

A* Algorithm

Thomas Kappas
Applied Mathematical Sciences, NTUA

Athens, 4/12/2014

A* Algorithm

● A* is a computer algorithm that is widely used in
pathfinding and graph traversal

A* Algorithm

● A* is a computer algorithm that is widely used in
pathfinding and graph traversal

● Peter Hart, Nils Nilsson and Bertram Raphael of Stanford
Research Institute first described the algorithm in 1968

A* Algorithm

● A* is a computer algorithm that is widely used in
pathfinding and graph traversal

● Peter Hart, Nils Nilsson and Bertram Raphael of Stanford
Research Institute first described the algorithm in 1968

● It is an extension of Edsger Dijkstra's 1959 algorithm

A* Algorithm

● A* is a computer algorithm that is widely used in
pathfinding and graph traversal

● Peter Hart, Nils Nilsson and Bertram Raphael of Stanford
Research Institute first described the algorithm in 1968

● It is an extension of Edsger Dijkstra's 1959 algorithm

● A* uses a best-first search and finds a least-cost path from
a given initial node to one goal node

A* Algorithm

● A* is a computer algorithm that is widely used in
pathfinding and graph traversal

● Peter Hart, Nils Nilsson and Bertram Raphael of Stanford
Research Institute first described the algorithm in 1968

● It is an extension of Edsger Dijkstra's 1959 algorithm

● A* uses a best-first search and finds a least-cost path from
a given initial node to one goal node

● A* achieves better time performance by using heuristics

A* Algorithm

Peter Hart Nils Nilsson Bertram Raphael

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

The search begins at the root node. The search continues by visiting the next
node which has the least total cost from the root.

Uniform Cost Search (UCS)

The search begins at the root node. The search continues by visiting the next
node which has the least total cost from the root.

S B G

A

C

15

5

101

5

5

Uniform Cost Search (UCS)

The search begins at the root node. The search continues by visiting the next
node which has the least total cost from the root.

S B G

A

C

15

5

101

5

5

S

Uniform Cost Search (UCS)

The search begins at the root node. The search continues by visiting the next
node which has the least total cost from the root.

S B G

A

C

15

5

101

5

5

S

A B C
1 5 15

Uniform Cost Search (UCS)

The search begins at the root node. The search continues by visiting the next
node which has the least total cost from the root.

S B G

A

C

15

5

101

5

5

S

A B C

G

1 5 15

1+10=11

Uniform Cost Search (UCS)

The search begins at the root node. The search continues by visiting the next
node which has the least total cost from the root.

S B G

A

C

15

5

101

5

5

S

A B C

G G

1 5 15

1+10=11 5+5=10

Uniform Cost Search (UCS)

The search begins at the root node. The search continues by visiting the next
node which has the least total cost from the root.

S B G

A

C

15

5

101

5

5

S

A B C

G G

1 5 15

1+10=11 5+5=10

Uniform Cost Search (UCS)

● Complete?

Uniform Cost Search (UCS)

● Complete? Yes*

Uniform Cost Search (UCS)

● Complete? Yes*

● Optimal?

Uniform Cost Search (UCS)

● Complete? Yes*

● Optimal? Yes*

Uniform Cost Search (UCS)

● Complete? Yes*

● Optimal? Yes*

*Only if branching factor is finite and the cost of each

step exceeds some positive bound ε

Informed Search

Informed Search

● Use problem specific knowledge to pick which
node to expand

Informed Search

● Use problem specific knowledge to pick which
node to expand

● Involves a heuristic function h(n) estimating the
cheapest path from n to a goal state

Informed Search

● Use problem specific knowledge to pick which
node to expand

● Involves a heuristic function h(n) estimating the
cheapest path from n to a goal state

Requirements
h(n) ≥ 0 ∀ n
h(goal) = 0

Greedy Best First Search

Greedy Best First Search

Evaluation function
f(n) = h(n) : Expand node that appears to be closest
to the goal

Greedy Best First Search

Evaluation function
f(n) = h(n) : Expand node that appears to be closest
to the goal

A

S

B

C E

D

G

10

7

13 8

9

20

19

8

Greedy Best First Search

Evaluation function
f(n) = h(n) : Expand node that appears to be closest
to the goal

A

S

B

C E

D

G

10

7

13 8

9

20

19

8 Node h(n)

A 34

S 36

B 32

C 25

D 19

E 18

G 0

f(n) = h(n) = straight line
distance from n to node G

Greedy Best First Search

A

S

B

C E

D

G

10

7

13 8

9

20

19

8

Node h(n)

A 34

S 36

B 32

C 25

D 19

E 18

G 0

Greedy Best First Search

A

S

B

C E

D

G

10

7

13 8

9

20

19

8

Node h(n)

A 34

S 36

B 32

C 25

D 19

E 18

G 0

S 36

Greedy Best First Search

A

S

B

C E

D

G

10

7

13 8

9

20

19

8

Node h(n)

A 34

S 36

B 32

C 25

D 19

E 18

G 0

S 36

A 34 B 32C 25

Greedy Best First Search

A

S

B

C E

D

G

10

7

13 8

9

20

19

8

Node h(n)

A 34

S 36

B 32

C 25

D 19

E 18

G 0

S 36

A 34 B 32C 25

A E D S34 18 19 36

Greedy Best First Search

A

S

B

C E

D

G

10

7

13 8

9

20

19

8

Node h(n)

A 34

S 36

B 32

C 25

D 19

E 18

G 0

S 36

A 34 B 32C 25

A E D S34 18 19 36

C G25 0

Greedy Best First Search

A

S

B

C E

D

G

10

7

13 8

9

20

19

8

Node h(n)

A 34

S 36

B 32

C 25

D 19

E 18

G 0

S 36

A 34 B 32C 25

A E D S34 18 19 36

C G25 0

Greedy Best First Search

Complete?

Greedy Best First Search

Complete? No*

Greedy Best First Search

Complete? No*

EDS

A B C

G

Node h(n)

S 6

A 7

B 4

C 2

D 4

E 2

G 0

Greedy Best First Search

Complete? No*

EDS

A B C

G

Node h(n)

S 6

A 7

B 4

C 2

D 4

E 2

G 0

*Yes if we use Graph Search and branching factor is finite

Greedy Best First Search

Optimal?

Greedy Best First Search

Optimal? No

Greedy Best First Search

Optimal? No

A

S

B

C E

D

G

10

7

13 8

9

20

19

8

A* Search

A* Search

● Idea: Include cost of reaching node

A* Search

● Idea: Include cost of reaching node
● g(n) = cost of reaching n

A* Search

● Idea: Include cost of reaching node
● g(n) = cost of reaching n
● h(n) = estimated cost of reaching goal from n

A* Search

● Idea: Include cost of reaching node
● g(n) = cost of reaching n
● h(n) = estimated cost of reaching goal from n
● Evaluation function f(n) = g(n) + h(n)

A* Search

● Idea: Include cost of reaching node
● g(n) = cost of reaching n
● h(n) = estimated cost of reaching goal from n
● Evaluation function f(n) = g(n) + h(n)

Uniform Cost Search had f(n) = g(n)
Greedy Best First Search had f(n) = h(n)

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

C
(3+2)+1=6

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

C
(3+2)+1=6

G

(5+3)+0=8

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

C
(3+2)+1=6

G

(5+3)+0=8

G

(6+3)+0=9

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

C
(3+2)+1=6

G

(5+3)+0=8

G

(6+3)+0=9

G

(6+3)+0=9

A* Tree Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

C
(3+2)+1=6

G

(5+3)+0=8

G

(6+3)+0=9

G

(6+3)+0=9

A* Tree Search

● Complete?

A* Tree Search

● Complete? Yes

A* Tree Search

● Complete? Yes

● Optimal?

A* Tree Search

● Complete? Yes

● Optimal? Yes if h is admissible

A* Tree Search

● Complete? Yes

● Optimal? Yes if h is admissible

A heuristic function is said to be admissible if it never
overestimates the cost of reaching the goal, i.e. the cost
it estimates to reach the goal is not higher than the
lowest possible cost from the current point in the path.

A* Tree Search

Theorem
If h is admissible then A* using Tree Search is optimal.

A* Tree Search

Theorem
If h is admissible then A* using Tree Search is optimal.

Proof
Suppose that the cost of the optimal solution is C* and a goal node G
has been generated and is in the fringe from a suboptimal path.
Since the path is suboptimal we have f(G) = g(G) + h(G) = g(G) > C*.

Let n be an unexpanded node in the fringe such that n is on a
shortest path to G. Since h is admissible (never overestimates the
cost to the goal) we have f(n) = g(n) + h(n)≤ C*.

So f(n) ≤ C* < f(G) and the algorithm will prefer to expand n over G.

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

ClosedSet = {}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

ClosedSet = {S}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

ClosedSet = {S, B}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

ClosedSet = {S, B, A}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

G

(6+3)+0=9

ClosedSet = {S, B, A, C}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

G

(6+3)+0=9

ClosedSet = {S, B, A, C}

A* Graph Search

● A* using Graph Search is not optimal.

A* Graph Search

● A* using Graph Search is not optimal.
● If the optimal path contains a node n and n is first expanded as part

of a suboptimal path then Graph Search will discard node n the
second time (so it will discard the optimal path).

A* Graph Search

● A* using Graph Search is not optimal.
● If the optimal path contains a node n and n is first expanded as part

of a suboptimal path then Graph Search will discard node n the
second time (so it will discard the optimal path).

● We need an additional property for the heuristic function.

A* Graph Search

A heuristic function is consistent if for every node n and every
successor n' of n generated by any action a, the estimated cost of
reaching the goal from n is no greater than the step cost of getting to
n' plus the estimated cost of reaching the goal from n. In other words:

h(n) ≤ c(n,n') + h(n')

A* Graph Search

A heuristic function is consistent if for every node n and every
successor n' of n generated by any action a, the estimated cost of
reaching the goal from n is no greater than the step cost of getting to
n' plus the estimated cost of reaching the goal from n. In other words:

h(n) ≤ c(n,n') + h(n')

n

n'

Gh(n)

h(n')c(n,n')

Triangle inequality

A* Graph Search

A heuristic function is consistent if for every node n and every
successor n' of n generated by any action a, the estimated cost of
reaching the goal from n is no greater than the step cost of getting to
n' plus the estimated cost of reaching the goal from n. In other words:

h(n) ≤ c(n,n') + h(n')

n

n'

Gh(n)

h(n')c(n,n')

Triangle inequality

If h is consistent, we have:
f(n') = g(n') + h(n') = g(n) + c(n,n') + h(n') ≥ g(n) + h(n) = f(n)
So f(n) is non-decreasing along any path.

A* Graph Search

A heuristic function is consistent if for every node n and every
successor n' of n generated by any action a, the estimated cost of
reaching the goal from n is no greater than the step cost of getting to
n' plus the estimated cost of reaching the goal from n. In other words:

h(n) ≤ c(n,n') + h(n')

n

n'

Gh(n)

h(n')c(n,n')

Triangle inequality

If h is consistent, we have:
f(n') = g(n') + h(n') = g(n) + c(n,n') + h(n') ≥ g(n) + h(n) = f(n)
So f(n) is non-decreasing along any path.

A consistent heuristic is also admissible.

A* Graph Search

Theorem
If h is consistent, A* using Graph Search is optimal.

A* Graph Search

Theorem
If h is consistent, A* using Graph Search is optimal.

● A* Graph Search expands nodes of optimal paths in order of
increasing f-value.

● It expands all nodes with f(n) < C*.

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

G

(6+3)+0=9

ClosedSet = {S, B, A, C}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

G

(6+3)+0=9

ClosedSet = {S, B, A, C}
h(n) ≤ c(n,n') + h(n')

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 2

C 1

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+2=6

C(4+2)+1=7

B C G
(1+2)+2=5 (1+5)+1=7 (1+12)+0=13

G

(6+3)+0=9

ClosedSet = {S, B, A, C}
h(n) ≤ c(n,n') + h(n')

6 = h(A) > c(A,B) + h(B) = 2 + 2 = 4

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 4

C 2

G 0

1

4

2
5

2

12

3

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 4

C 2

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

ClosedSet = {}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 4

C 2

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+4=8

ClosedSet = {S}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 4

C 2

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+4=8

B C G
(1+2)+4=7 (1+5)+2=8 (1+12)+0=13

ClosedSet = {S, A}

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 4

C 2

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+4=8

B C G
(1+2)+4=7 (1+5)+2=8 (1+12)+0=13

ClosedSet = {S, A, B}

C
(3+2)+2=7

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 4

C 2

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+4=8

B C G
(1+2)+4=7 (1+5)+2=8 (1+12)+0=13

ClosedSet = {S, A, B, C}

C
(3+2)+2=7

G

(5+3)+0=8

A* Graph Search

S

A

B

C G

Node h(n)

S 7

A 6

B 4

C 2

G 0

1

4

2
5

2

12

3

S f=g+h=0+7=7

A Bf=(0+1)+6=7 f=(0+4)+4=8

B C G
(1+2)+4=7 (1+5)+2=8 (1+12)+0=13

ClosedSet = {S, A, B, C}

C
(3+2)+2=7

G

(5+3)+0=8

Heuristic functions

Heuristic functions

● How do we generate admissible heuristics?

Heuristic functions

● How do we generate admissible heuristics?
● To come up with heuristic functions one can study relaxed

problems from which some restrictions of the original problem
have been removed.

Heuristic functions

● How do we generate admissible heuristics?
● To come up with heuristic functions one can study relaxed

problems from which some restrictions of the original problem
have been removed.

● The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem (does not
overestimate).

Heuristic functions

e.g. for the 8-puzzle

Start state Goal state

Heuristic functions

e.g. for the 8-puzzle

● h1(n) = number of misplaced tiles – Hamming distance (h1(start) = 8)
● h2(n) = sum of Manhattan distances to goal positions (h2(start) = 13)

Start state Goal state

Heuristic functions

● Let h1 and h2 be heuristic functions. If h2(n) ≥ h1(n) for all nodes n
then we say that h2 dominates h1 (or h2 is more informed than h1).

Heuristic functions

● Let h1 and h2 be heuristic functions. If h2(n) ≥ h1(n) for all nodes n
then we say that h2 dominates h1 (or h2 is more informed than h1).

● It is easy to see that for the previous heuristics for the 8-puzzle h2
dominates h1.

Heuristic functions

● Let h1 and h2 be heuristic functions. If h2(n) ≥ h1(n) for all nodes n
then we say that h2 dominates h1 (or h2 is more informed than h1).

● It is easy to see that for the previous heuristics for the 8-puzzle h2
dominates h1.

Theorem
If h2 dominates h1 then A* with h2 will expand less than or equal
nodes of A* with h1.

Heuristic functions

● Let h1 and h2 be heuristic functions. If h2(n) ≥ h1(n) for all nodes n
then we say that h2 dominates h1 (or h2 is more informed than h1).

● It is easy to see that for the previous heuristics for the 8-puzzle h2
dominates h1.

Theorem
If h2 dominates h1 then A* with h2 will expand less than or equal
nodes of A* with h1.

Proof
We said that A* expands all nodes with evaluation f(n) < C* where C*
is the cost of the optimal solution.
Equivalently A* expands all nodes with h(n) < C* - g(n).
Let m be a node which expands by A* with h2. Then h2(m) < C* - g(m)
and because h1(m) ≤ h2(m) we have h1(m) < C* - g(m).
Therefore m will be expanded by A* with h1.

Heuristic functions

Among several admissible heuristic the one with highest value is the fastest.

A* Algorithm

Thanks for Listening!
THE END

Athens, 4/12/2014

	Slide 1
	Slide 2
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

