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A* Algorithm

● A* is a computer algorithm that is widely used in 
pathfinding and graph traversal

● Peter Hart, Nils Nilsson and Bertram Raphael of Stanford 
Research Institute first described the algorithm in 1968

● It is an extension of Edsger Dijkstra's 1959 algorithm

● A* uses a best-first search and finds a least-cost path from 
a given initial node to one goal node

● A* achieves better time performance by using heuristics
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Uniform Cost Search (UCS)

● Complete? Yes*

● Optimal? Yes*

*Only if branching factor is finite and the cost of each 

step exceeds some positive bound ε
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Informed Search

● Use problem specific knowledge to pick which 
node to expand

● Involves a heuristic function h(n) estimating the 
cheapest path from n to a goal state

Requirements
h(n) ≥ 0 ∀ n
h(goal) = 0
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A* Search

● Idea: Include cost of reaching node
● g(n) = cost of reaching n
● h(n) = estimated cost of reaching goal from n
● Evaluation function f(n) = g(n) + h(n)

Uniform Cost Search had f(n) = g(n)
Greedy Best First Search had f(n) = h(n)
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A* Tree Search

● Complete? Yes

● Optimal? Yes if h is admissible

A heuristic function is said to be admissible if it never 
overestimates the cost of reaching the goal, i.e. the cost 
it estimates to reach the goal is not higher than the 
lowest possible cost from the current point in the path.
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A* Tree Search

Theorem
If h is admissible then A* using Tree Search is optimal.

Proof
Suppose that the cost of the optimal solution is C* and a goal node G 
has been generated and is in the fringe from a suboptimal path. 
Since the path is suboptimal we have f(G) = g(G) + h(G) = g(G) > C*.

Let n be an unexpanded node in the fringe such that n is on a 
shortest path to G. Since h is admissible (never overestimates the 
cost to the goal) we have f(n) = g(n) + h(n)≤ C*.

So f(n) ≤ C* < f(G) and the algorithm will prefer to expand n over G.
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A* Graph Search

● A* using Graph Search is not optimal.
● If the optimal path contains a node n and n is first expanded as part 

of a suboptimal path then Graph Search will discard node n the 
second time (so it will discard the optimal path).

● We need an additional property for the heuristic function.
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successor n' of n generated by any action a, the estimated cost of 
reaching the goal from n is no greater than the step cost of getting to 
n' plus the estimated cost of reaching the goal from n. In other words:

h(n) ≤ c(n,n') + h(n')
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If h is consistent, we have:
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So f(n) is non-decreasing along any path.



  

A* Graph Search

A heuristic function is consistent if for every node n and every 
successor n' of n generated by any action a, the estimated cost of 
reaching the goal from n is no greater than the step cost of getting to 
n' plus the estimated cost of reaching the goal from n. In other words:

h(n) ≤ c(n,n') + h(n')

n

n'

Gh(n)

h(n')c(n,n')

Triangle inequality

If h is consistent, we have:
f(n') = g(n') + h(n') = g(n) + c(n,n') + h(n') ≥ g(n) + h(n) = f(n) 
So f(n) is non-decreasing along any path.

A consistent heuristic is also admissible.
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A* Graph Search

Theorem
If h is consistent, A* using Graph Search is optimal.

● A* Graph Search expands nodes of optimal paths in order of 
increasing f-value.

● It expands all nodes with f(n) < C*.
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Heuristic functions

● How do we generate admissible heuristics?
● To come up with heuristic functions one can study relaxed 

problems from which some restrictions of the original problem 
have been removed.

● The cost of an optimal solution to a relaxed problem is an 
admissible heuristic for the original problem (does not 
overestimate).
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e.g. for the 8-puzzle

Start state Goal state



  

Heuristic functions

e.g. for the 8-puzzle

● h1(n) = number of misplaced tiles – Hamming distance (h1(start) = 8)
● h2(n) = sum of Manhattan distances to goal positions (h2(start) = 13)

Start state Goal state
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Heuristic functions
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Heuristic functions

● Let h1 and h2 be heuristic functions. If h2(n) ≥ h1(n) for all nodes n 
then we say that h2 dominates h1 (or h2 is more informed than h1).

● It is easy to see that for the previous heuristics for the 8-puzzle h2 
dominates h1.

Theorem
If h2 dominates h1 then A* with h2 will expand less than or equal 
nodes of A* with h1.

Proof
We said that A* expands all nodes with evaluation f(n) < C* where C* 
is the cost of the optimal solution.
Equivalently A* expands all nodes with h(n) < C* - g(n).
Let m be a node which expands by A* with h2. Then h2(m) < C* - g(m) 
and because h1(m) ≤ h2(m) we have h1(m) < C* - g(m).
Therefore m will be expanded by A* with h1.



  

Heuristic functions

Among several admissible heuristic the one with highest value is the fastest.



  

A* Algorithm

Thanks for Listening!
THE END

Athens, 4/12/2014
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