is sound , i.e., if ⊢ 𝜑, then ⊨ 𝜑 

• Definition 7.58 (Closure): 

Let 𝑐𝑙: ℒ𝐾𝑅𝐶 → ℘ ℒ𝐾𝑅𝐶 , be the function such that for every 𝜑 ∈ ℒ𝐾𝑅𝐶 , 
𝑐𝑙 𝜑  is the smallest set such that: 

1.  𝜑 ∈ 𝑐𝑙(𝜑), 

2. If 𝜓 ∈ 𝑐𝑙(𝜑), then 𝑆𝑢𝑏(𝜓) ⊆ 𝑐𝑙(𝜑) (where 𝑆𝑢𝑏(𝜓) is the set of 
subformulas of 𝜓), 

3. If 𝜓 ∈ 𝑐𝑙 𝜑  and 𝜓 is not a negation, then ≦𝜓 ∈ 𝑐𝑙(𝜑), 

4. If 𝐶𝐵 𝜓, 𝜒 ∈ 𝑐𝑙 𝜑 , then 𝐾𝑎 𝜓 → 𝜒 ∧ 𝐶𝐵 𝜓, 𝜒 |𝑎 ∈ B ⊆ 𝑐𝑙 𝜑  

• Lemma 7.59: 

 𝑐𝑙 φ  is finite for all formulas 𝜑 ∈ ℒ𝐾𝑅𝐶. 

 

 



• Lemma 7.60: 

Let Φ be the closure of some formula. Let 𝑀𝑐 = 𝑆𝑐 , ∼𝑐 , 𝑉𝑐  be the 
canonical model for Φ. Let Γ be maximal consistent set in Φ. If 𝐶𝐵 𝜑,𝜓 ∈
Φ, then 𝐶𝐵 𝜑,𝜓 ∈ Γ iff every 𝐵-𝜑-path from a Δ ∈ 𝑆𝑐 such that there is an 
agent 𝑎 ∈ 𝐵 and Γ ∼𝑎

𝑐 Δ is a 𝜓-path. 

• Lemma 7.61 (Truth): 

Let Φ be the closure of some formula. Let 𝑀𝑐 = 𝑆𝑐 , ∼𝑐 , 𝑉𝑐  be the 
canonical model for Φ. For all Γ ∈ 𝑆𝑐  and all 𝜑 ∈ Φ: 

φ ∈ Γ iff  𝑀𝑐 , Γ ⊨ 𝜑 

Proof : Suppose 𝜑 ∈ Φ. We will prove this Lemma by induction on 𝜑. We 
focus on the case for relativised common knowledge due to the fact that the 
other cases are the same as in proof of Lemma 7.17.  

 

 

 



 

 

 

– The case for 𝐶𝐵 𝜑,𝜓 : Suppose that 𝐶𝐵 𝜑,𝜓 ∈ Γ.  

From the Lemma 7.60 this is the case iff every 𝐵-𝜑-path from a 
Δ ∈ 𝑆𝑐  such that there is an agent 𝑎 ∈ 𝐵 and Γ ∼𝑎

𝑐 Δ is a 𝜓-path. 
By induction hypothesis this is the case iff every 𝐵-path where 𝜑 
is true along the path, is a path along which 𝜓 is true. By 
semantics this is equivalent to 𝑀𝑐 , Γ ⊨ 𝐶𝐵 𝜑,𝜓 . 

 

  



• Theorem 7.62 (Completeness) : 

For every 𝜑 ∈ ℒ𝐾𝑅𝐶   

⊨ 𝜑 implies ⊢ 𝜑 

Proof: 

We will prove this theorem by contraposition. Thus we 
suppose that ⊬ 𝜑. Therefore ≦𝜑  is a consistent set. By 
the Lindenbaum Lemma ≦𝜑  is a subset of some Γ 
which is maximal consistent in 𝑐𝑙 ≦𝜑 . Let 𝑀𝑐 be the 
canonical model for 𝑐𝑙 ≦𝜑 . By the Truth Lemma 

𝑀𝑐 , Γ ⊨ ≦𝜑. Therefore ⊭𝜑.          
 



The proof system PARC 



• Definition 7.63:  

Given are a set of agents 𝐴 and a set of atoms 𝑃. The 
language ℒ𝐾𝑅𝐶[] consists of all formulas given by the 

following BNF: 
𝜑 ∷= 𝑝  ≦𝜑  𝜑 ∧ 𝜑   𝐾𝛼𝜑  𝐶𝐵 𝜑,𝜑  | 𝜑 𝜑 

Where 𝑝 ∈ 𝑃, 𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝐵 ⊆ 𝐴. 

• Lemma 7.65: 
⊨ 𝜑 𝐶𝑎 𝜓, 𝜒 ↔ 𝜑 → 𝐶𝑎 𝜑 ∧ 𝜑 𝜓, 𝜑 𝜒  

 



• Definition 7.66 (Translation): 

The translation 𝑡: ℒ𝐾𝑅𝐶[] → ℒ𝐾𝑅𝐶  is defined as follows: 

𝑡 𝑝 = 𝑝 
𝑡 ≦𝜑 = ≦𝑡 𝜑  

𝑡 𝜑 ∧ 𝜓 = 𝑡 𝜑) ∧ 𝑡(𝜓  
𝑡 𝐾𝑎𝜑 = 𝐾𝑎𝑡 𝜑  
𝑡 𝜑 𝑝 = 𝑡 𝜑 → 𝑝  
𝑡 𝜑 ≦𝜓 = 𝑡 𝜑 → ≦ 𝜑 𝜓  

𝑡 𝜑 𝜓 ∧ 𝜒 = 𝑡 𝜑 𝜓) ∧ 𝜑 𝜒  

𝑡 𝜑 𝐾𝑎𝜓 = 𝑡 𝜑 → 𝐾𝑎 𝜑 𝜓  

𝑡 𝜑 𝐶𝑎 𝜓, 𝜒 = 𝑡 𝜑 → 𝐶𝑎 𝜑 ∧ 𝜑 𝜓, 𝜑 𝜒  

𝑡 𝜑 𝜓 𝜒 = 𝑡 𝜑 ∧ 𝜑 𝜓 𝜒  

• Definition 7.67 (Complexity): 

The complexity 𝑐 ∶ ℒ𝐾𝑅𝐶[] → ℕ is defined as follows:  

𝑐 𝑝 = 1 
𝑐 ≦𝜑 = 1 + 𝑐 𝜑  

𝑐 𝜑 ∧ 𝜓 = 1 +max 𝑐 𝜑 , 𝑐 𝜓   

𝑐 𝐾𝑎𝜑 = 1 + 𝑐 𝜑  

𝑐 𝐶𝐵 𝜑,𝜓 = 1 +max 𝑐 𝜑 , 𝑐 𝜓  

𝑐 𝜑 𝜓 = 5 + 𝑐 𝜑 ∙ 𝑐 𝜓  



• Lemma 7.68: 

For all 𝜑,𝜓 and 𝜒: 

1.  𝑐 𝜓 ≥ 𝑐 𝜑  if 𝜑 ∈ 𝑆𝑢𝑏 𝜓   

2.  𝑐 𝜑 𝑝 > 𝑐 𝜑 → 𝑝  

3.  𝑐 𝜑 ≦𝜓 > 𝑐 𝜑 → ≦ 𝜑 𝜓  

4.  𝑐 𝜑 𝜓 ∧ 𝜒 > 𝑐 𝜑 𝜓 ∧ 𝜑 𝜒  

5.  𝑐 𝜑 𝐾𝑎𝜓 > 𝑐 𝜑 → 𝐾𝑎 𝜑 𝜓  

6.  c 𝜑 𝐶𝐵 𝜓, 𝜒 > 𝑐 𝜑 → 𝐶𝐵 𝜑 ∧ 𝜑 𝜓, 𝜑 𝜒  

7.  𝑐 𝜑 𝜓 𝜒 > 𝑐 𝜑 ∧ 𝜑 𝜓 𝜒  

 



Proof:  

c 𝜑 𝐶𝐵 𝜓, 𝜒 > 𝑐 𝜑 → 𝐶𝐵 𝜑 ∧ 𝜑 𝜓, 𝜑 𝜒  

Assume without loss of generality, that 𝑐 𝜓 ≥ 𝑐 𝜒 . Then : 

c 𝜑 𝐶𝐵 𝜓, 𝜒 = 5 + 𝑐 𝜑 1 + max 𝑐 𝜓 , 𝑐 𝜒  

= 5 + 𝑐 𝜑 + 5max 𝑐 𝜓 , 𝑐 𝜒 + 𝑐 𝜑 max 𝑐 𝜓 , 𝑐 𝜒  

= 5 + 𝑐 𝜑 + 5𝑐 𝜓 + 𝑐 𝜑 𝑐 𝜓  

And  

𝑐 𝜑 → 𝐶𝐵 𝜑 ∧ 𝜑 𝜓, 𝜑 𝜒 = 𝑐 ≦ 𝜑 ∧ ≦𝐶𝐵 𝜑 ∧ 𝜑 𝜓, 𝜑 𝜒  

= 2 + 

max 𝑐 𝜑 , 1 + 1 +max 1 + max 𝑐 𝜑 , 5 + 𝑐 𝜑 𝑐 𝜓 , 5 + 𝑐 𝜑 𝑐 𝜒  

= 5 + 5 + 𝑐 𝜑 𝑐 𝜓  

= 5 + 5 𝑐 𝜓 + 𝑐 𝜑  𝑐 𝜓  

 



• Lemma 7.69: 

For all formulas 𝜑 ∈ ℒ𝐾𝑅𝐶[] it is the case that  
⊢ 𝜑 ↔ 𝑡 𝜑   
Proof: 
Is similar to the proof of Lemma 7.24 
• Theorem 7.70 (Completeness): 

For every 𝜑 ∈ ℒ𝐾𝑅𝐶[] ⊨ 𝜑 implies ⊢ 𝜑 

Proof: 
Suppose that ⊨ 𝜑 . Therefore ⊨ 𝑡 𝜑  (by the soundness) and by Lemma 
7.69  holds that ⊢ 𝜑 ↔ 𝑡 𝜑 . Because of the fact that 𝑡 𝜑  doesn’t 
contain any announcement operators, 𝑆5𝑅𝐶 ⊢ 𝑡 𝜑  (Theorem 7.62) We 
also have that PARC ⊢ 𝑡 𝜑  as 𝑆5𝑅𝐶 is subsystem of PARC. Since 
PARC ⊢ 𝜑 ↔ 𝑡 𝜑 , it follows that PARC ⊢ 𝜑. 

    
 


