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Follow the Regularized Leader

The algorithm of Follow the Regularized Leader is defined by
the round-by-round recursive rule

Xi ,n = Qi(Yi ,n)
Yi ,n+1 = Yi ,n + γnv̂i ,n

(FTRL)

I Qi : Yi → Xi denotes the “choice map” of player i ∈ N .
I γn > 0 is a “learning rate” parameter such that∑

n γn =∞.
I v̂i ,n is a “payoff signal” that provides an estimate for the

mixed payoffs of player i at stage n.
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Regularization

The second component of FTRL is the choice map

Qi(yi) = arg max
xi∈Xi

{〈yi , xi〉 − hi(xi)}.

In the above, each player’s regularizer hi : Xi → R is defined as
hi(xi) = ∑

αi∈Ai θi(xi) for some “kernel function” θi : [0, 1]→ R
with the following properties:

(i) θi is continuous on [0, 1];
(ii) C 2-smooth on (0, 1]; and
(iii) inf [0,1] θ

′′
i > 0.
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Examples

I Negative Shannon Entropy: h(x) =
∑

i
xi log(xi)

I Exponential/Multiplicative Weight Updates

Λi (y) = exp(yi )/
∑

j
exp(yj)

I Euclidean Regularizer: h(x) = ∑
i xi

2/2
I Euclidean Projection

Π(y) = arg min
x∈∆

‖y − x‖2
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Dichotomy of regularizers
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The feedback model

We assume a “black-box” model for players’ payoff vector of
the form

v̂n = v(Xn) + Zn (1)

for some abstract error process Zn = (Zi ,n)i∈N .
We will further decompose Zn as Zn = Un + bn, where

I Random (zero-mean) error: E[Un | Fn] = 0.
I Systematic error: bn = E[Zn | Fn].

with Fn denoting the history of Xn up to stage n (inclusive).
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Assumptions

We may then characterize the input signal v̂n by means of the
following statistics:

1. Bias: E[‖bn‖∗ | Fn] ≤ Bn

2. Variance: E[‖Un‖2
∗ | Fn] ≤ M2

n

In the above, Bn and Mn represent deterministic bounds on the
bias and variance of the feedback signal v̂n.
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Assumptions

For concreteness, we will also make the following blanket
assumptions:

1. Bias control: limn→∞ Bn = 0 and ∑
n γnBn <∞.

2. Variance control: ∑
n γ

2
nM2

n <∞.
3. Generic observation errors at equilibrium: For every mixed

Nash equilibrium x∗ of Γ and for all n = 0, 1, . . . , there
exists a player i ∈ N and strategies a, b ∈ supp(x∗i ) such
that

P(|v̂ia,n−v̂ib,n| ≥ β|Fn) > 0 for all sufficiently small β > 0.
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Examples
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Model 1 - Oracle based feedback

I At each round n, every player i ∈ N picks an action
αi ,n ∈ Ai based on Xi ,n ∈ Xi .
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Model 1 - Oracle based feedback

I At each round n, every player i ∈ N picks an action
αi ,n ∈ Ai based on Xi ,n ∈ Xi .

I An oracle reveals to each player the pure payoff vector
vi(αn) ≡ (ui(αi ;α−i ,n))αi∈Ai .
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Model 1 - Oracle based feedback

I At each round n, every player i ∈ N picks an action
αi ,n ∈ Ai based on Xi ,n ∈ Xi

I An oracle reveals to each player the pure payoff vector
vi(αn) ≡ (ui(αi ;α−i ,n))αi∈Ai .

I Then the player’s feedback signal is v̂i ,n = vi(αn).
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Model 1 - Oracle based feedback

Special case of our general model with
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Model 1 - Oracle based feedback

Special case of our general model with
I Assumption for bias is trivial because

E[v̂n | Fn] = EXn [v(αn)] = v(Xn), i.e., bn = 0.
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Model 1 - Oracle based feedback

Special case of our general model with
I Assumption for bias is trivial because

E[v̂n | Fn] = EXn [v(αn)] = v(Xn), i.e., bn = 0.
I Assumption for noise is satisfied as long as ∑

n γ
2
n <∞,

since ‖Un‖∗ ≤ 2 maxX‖v(X )‖∗.
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Model 1 - Oracle based feedback

Special case of our general model with
I (A1) is trivial because E[v̂n | Fn] = EXn [v(αn)] = v(Xn),

i.e., bn = 0.
I (A2) is satisfied as long as ∑

n γ
2
n <∞, since

‖Un‖∗ ≤ 2 maxX‖v(X )‖∗.
I (A3) is an immediate consequence of genericity. Otherwise,

the game should have pure Nash equilibria.
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Model 2 - Payoff based feedback (Bandit)
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Bandit Case

I At each round n, every player i ∈ N picks an action
αi ,n ∈ Ai based on Xi ,n ∈ Xi .
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Bandit Case

I At each round n, every player i ∈ N picks an action
αi ,n ∈ Ai based on Xi ,n ∈ Xi .

I Players observe their realized payoffs ui(αi ,n, α−i ,n)
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Bandit Case

I At each round n, every player i ∈ N picks an action
αi ,n ∈ Ai based on Xi ,n ∈ Xi .

I Players observe their realized payoffs ui(αi ,n, α−i ,n)
I Players need to somehow estimate their payoffs!
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Importance Weighted Estimator

v̂ia,n =


0 , if a 6= ai ,n

ui(a; a−i ,n)
xia,n

, if a = ai ,n

I Unbiased: E[v̂i ,n] = vi(Xn)

I Unbounded Variance: E[‖v̂i ,n‖2
∗ | Fn] ∼ 1

min xia,n
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Exploitation-Exploration

Let’s leave our options open...
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FTRL-exploration
I Idea: We do not limit from the beginning other options,

we regularize the probabilities with an exploitation
parameter that goes to zero in the infinity.

Yia,n+1 = Yia,n + γnv̂ia,n

Xi ,n = arg max
X∈∆(Ai )

{〈Yi ,n,X 〉 − hi(X )}

X̂i ,n = (1− εn)Xi ,n + εn

Ai

I Unbiased: E[v̂i ,n] = vi(X̂n)

I Bounded Variance: E[‖Ui ,n‖2
∗ | Fn] ∼ 1

min X̂ia,n
= O(1/εn)

I Bias: ‖bn‖∗ = ‖v(X̂n)− v(Xn)‖∗ = O(εn)
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The Bandit Case

I (A1) is satisfied as long as εn → 0 and ∑
n γnεn <∞.

I (A2) is satisfied ∑
n γ

2
nε
−1
n <∞.

I (A3) is an immediate consequence of genericity. Otherwise,
the game should have pure Nash equilibria.
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Asymptotic Stability
A point x∗ ∈ X is said to be

1. Stochastically stable under (FTRL): If for all δ > 0 and all
neighborhoods U of x∗ there exists open set of initial
conditions W0 ⊆ Y such that

P(Xn ∈ U for all n = 0, 1, . . .) ≥ 1− δ

whenever Y0 ∈ W0.
2. Stochastically attracting under (FTRL): If for all δ > 0,

there exists open set of initial conditions W0 ⊆ Y such
that

P( lim
n→∞

Xn = x∗) ≥ 1− δ

whenever Y0 ∈ W0.
3. Stochastically asymptotically stable under (FTRL): if it is

stochastically stable and attracting.



19/33

Main Results

Main Theorem. Suppose that Assumptions 1–3 hold.
Then:

x∗ is a strict Nash equilibrium ⇐⇒ x∗ is stochastically
asymptotically stable under (FTRL)
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Main Results

Theorem
Let x∗ ∈ X be a strict Nash equilibrium of Γ. If (FTRL) is run
with inexact payoff feedback satisfying Assumptions 1 and 2,
then x∗ is stochastically asymptotically stable.

Theorem
Let x∗ be a mixed Nash equilibrium of Γ. If (FTRL) is run with
inexact payoff feedback satisfying assumption 3, then x∗ is not
stochastically asymptotically stable.
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Proof techniques - Instability

Figure: Polar cone

1. x = Q(y)⇔ y ∈ ∂h(x)
2. ∂h(x) = ∇h(x) + PC(x) for all x ∈ X ,

where PC(x) = {y ∈ Y : ya ≥ yb for all a, b ∈ A}.
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Proof techniques - Instability

Lemma (Informal)
Let Xi ,n be the sequence of play in (FTRL) i.e., Xi ,n = Q(Yi ,n) ∈
Xi of player i ∈ N ; and for some round n ≥ 0 let a, b ∈
supp(Xi ,n) be two pure strategies of player i ∈ N . Then it
holds:

(θ′i(Xia,n+1)− θ′i(Xia,n))−(θ′i(Xib,n+1)− θ′i(Xib,n)) = γn(v̂ia,n−v̂ib,n)
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Proof techniques - Instability

Lemma (Informal)
Let Xi ,n be the sequence of play in (FTRL) i.e., Xi ,n = Q(Yi ,n) ∈
Xi of player i ∈ N ; and for some round n ≥ 0 let a, b ∈
supp(Xi ,n) be two pure strategies of player i ∈ N . Then it
holds:

(θ′i(Xia,n+1)− θ′i(Xia,n))−(θ′i(Xib,n+1)− θ′i(Xib,n)) = γn(v̂ia,n−v̂ib,n)

I Assume ad absurdum that a mixed Nash equilibrium x∗ is
stochastically asymptotically stable. Since x∗ is mixed,
there exist a, b ∈ supp(x∗).
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Proof techniques - Instability

Lemma (Informal)
Let Xi ,n be the sequence of play in (FTRL) i.e., Xi ,n = Q(Yi ,n) ∈
Xi of player i ∈ N ; and for some round n ≥ 0 let a, b ∈
supp(Xi ,n) be two pure strategies of player i ∈ N . Then it
holds:

(θ′i(Xia,n+1)− θ′i(Xia,n))−(θ′i(Xib,n+1)− θ′i(Xib,n)) = γn(v̂ia,n−v̂ib,n)

I Assume ad absurdum that a mixed Nash equilibrium x∗ is
stochastically asymptotically stable. Since x∗ is mixed,
there exist a, b ∈ supp(x∗).

I The stochastic stability implies that for all ε, δ > 0 if X0
belongs to an initial neighborhood Uε, then ‖Xn − x∗‖ < ε
for all n ≥ 0, with probability at least 1− δ.
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Proof techniques - Instability

I By the triangle inequality for two consecutive instances of
the sequence of play Xi ,n,Xi ,n+1 for any player i ∈ N it
holds:

|Xia,n+1−Xia,n|+|Xib,n+1−Xib,n| < O(ε) with probability 1−δ
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Proof techniques - Instability

I By the triangle inequality for two consecutive instances of
the sequence of play Xi ,n,Xi ,n+1 for any player i ∈ N it
holds:

|Xia,n+1−Xia,n|+|Xib,n+1−Xib,n| < O(ε) with probability 1−δ

I Consider ε sufficiently small, such that the probabilities of
the strategies that belong to the support of the equilibrium
are bounded away from 0, for all the points of the
neighborhood. Since θi is continuously differentiable in
(0, 1], the differences decribed in the lemma above are
bounded from O(ε).
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Proof techniques - Instability

I If the sequence of play Xn is contained to an
ε−neighborhood of x∗, then the difference of the feedback,
for any player i ∈ N , to two strategies of the equilibrium is
O(ε/γn) with probability at least 1− δ:

P(|v̂ia,n − v̂ib,n| = O(ε/γn) | Fn) ≥ 1− δ
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Proof techniques - Instability

I If the sequence of play Xn is contained to an
ε−neighborhood of x∗, then the difference of the feedback,
for any player i ∈ N , to two strategies of the equilibrium is
O(ε/γn) with probability at least 1− δ:

P(|v̂ia,n − v̂ib,n| = O(ε/γn) | Fn) ≥ 1− δ

I From assumption 3 for a fixed round n and some player
i ∈ N , there exist β, π > 0 such that:
P(|v̂ia,n − v̂ib,n| ≥ β | Fn) = π > 0.
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Proof techniques - Instability

I If the sequence of play Xn is contained to an
ε−neighborhood of x∗, then the difference of the feedback,
for any player i ∈ N , to two strategies of the equilibrium is
O(ε/γn) with probability at least 1− δ:

P(|v̂ia,n − v̂ib,n| = O(ε/γn) | Fn) ≥ 1− δ

I From assumption 3 for a fixed round n and some player
i ∈ N , there exist β, π > 0 such that:
P(|v̂ia,n − v̂ib,n| ≥ β | Fn) = π > 0.

I Thus by choosing ε = O(βγn) and δ = π/2, we obtain a
contradiction and our proof is complete.
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Nash equilibria - reminder

A point x∗ is a Nash equilibrium of Γ if

ui(x∗) ≥ ui(xi ; x∗−i) for all xi ∈ Xi and all i ∈ N . (NE)

We call support of x∗ the set: supp(x∗i ) = {αi ∈ Ai : x∗iαi > 0}.
Equivalently, Nash equilibria can be characterized by means of
the variational inequality

viα∗
i
(x∗) ≥ viαi (x∗) for all α∗i ∈ supp(x∗i ) and all αi ∈ Ai , i ∈ N .
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Proof techniques - Stability

I Let x∗ = (α∗1, . . . , α∗N) ∈ A be a strict Nash equilibrium.
Then for every ε ∈ (0, 1), there exist constants Mi ,ε and
the corresponding score-dominant open sets for each player
i ∈ N such that: ∏

i∈N Qi(Wi(Mi ,ε)) ⊆ Uε, where
Uε = {x ∈ X : xiα∗

i
> 1− ε for all i ∈ N} and

Wi(Mi) = {Yi : Yiα∗
i
− Yiαi > Mi for all αi 6= α∗i , αi ∈ Ai}

for each player i ∈ N
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Proof techniques - Stability

I Fix a confidence level δ > 0, focus on one player i ∈ N
and drop the index i for simplicity; consider a
neighborhood U of x∗ that can be described as the one
above and for which uα(X )− uα∗(X ) ≤ −c for some
c > 0, for all α 6= α∗, α ∈ Ai and all X ∈ U .

I We will prove by induction that there exists an open set of
initial conditions W0, such that whenever Y0 ∈ W0 then
Yn ∈ W for all n = 0, 1, . . . .
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I Notice that whenever X ∈ U , the payoffs belong to the set
W = Q−1(U). Furthermore, the payoff differences
Yα − Yα∗ between every pure strategy α ∈ Ai , α 6= α∗

and the strategy of the equilibrium α∗ can be expressed as

Yα,n+1 − Yα∗,n+1 =Yα,0 − Yα∗,0 +
n∑

k=0
γk(uα(Xk)− uα∗(Xk))

+
n∑

k=0
γkNoisek +

n∑
k=0

γkBiask
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I Notice that whenever X ∈ U , the payoffs belong to the set
W = Q−1(U). Furthermore, the payoff differences
Yα − Yα∗ between every pure strategy α ∈ Ai , α 6= α∗

and the strategy of the equilibrium α∗ can be expressed as

Yα,n+1 − Yα∗,n+1 =Yα,0 − Yα∗,0 +
n∑

k=0
γk(uα(Xk)− uα∗(Xk))

+
n∑

k=0
γkNoisek +

n∑
k=0

γkBiask

I Using martingale limit theory we control the terms∑n
k=0 γkNoisek , ∑n

k=0 γkBiask as to be less than
ε1 =

√
2 ∑∞

k=0 γ
2
kM2

k/δ , ε2 = 2 ∑∞
k=0 γkBk/δ equivalently

with probability at least 1− δ.
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I Let Rn = ∑n
k=0 γk(Uα,k − Uα∗,k), which is a martingale.

I Consider the event Dn,ε1 = {sup0≤k≤n Rk ≥ ε1}, then

P(Dn,ε1) ≤ E[R2
n ]

ε12 ≤ 2 ∑n
k=0 γ

2
kM2

k
ε2

1

I Notice that

E[R2
n ] =

n∑
k=0

γ2
k E[|Uα,k − Uα∗,k |2] ≤ 2

n∑
k=0

γ2
k E[‖Uk‖2

∗]

= 2
n∑

k=0
γ2

k E[E[‖Uk‖2
∗ | Fk ]] ≤ 2

n∑
k=0

γ2
kM2

k

and E[Uα,kUb,l ] = E[E[Uα,kUb,l | Fk∨l ]] = 0 for all k 6= l
and a, b be either of the pure strategy α and the strategy
of the equilibrium α∗, due to the noise being zero-mean.
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I Let Γ1 = 2 ∑∞
k=0 γ

2
kM2

k and choose ε1 =
√

2Γ1/δ.
I The event Dε1 = ∪∞n=0Dε1,n will happen with probability at

most δ/2.
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I Notice that

|
n∑

k=0
γk(bα,k−bα∗,k)| ≤

n∑
k=0

γk |bα,k−bα∗,k | ≤ 2
n∑

k=0
γk‖bk‖∗

I Let Sn = 2 ∑n
k=0 γk‖bk‖∗, which is a submartingale.

I If En,ε2 = {sup0≤k≤n Sk ≥ ε2} then it holds

P(En,ε1) ≤ E[Sn]
ε2

= 2 ∑n
k=0 γk E[E[‖bk‖∗ | Fk ]]

ε2

≤ 2 ∑n
k=0 γkBk

ε2
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I Let Γ2 = 2 ∑∞
k=0 γkBk and choose ε2 = 2Γ2/δ.

I Then the event Eε2 = ∪∞n=0En,ε2 will occur with probability
at most δ/2.
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I Choose M0 > M + ε1 + ε2 and let
W0 = {Y : Yα < −M0 for all α 6= α∗}. If Y0 ∈ W0 then
with probability at least 1− δ we prove that Yn ∈ M for all
n = 1, 2, . . . and thus the equilibrium is stochastically
stable.
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I Choose M0 > M + ε1 + ε2 and let
W0 = {Y : Yα < −M0 for all α 6= α∗}. If Y0 ∈ W0 then
with probability at least 1− δ we prove that Yn ∈ M for all
n = 1, 2, . . . and thus the equilibrium is stochastically
stable.

I Since with probability at least 1− δ the sequence remains
in the neighborhood U we have

Yα,n+1 − Yα∗,n+1 ≤ −c
n∑

k=0
γk + ε1 + ε2 (2)

which implies that the score differences go to −∞, thus all
the strategies except for the strategy of the equilibrium
become dominated.As a result the point is stochastically
asymptotically stable.
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Permitted parameters

The above conditions for the method’s learning rate and
exploration parameters can be achieved by using schedules of
the form
I γn ∝ 1/np

I εn ∝ 1/nq

with p + q > 1 and 2p − q > 1. A popular choice is
p = 2/3 + δ and q = 1/3 + δ for some arbitrarily small δ > 0 –
or δ = 0 and including an extra logarithmic factor.
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