The Fast Fourier Transform: A Brief Overview with Applications

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondylis

December 4, 2014

Timeline

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondyli

Researcher	Date	Length of Sequence	Application
C.F. Gauss	1805	Any Composite Integer	Interpolation of orbits of ce- lestial bodies
F. Carlini	1828	12	Harmonic Analysis of Baro- metric Pressure
A. Smith	1846	4, 8, 16, 32	Correcting deviations in compasses on ships
J. D. Everett	1860	12	Modelling underground temperature variations
C. Runge	1903	2 ⁿ K	Harmonic Analysis of Func-
K. Stumpff	1939	2 ⁿ K & 3 ⁿ	Harmonic Analysis of Func-
Danielson & Lanczos	1942	2 ⁿ	X-ray diffraction in crystals
L.H. Thomas	1948	Integer /w relatively prime factors	Harmonic Analysis of Functions
I. J. Good	1958	Integer /w relatively prime factors	Harmonic Analysis of Functions
Cooley & Tukey	1965	Composite Integer	Harmonic Analysis of Func- tions
S. Winograd	1976	Integer /w relatively prime factors	Complexity theory for Har- monic Analysis

Discrete Fourier Transform

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondylis

Definition (Discrete Fourier Transform)

Matrix-vector-multiplication y = Mx

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \cdots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \vdots & \omega_n^{kj} & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \cdots & \omega_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

where $x=(a_0,...,a_{n-1}),y=(y_0,...,y_{n-1})\in\mathbb{C}^n,\omega_n=e^{2\pi i/n}$ (primitive nth root of unity) and

The direct evaluation requires $O(n^2)$ complex multiplications and additions.

To Divide is to Conquer

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondyli

 Map the original problem in such a way that the following inequality is satisfied:

```
\sum cost(subproblems) + cost(mapping) < cost(original problem)
```

- The division can be applied recursively to the subproblems leading to a reduction of the order of complexity.
- Ouestion: But How?
- Answer: Consider Subsets of the initial sequence
 Take the DFT of these subsequences

 Reconstruct the DFT of the Initial subsequence

Petros Kondyl

The original problem:

$$y_k = \sum_{j=0}^{n-1} a_j (\omega_n^k)^j, \quad k = 0, ..., n-1$$

Let $P_l, l = 0, ..., r - 1$ be the partition of $\{0, 1, ..., n - 1\}$ defining r different subsets of the input sequence.

The partition gives:

$$y_{k} = \sum_{l=0}^{r-1} \sum_{j \in P_{j}} a_{j} (\omega_{n}^{k})^{j}, \quad k = 0, ..., n-1$$
$$y_{k} = \sum_{l=0}^{r-1} \omega_{n}^{j_{l}} \sum_{j \in P_{j}} a_{j} (\omega_{n}^{k})^{j-j_{l}}$$

The chosen partition depends on the nature of the problem (input sequence).

Petros Kondyli

Example: For input lengths equal to powers of 2 i.e $n = 2^s$, $s \in \mathbb{N}$ we can have a partition P_l , l = 0, 1 where $P_0 = \{0 : 2 : n - 1\}$, $P_1 = \{1 : 2 : n - 1\}$.

$$y_k = \sum_{j=0:2}^{n-1} a_j (\omega_n^k)^j + \omega_n^k \sum_{j=1:2}^{n-1} a_j (\omega_n^k)^{j-1}$$

$$y_k = \sum_{j=0:2}^{n-1} a_j (\omega_n^{2k})^{j/2} + \omega_n^k \sum_{j=0:2}^{n-1} a_{j+1} (\omega_n^{2k})^{j/2}$$

$$y_k = \sum_{j=0}^{n/2-1} a_{2j} (\omega_{n/2}^k)^j \pm \omega_n^k \sum_{j=0}^{n/2-1} a_{2j+1} (\omega_{n/2}^k)^j$$

$$k = 0, \dots, n/2 - 1$$

To Divide (again)...

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondulia

To Conquer...

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondyli:

Algorithm 1 Recursive-FFT(a)

```
1: n = a.lenght
 2: if n == 1 then
         return a
 4: \omega_n = e^{2\pi i/n}
 5: \omega = 1
 6: a^{[0]} = (a_0, a_2, ..., a_{n-2})
 7: a^{[1]} = (a_1, a_3, ..., a_{n-1})
 8: v^{[0]} = Recursive - FFT(a^{[0]})
 9: y^{[1]} = Recursive - FFT(a^{[1]})
10: for k = 0 to n/2 - 1 do
11: t = \omega y_{\nu}^{[1]}
12: y_k = y_{\nu}^{[0]} + t
13: y_{k+n/2} = y_k^{[0]} - t
14:
     \omega = \omega \omega_n
15: return y
```

The Butterfly Operation

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondylis

$$r_k = y_k^{[0]} + \omega^k y_k^{[1]}$$

$$r_{k+n/2} = y_k^{[0]} - \omega^k y_k^{[1]}$$

The FFT circuit: Example

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondylis

- The input is arranged in bit reversed order
- Unique path between each input a_k and each output $A(\omega^j)$
- On the path between a_k and $A(\omega^j)$ the labels add up to $jk \mod 8$

Petros Kondyl

The product of two degree-d polynomials is a polynomial of degree 2d:

$$A(x) = a_0 + a_1 x + ... + a_d x^d$$
 and $B(x) = b_0 + b_1 x + ... + b_d x^d$
$$C(x) = A(x)B(x) = c_0 + c_1 x + ... + c_{2d} x^{2d}$$

$$c_k = a_0 b_k + a_1 b_{k-1} + ... + a_k b_0 = \sum_{i=0}^k a_i b_{k-1}$$

Complexity: $\Theta(d^2)$

Representing Polynomials

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondyli

Two ways of representing polynomials

- Coefficient form $a_0, a_1, ..., a_d$
- Values $A(x_0)$, $A(x_1)$, ... $A(x_d)$ at d+1 distinct points

Multiplying polynomials in the value representation takes linear time

$$C(x_k) = A(x_k)B(x_k), k = 0, ..., 2d$$

Are we there yet?

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondyli

Polynomial multiplication

Input: Coefficients of two polynomials, A(x) and B(x), of degree d Output: Their product $C=A\cdot B$

Selection

Pick some points x_0, x_1, \dots, x_{n-1} , where $n \ge 2d+1$

Evaluation

Compute $A(x_0), A(x_1), \dots, A(x_{n-1})$ and $B(x_0), B(x_1), \dots, B(x_{n-1})$

Multiplication

Compute
$$C(x_k) = A(x_k)B(x_k)$$
 for all $k = 0, ..., n-1$

Interpolation

Recover
$$C(x) = c_0 + c_1 x + \cdots + c_{2d} x^{2d}$$

- Evaluation takes $\Theta(n^2)$ time
- Multiplication takes $\Theta(n)$ time
- Interpolation takes $\Theta(n^2)$ time

This joke isn't funny (or is it)!

Evaluation... as in Linear Transformation... as in Fast Fourier Transformation

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondyli

$$\begin{pmatrix} A(x_0) \\ A(x_1) \\ A(x_2) \\ \vdots \\ A(x_{n-1}) \end{pmatrix} = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

Is it OK if I... $x_k = \omega_n^k$? By all means!

$$\begin{pmatrix} A(\omega_{n}^{0}) \\ A(\omega_{n}^{1}) \\ A(\omega_{n}^{2}) \\ \vdots \\ A(\omega_{n}^{n-1}) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{n} & \omega_{n}^{2} & \cdots & \omega_{n}^{n-1} \\ 1 & \omega_{n}^{2} & \omega_{n}^{4} & \cdots & \omega_{n}^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n-1} \end{pmatrix}$$

But this I can do in $\Theta(nlgn)$ time (you don't say...!)

Some kind of Magic (what ???)

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondylis

Lemma

The columns of matrix M are orthogonal to each other.

$$M = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_n & \omega_n^2 & \dots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \dots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \dots & \omega_n^{(n-1)(n-1)} \end{pmatrix}$$

Proof.

Take the inner product of any columns j and k of matrix M $1 + \omega^{k-j} + \omega^{2(k-j)} + ... + \omega^{(n-1)(k-j)} = (1 - \omega^{n(k-j)})/(1 - \omega^{k-j})$

For $j \neq k$ it evaluates to 0.

For
$$j = k$$
 it evaluates to n .

Can we go back now please

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondyli

The **orthogonality property** can be summarized in the single equation

$$MM^* = nI$$

 $M^* = nM^{-1}$
 $M^* = M(\omega^{-1})$

Inversion Formula: $M(\omega_n)^{-1} = \frac{1}{n}M(\omega^{-1})$

 M^* is the **conjugate transpose** of M.

But ω^{-1} is also an *nth* **root of unity** and therefore **multiplication** by $M(\omega^{-1})$, i.e **interpolation**, is itself just an **FFT operation**, but with ω replaced by ω^{-1} .

Polynomial Multiplication in a Nutshell

The Fast Fourier Transform: A Brief Overview with Applications

Petros Kondvli

