Mini-Course: "Games, Dynamics and Learning"

A. Giannou T. Lianeas P. Mertikopoulos E. Vlatakis

School of Electrical and Computer Engineering, National Technical University of Athens

04 June 2021

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Follow the Regularized Leader

The algorithm of Follow the Regularized Leader is defined by the round-by-round recursive rule

$$X_{i,n} = Q_i(Y_{i,n})$$

$$Y_{i,n+1} = Y_{i,n} + \gamma_n \hat{v}_{i,n}$$
(FTRL)

- Q_i: Y_i → X_i denotes the "choice map" of player i ∈ N.
 γ_n > 0 is a "learning rate" parameter such that ∑_n γ_n = ∞.
- ▶ v̂_{i,n} is a "payoff signal" that provides an estimate for the mixed payoffs of player *i* at stage *n*.

Regularization

The second component of FTRL is the choice map

$$Q_i(y_i) = \operatorname*{arg\,max}_{x_i \in \mathcal{X}_i} \{ \langle y_i, x_i \rangle - h_i(x_i) \}.$$

In the above, each player's *regularizer* $h_i \colon \mathcal{X}_i \to \mathbb{R}$ is defined as $h_i(x_i) = \sum_{\alpha_i \in \mathcal{A}_i} \theta_i(x_i)$ for some "kernel function" $\theta_i \colon [0, 1] \to \mathbb{R}$ with the following properties:

- (*i*) θ_i is *continuous* on [0, 1];
- (ii) C^2 -smooth on (0, 1]; and
- (*iii*) $\inf_{[0,1]} \theta_i'' > 0.$

Examples

• Negative Shannon Entropy: $h(x) = \sum_{i} x_i \log(x_i)$

Exponential/Multiplicative Weight Updates

$$\Lambda_i(y) = \exp(y_i) / \sum_j \exp(y_j)$$

• Euclidean Regularizer:
$$h(x) = \sum_i x_i^2/2$$

Euclidean Projection

$$\Pi(y) = \argmin_{x \in \Delta} \|y - x\|^2$$

Dichotomy of regularizers

4 ロ ト 4 母 ト 4 差 ト 4 差 ト 差 の 4 で 5/33

The feedback model

We assume a "black-box" model for players' payoff vector of the form

$$\hat{v}_n = v(X_n) + Z_n \tag{1}$$

for some abstract error process $Z_n = (Z_{i,n})_{i \in \mathcal{N}}$. We will further decompose Z_n as $Z_n = U_n + b_n$, where

- Random (zero-mean) error: $\mathbb{E}[U_n | \mathcal{F}_n] = 0.$
- Systematic error: $b_n = \mathbb{E}[Z_n | \mathcal{F}_n]$.

with \mathcal{F}_n denoting the history of X_n up to stage n (inclusive).

Assumptions

We may then characterize the input signal \hat{v}_n by means of the following statistics:

- 1. *Bias:* $\mathbb{E}[\|b_n\|_* | \mathcal{F}_n] \le B_n$
- 2. Variance: $\mathbb{E}[||U_n||^2_* | \mathcal{F}_n] \le M_n^2$

In the above, B_n and M_n represent deterministic bounds on the bias and variance of the feedback signal \hat{v}_n .

Assumptions

For concreteness, we will also make the following blanket assumptions:

- 1. Bias control: $\lim_{n\to\infty} B_n = 0$ and $\sum_n \gamma_n B_n < \infty$.
- 2. Variance control: $\sum_n \gamma_n^2 M_n^2 < \infty$.
- 3. Generic observation errors at equilibrium: For every mixed Nash equilibrium x^* of Γ and for all n = 0, 1, ..., there exists a player $i \in \mathcal{N}$ and strategies $a, b \in \text{supp}(x_i^*)$ such that

$$\mathbb{P}(|\hat{v}_{ia,n} - \hat{v}_{ib,n}| \geq \beta | \mathcal{F}_n) > 0 \quad \text{for all sufficiently small } \beta > 0.$$

• At each round *n*, every player $i \in \mathcal{N}$ picks an action $\alpha_{i,n} \in \mathcal{A}_i$ based on $X_{i,n} \in \mathcal{X}_i$.

- At each round *n*, every player $i \in \mathcal{N}$ picks an action $\alpha_{i,n} \in \mathcal{A}_i$ based on $X_{i,n} \in \mathcal{X}_i$.
- An oracle reveals to each player the pure payoff vector v_i(α_n) ≡ (u_i(α_i; α_{-i,n}))_{α_i∈A_i}.

- At each round *n*, every player $i \in \mathcal{N}$ picks an action $\alpha_{i,n} \in \mathcal{A}_i$ based on $X_{i,n} \in \mathcal{X}_i$
- An oracle reveals to each player the pure payoff vector v_i(α_n) ≡ (u_i(α_i; α_{-i,n}))_{α_i∈A_i}.

◆□▶ ◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ∽ � � 10/33

• Then the player's feedback signal is $\hat{v}_{i,n} = v_i(\alpha_n)$.

Special case of our general model with

Special case of our general model with

• Assumption for bias is trivial because $\mathbb{E}[\hat{v}_n | \mathcal{F}_n] = \mathbb{E}_{X_n}[v(\alpha_n)] = v(X_n)$, i.e., $b_n = 0$.

Special case of our general model with

- Assumption for bias is trivial because $\mathbb{E}[\hat{v}_n | \mathcal{F}_n] = \mathbb{E}_{X_n}[v(\alpha_n)] = v(X_n)$, i.e., $b_n = 0$.
- Assumption for noise is satisfied as long as ∑_n γ_n² < ∞, since ||U_n||_∗ ≤ 2 max_X ||v(X)||_∗.

Special case of our general model with

- ► (A1) is trivial because $\mathbb{E}[\hat{v}_n | \mathcal{F}_n] = \mathbb{E}_{X_n}[v(\alpha_n)] = v(X_n)$, i.e., $b_n = 0$.
- (A2) is satisfied as long as $\sum_n \gamma_n^2 < \infty$, since $\|U_n\|_* \le 2 \max_X \|v(X)\|_*$.
- ► (A3) is an immediate consequence of genericity. Otherwise, the game should have pure Nash equilibria.

Model 2 - Payoff based feedback (Bandit) Google Ads

Bandit Case

• At each round *n*, every player $i \in \mathcal{N}$ picks an action $\alpha_{i,n} \in \mathcal{A}_i$ based on $X_{i,n} \in \mathcal{X}_i$.

Bandit Case

- At each round *n*, every player $i \in \mathcal{N}$ picks an action $\alpha_{i,n} \in \mathcal{A}_i$ based on $X_{i,n} \in \mathcal{X}_i$.
- ▶ Players observe their realized payoffs $u_i(\alpha_{i,n}, \alpha_{-i,n})$

Bandit Case

- At each round *n*, every player $i \in \mathcal{N}$ picks an action $\alpha_{i,n} \in \mathcal{A}_i$ based on $X_{i,n} \in \mathcal{X}_i$.
- Players observe their realized payoffs $u_i(\alpha_{i,n}, \alpha_{-i,n})$
- Players need to somehow estimate their payoffs!

Importance Weighted Estimator

$$\hat{v}_{ia,n} = egin{cases} 0 &, ext{ if } a
eq a_{i,n} \ \dfrac{u_i(a; a_{-i,n})}{x_{ia,n}} &, ext{ if } a = a_{i,n} \end{cases}$$

• Unbiased:
$$\mathbb{E}[\hat{v}_{i,n}] = v_i(X_n)$$

► Unbounded Variance: $\mathbb{E}[\|\hat{v}_{i,n}\|_*^2 | \mathcal{F}_n] \sim \frac{1}{\min x_{ia,n}}$

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 三 - り Q (* 14/33)

Exploitation-Exploration

Let's leave our options open ...

FTRL-exploration

Idea: We do not limit from the beginning other options, we regularize the probabilities with an exploitation parameter that goes to zero in the infinity.

$$Y_{ia,n+1} = Y_{ia,n} + \gamma_n \hat{v}_{ia,n}$$
$$X_{i,n} = \arg \max_{X \in \Delta(\mathcal{A}_i)} \{ \langle Y_{i,n}, X \rangle - h_i(X) \}$$
$$\hat{X}_{i,n} = (1 - \epsilon_n) X_{i,n} + \frac{\epsilon_n}{A_i}$$

- Unbiased: $\mathbb{E}[\hat{v}_{i,n}] = v_i(\hat{X}_n)$
- ► Bounded Variance: $\mathbb{E}[||U_{i,n}||_*^2 | \mathcal{F}_n] \sim \frac{1}{\min \hat{X}_{ia,n}} = \mathcal{O}(1/\epsilon_n)$

• Bias: $\|b_n\|_* = \|v(\hat{X}_n) - v(X_n)\|_* = O(\varepsilon_n)$

4 ロト 4 課 ト 4 語 ト 4 語 ト 語 の 4 で 16/33

The Bandit Case

- (A1) is satisfied as long as $\varepsilon_n \to 0$ and $\sum_n \gamma_n \varepsilon_n < \infty$.
- (A2) is satisfied $\sum_n \gamma_n^2 \varepsilon_n^{-1} < \infty$.
- (A3) is an immediate consequence of genericity. Otherwise, the game should have pure Nash equilibria.

Asymptotic Stability

A point $x^* \in \mathcal{X}$ is said to be

 Stochastically stable under (FTRL): If for all δ > 0 and all neighborhoods U of x* there exists open set of initial conditions W₀ ⊆ Y such that

$$\mathbb{P}(X_n \in \mathcal{U} \text{ for all } n = 0, 1, \ldots) \geq 1 - \delta$$

whenever $Y_0 \in \mathcal{W}_0$.

2. Stochastically attracting under (FTRL): If for all $\delta > 0$, there exists open set of initial conditions $W_0 \subseteq \mathcal{Y}$ such that

$$\mathbb{P}(\lim_{n\to\infty}X_n=x^*)\geq 1-\delta$$

whenever $Y_0 \in \mathcal{W}_0$.

 Stochastically asymptotically stable under (FTRL): if it is stochastically stable and attracting.

Main Results

Main Theorem. Suppose that Assumptions 1–3 hold. Then: x^* is a strict Nash equilibrium $\iff x^*$ is stochastically asymptotically stable under (FTRL)

Main Results

Theorem

Let $x^* \in \mathcal{X}$ be a strict Nash equilibrium of Γ . If (FTRL) is run with inexact payoff feedback satisfying Assumptions 1 and 2, then x^* is stochastically asymptotically stable.

Theorem

Let x^* be a mixed Nash equilibrium of Γ . If (FTRL) is run with inexact payoff feedback satisfying assumption 3, then x^* is not stochastically asymptotically stable.

Figure: Polar cone

1. $x = Q(y) \Leftrightarrow y \in \partial h(x)$ 2. $\partial h(x) = \nabla h(x) + PC(x)$ for all $x \in \mathcal{X}$, where $PC(x) = \{y \in \mathcal{Y} : y_a \ge y_b \text{ for all } a, b \in \mathcal{A}\}.$

Lemma (Informal)

Let $X_{i,n}$ be the sequence of play in (FTRL) i.e., $X_{i,n} = Q(Y_{i,n}) \in \mathcal{X}_i$ of player $i \in \mathcal{N}$; and for some round $n \geq 0$ let $a, b \in \text{supp}(X_{i,n})$ be two pure strategies of player $i \in \mathcal{N}$. Then it holds:

$$(\theta_i'(X_{ia,n+1}) - \theta_i'(X_{ia,n})) - (\theta_i'(X_{ib,n+1}) - \theta_i'(X_{ib,n})) = \gamma_n(\hat{v}_{ia,n} - \hat{v}_{ib,n})$$

Lemma (Informal)

Let $X_{i,n}$ be the sequence of play in (FTRL) i.e., $X_{i,n} = Q(Y_{i,n}) \in \mathcal{X}_i$ of player $i \in \mathcal{N}$; and for some round $n \geq 0$ let $a, b \in \text{supp}(X_{i,n})$ be two pure strategies of player $i \in \mathcal{N}$. Then it holds:

$$(\theta_i'(X_{ia,n+1}) - \theta_i'(X_{ia,n})) - (\theta_i'(X_{ib,n+1}) - \theta_i'(X_{ib,n})) = \gamma_n(\hat{v}_{ia,n} - \hat{v}_{ib,n})$$

► Assume ad absurdum that a mixed Nash equilibrium x* is stochastically asymptotically stable. Since x* is mixed, there exist a, b ∈ supp(x*).

Lemma (Informal)

Let $X_{i,n}$ be the sequence of play in (FTRL) i.e., $X_{i,n} = Q(Y_{i,n}) \in \mathcal{X}_i$ of player $i \in \mathcal{N}$; and for some round $n \ge 0$ let $a, b \in \text{supp}(X_{i,n})$ be two pure strategies of player $i \in \mathcal{N}$. Then it holds:

$$(\theta_i'(X_{ia,n+1}) - \theta_i'(X_{ia,n})) - (\theta_i'(X_{ib,n+1}) - \theta_i'(X_{ib,n})) = \gamma_n(\hat{v}_{ia,n} - \hat{v}_{ib,n})$$

- ► Assume ad absurdum that a mixed Nash equilibrium x* is stochastically asymptotically stable. Since x* is mixed, there exist a, b ∈ supp(x*).
- The stochastic stability implies that for all ε, δ > 0 if X₀ belongs to an initial neighborhood U_ε, then ||X_n − x^{*}|| < ε for all n ≥ 0, with probability at least 1 − δ.</p>

By the triangle inequality for two consecutive instances of the sequence of play X_{i,n}, X_{i,n+1} for any player i ∈ N it holds:

$$|X_{ia,n+1}-X_{ia,n}|+|X_{ib,n+1}-X_{ib,n}|<\mathcal{O}(arepsilon)$$
 with probability $1{-}\delta$

By the triangle inequality for two consecutive instances of the sequence of play X_{i,n}, X_{i,n+1} for any player i ∈ N it holds:

 $|X_{ia,n+1}-X_{ia,n}|+|X_{ib,n+1}-X_{ib,n}|<\mathcal{O}(arepsilon)$ with probability $1-\delta$

Consider ε sufficiently small, such that the probabilities of the strategies that belong to the support of the equilibrium are bounded away from 0, for all the points of the neighborhood. Since θ_i is continuously differentiable in (0, 1], the differences decribed in the lemma above are bounded from O(ε).

If the sequence of play X_n is contained to an ε−neighborhood of x*, then the difference of the feedback, for any player i ∈ N, to two strategies of the equilibrium is O(ε/γ_n) with probability at least 1 − δ:

$$\mathbb{P}(|\hat{\mathbf{v}}_{ia,n} - \hat{\mathbf{v}}_{ib,n}| = \mathcal{O}(\varepsilon/\gamma_n) \mid \mathcal{F}_n) \geq 1 - \delta$$

If the sequence of play X_n is contained to an ε−neighborhood of x*, then the difference of the feedback, for any player i ∈ N, to two strategies of the equilibrium is O(ε/γ_n) with probability at least 1 − δ:

$$\mathbb{P}(|\hat{\pmb{v}}_{ia,n} - \hat{\pmb{v}}_{ib,n}| = \mathcal{O}(arepsilon/\gamma_n) \mid \mathcal{F}_n) \geq 1 - \delta$$

From assumption 3 for a fixed round *n* and some player $i \in \mathcal{N}$, there exist $\beta, \pi > 0$ such that: $\mathbb{P}(|\hat{v}_{ia,n} - \hat{v}_{ib,n}| \ge \beta | \mathcal{F}_n) = \pi > 0.$

If the sequence of play X_n is contained to an ε−neighborhood of x*, then the difference of the feedback, for any player i ∈ N, to two strategies of the equilibrium is O(ε/γ_n) with probability at least 1 − δ:

$$\mathbb{P}(|\hat{\mathbf{v}}_{ia,n} - \hat{\mathbf{v}}_{ib,n}| = \mathcal{O}(\varepsilon/\gamma_n) \mid \mathcal{F}_n) \geq 1 - \delta$$

- From assumption 3 for a fixed round *n* and some player $i \in \mathcal{N}$, there exist $\beta, \pi > 0$ such that: $\mathbb{P}(|\hat{v}_{ia,n} - \hat{v}_{ib,n}| \ge \beta | \mathcal{F}_n) = \pi > 0.$
- Thus by choosing $\varepsilon = \mathcal{O}(\beta \gamma_n)$ and $\delta = \pi/2$, we obtain a contradiction and our proof is complete.
Nash equilibria - reminder

A point x^* is a Nash equilibrium of Γ if

 $u_i(x^*) \ge u_i(x_i; x^*_{-i})$ for all $x_i \in \mathcal{X}_i$ and all $i \in \mathcal{N}$. (NE)

We call support of x^* the set: $supp(x_i^*) = \{\alpha_i \in A_i : x_{i\alpha_i}^* > 0\}$. Equivalently, Nash equilibria can be characterized by means of the variational inequality

 $v_{i\alpha_i^*}(x^*) \ge v_{i\alpha_i}(x^*)$ for all $\alpha_i^* \in \operatorname{supp}(x_i^*)$ and all $\alpha_i \in \mathcal{A}_i$, $i \in \mathcal{N}$.

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 25/33

Proof techniques - Stability

• Let $x^* = (\alpha_1^*, \dots, \alpha_N^*) \in \mathcal{A}$ be a strict Nash equilibrium. Then for every $\varepsilon \in (0, 1)$, there exist constants $M_{i,\varepsilon}$ and the corresponding score-dominant open sets for each player $i \in \mathcal{N}$ such that: $\prod_{i \in \mathcal{N}} Q_i(\mathcal{W}_i(M_{i,\varepsilon})) \subseteq \mathcal{U}_{\varepsilon}$, where $\mathcal{U}_{\varepsilon} = \{x \in \mathcal{X} : x_{i\alpha_i^*} > 1 - \varepsilon \text{ for all } i \in \mathcal{N}\}$ and

$$\mathcal{W}_i(M_i) = \{Y_i : Y_{i\alpha_i^*} - Y_{i\alpha_i} > M_i \text{ for all } \alpha_i \neq \alpha_i^*, \alpha_i \in \mathcal{A}_i\}$$

for each player $i \in \mathcal{N}$

Proof techniques - Stability

- Fix a confidence level δ > 0, focus on one player i ∈ N and drop the index i for simplicity; consider a neighborhood U of x* that can be described as the one above and for which u_α(X) − u_{α*}(X) ≤ −c for some c > 0, for all α ≠ α*, α ∈ A_i and all X ∈ U.
- We will prove by induction that there exists an open set of initial conditions W₀, such that whenever Y₀ ∈ W₀ then Y_n ∈ W for all n = 0, 1,

▶ Notice that whenever $X \in \mathcal{U}$, the payoffs belong to the set $\mathcal{W} = Q^{-1}(\mathcal{U})$. Furthermore, the payoff differences $Y_{\alpha} - Y_{\alpha^*}$ between every pure strategy $\alpha \in \mathcal{A}_i$, $\alpha \neq \alpha^*$ and the strategy of the equilibrium α^* can be expressed as

$$Y_{\alpha,n+1} - Y_{\alpha^*,n+1} = Y_{\alpha,0} - Y_{\alpha^*,0} + \sum_{k=0}^n \gamma_k (u_\alpha(X_k) - u_{\alpha^*}(X_k))$$
$$+ \sum_{k=0}^n \gamma_k Noise_k + \sum_{k=0}^n \gamma_k Bias_k$$

▶ Notice that whenever $X \in \mathcal{U}$, the payoffs belong to the set $\mathcal{W} = Q^{-1}(\mathcal{U})$. Furthermore, the payoff differences $Y_{\alpha} - Y_{\alpha^*}$ between every pure strategy $\alpha \in \mathcal{A}_i$, $\alpha \neq \alpha^*$ and the strategy of the equilibrium α^* can be expressed as

$$Y_{\alpha,n+1} - Y_{\alpha^*,n+1} = Y_{\alpha,0} - Y_{\alpha^*,0} + \sum_{k=0}^n \gamma_k (u_\alpha(X_k) - u_{\alpha^*}(X_k))$$
$$+ \sum_{k=0}^n \gamma_k Noise_k + \sum_{k=0}^n \gamma_k Bias_k$$

• Using martingale limit theory we control the terms $\sum_{k=0}^{n} \gamma_k Noise_k$, $\sum_{k=0}^{n} \gamma_k Bias_k$ as to be less than $\varepsilon_1 = \sqrt{2 \sum_{k=0}^{\infty} \gamma_k^2 M_k^2 / \delta}$, $\varepsilon_2 = 2 \sum_{k=0}^{\infty} \gamma_k B_k / \delta$ equivalently with probability at least $1 - \delta$.

• Let $R_n = \sum_{k=0}^n \gamma_k (U_{\alpha,k} - U_{\alpha^*,k})$, which is a martingale.

• Consider the event $D_{n,\varepsilon_1} = {\sup_{0 \le k \le n} R_k \ge \varepsilon_1}$, then

$$\mathbb{P}(D_{n,\varepsilon_1}) \leq \frac{\mathbb{E}[R_n^2]}{{\varepsilon_1}^2} \leq \frac{2\sum_{k=0}^n \gamma_k^2 M_k^2}{{\varepsilon_1}^2}$$

Notice that

$$\mathbb{E}[R_n^2] = \sum_{k=0}^n \gamma_k^2 \mathbb{E}[|U_{\alpha,k} - U_{\alpha^*,k}|^2] \le 2 \sum_{k=0}^n \gamma_k^2 \mathbb{E}[||U_k||_*^2] \\ = 2 \sum_{k=0}^n \gamma_k^2 \mathbb{E}[\mathbb{E}[||U_k||_*^2 | \mathcal{F}_k]] \le 2 \sum_{k=0}^n \gamma_k^2 M_k^2$$

and $\mathbb{E}[U_{\alpha,k}U_{b,l}] = \mathbb{E}[\mathbb{E}[U_{\alpha,k}U_{b,l} | \mathcal{F}_{k \vee l}]] = 0$ for all $k \neq l$ and a, b be either of the pure strategy α and the strategy of the equilibrium α^* , due to the noise being zero-mean.

- Let $\Gamma_1 = 2 \sum_{k=0}^{\infty} \gamma_k^2 M_k^2$ and choose $\varepsilon_1 = \sqrt{2\Gamma_1/\delta}$.
- The event $D_{\varepsilon_1} = \bigcup_{n=0}^{\infty} D_{\varepsilon_1,n}$ will happen with probability at most $\delta/2$.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ℃ 29/33

Notice that

$$|\sum_{k=0}^n \gamma_k (b_{\alpha,k} - b_{\alpha^*,k})| \leq \sum_{k=0}^n \gamma_k |b_{\alpha,k} - b_{\alpha^*,k}| \leq 2 \sum_{k=0}^n \gamma_k ||b_k||_*$$

Let S_n = 2∑_{k=0}ⁿ γ_k ||b_k||_{*}, which is a submartingale.
 If E_{n,ε2} = {sup_{0≤k≤n} S_k ≥ ε₂} then it holds

$$\mathbb{P}(E_{n,\varepsilon_1}) \leq \frac{\mathbb{E}[S_n]}{\varepsilon_2} = \frac{2\sum_{k=0}^n \gamma_k \mathbb{E}[\mathbb{E}[\|b_k\|_* | \mathcal{F}_k]]}{\varepsilon_2} \leq \frac{2\sum_{k=0}^n \gamma_k B_k}{\varepsilon_2}$$

< ロ ト < 母 ト < 三 ト < 三 ト 三 の へ C 30/33</p>

- Let $\Gamma_2 = 2 \sum_{k=0}^{\infty} \gamma_k B_k$ and choose $\varepsilon_2 = 2\Gamma_2/\delta$.
- ▶ Then the event $E_{\varepsilon_2} = \bigcup_{n=0}^{\infty} E_{n,\varepsilon_2}$ will occur with probability at most $\delta/2$.

• Choose $M_0 > M + \varepsilon_1 + \varepsilon_2$ and let $\mathcal{W}_0 = \{Y : Y_\alpha < -M_0 \text{ for all } \alpha \neq \alpha^*\}$. If $Y_0 \in \mathcal{W}_0$ then with probability at least $1 - \delta$ we prove that $Y_n \in M$ for all $n = 1, 2, \ldots$ and thus the equilibrium is stochastically stable.

- Choose $M_0 > M + \varepsilon_1 + \varepsilon_2$ and let $\mathcal{W}_0 = \{Y : Y_\alpha < -M_0 \text{ for all } \alpha \neq \alpha^*\}$. If $Y_0 \in \mathcal{W}_0$ then with probability at least $1 - \delta$ we prove that $Y_n \in M$ for all $n = 1, 2, \ldots$ and thus the equilibrium is stochastically stable.
- Since with probability at least 1δ the sequence remains in the neighborhood \mathcal{U} we have

$$Y_{\alpha,n+1} - Y_{\alpha^*,n+1} \le -c \sum_{k=0}^{n} \gamma_k + \varepsilon_1 + \varepsilon_2$$
 (2)

which implies that the score differences go to $-\infty$, thus all the strategies except for the strategy of the equilibrium become dominated. As a result the point is stochastically asymptotically stable.

Permitted parameters

The above conditions for the method's learning rate and exploration parameters can be achieved by using schedules of the form

•
$$\gamma_n \propto 1/n^p$$

• $\varepsilon_n \propto 1/n^q$
with $p + q > 1$ and $2p - q > 1$. A popular choice is
 $p = 2/3 + \delta$ and $q = 1/3 + \delta$ for some arbitrarily small $\delta > 0 - \delta = 0$ and including an extra logarithmic factor.