Fine-Grained Complexity

An Introduction

Antonis Antonopoulos
9/11/2018

CoReLab, NTUA

Table of contents

1. Introduction
2. ETH, SETH and implications
3. Fine-Grained Reductions

Introduction

Introduction

- The time hierarchy Theorem states that there are problems solved in $T(n)$, for a constructible function T, but not in $\mathcal{O}\left(T^{1-\varepsilon}(n)\right)$, for $\varepsilon>0$.
- All known b^{n}-time kSAT algorithms have: $\lim _{k \rightarrow \infty} b=2$ (all the results are of the form $\mathcal{O}^{*}\left(2^{n-\frac{c n}{k}}\right)$.
- NP-hardness is a useful tool for polynomial time hardness, but it doesn't capture non-polynomial times. For example, an $\mathcal{O}^{*}\left(2^{\sqrt{n}}\right)$ algorithm for kSAT would be a great advancement. It would be difficult the \mathbf{P} vs NP conjecture to be strong enough to prove exponential lower bounds for kSAT.
- The optimality conjecture of the exponential-time kSAT algorithms is formalized as the Strong Exponential Time Hypothesis (Impagliazzo, Paturi, 2001).

Introduction

Exponential Time Hypothesis [ETH]

There exists an $\varepsilon>0$ such that 3SAT requires $2^{\varepsilon n}$ time.

Strong Exponential Time Hypothesis [SETH]

For all $\delta<1$ exists a $k \geq 3$ such that kSAT requires $2^{\delta n}$ time.

Introduction

- Other problems in \mathbf{P} have similar behaviour:

Introduction

- Other problems in \mathbf{P} have similar behaviour:
- The Edit Distance problem, for example, admits a classical DP $\mathcal{O}\left(n^{2}\right)$ algorithm (Wagner, Fisher 1974), but till today the best improvement is $\mathcal{O}\left(n^{2} / \log ^{2} n\right)$ (Masek, Paterson 1980).

Introduction

- Other problems in \mathbf{P} have similar behaviour:
- The Edit Distance problem, for example, admits a classical DP $\mathcal{O}\left(n^{2}\right)$ algorithm (Wagner, Fisher 1974), but till today the best improvement is $\mathcal{O}\left(n^{2} / \log ^{2} n\right)$ (Masek, Paterson 1980).
- Similar observations hold for the Longest Common Subsequence Problem (LCS).

Introduction

- Other problems in \mathbf{P} have similar behaviour:
- The Edit Distance problem, for example, admits a classical DP $\mathcal{O}\left(n^{2}\right)$ algorithm (Wagner, Fisher 1974), but till today the best improvement is $\mathcal{O}\left(n^{2} / \log ^{2} n\right)$ (Masek, Paterson 1980).
- Similar observations hold for the Longest Common Subsequence Problem (LCS).
- The 3SUM problem: Given a set S of integers, are there $x, y, z \in S$ such that $x+y+z=0$? We have a trivial $\mathcal{O}\left(n^{2} \log n\right)$ algorithm, and the best known runs in $\mathcal{O}\left(n^{2}(\log \log n)^{2} / \log ^{2} n\right)$ (Baran, Demaine, Patrascu, 2008).

Introduction

- The Colinearity Problem in Computational Geometry: Given n points in the plane, are any three colinear? The best known algorithms runs in $n^{2-o(1)}$.

Introduction

- The Colinearity Problem in Computational Geometry: Given n points in the plane, are any three colinear? The best known algorithms runs in $n^{2-o(1)}$.
- The APSP (All-Pairs Shortest Paths) Problem. There is the classical DP $\mathcal{O}\left(n^{3}\right)$ algorithm (Floyd, Warshall, 1962). Best known algorithm runs in $\mathcal{O}\left(n^{3} / \exp (\sqrt{\log n})\right)$ (Williams 2014), using Circuit Complexity tools, namely the Razborov-Smolensky polynomials.

Introduction

- The Colinearity Problem in Computational Geometry: Given n points in the plane, are any three colinear? The best known algorithms runs in $n^{2-o(1)}$.
- The APSP (All-Pairs Shortest Paths) Problem. There is the classical DP $\mathcal{O}\left(n^{3}\right)$ algorithm (Floyd, Warshall, 1962). Best known algorithm runs in $\mathcal{O}\left(n^{3} / \exp (\sqrt{\log n})\right)$ (Williams 2014), using Circuit Complexity tools, namely the Razborov-Smolensky polynomials.
- For any of these problems, is there a complexity theoretic reason (a.k.a. barrier) to obtaining a better algorithm?

Introduction

- The Colinearity Problem in Computational Geometry: Given n points in the plane, are any three colinear? The best known algorithms runs in $n^{2-o(1)}$.
- The APSP (All-Pairs Shortest Paths) Problem. There is the classical DP $\mathcal{O}\left(n^{3}\right)$ algorithm (Floyd, Warshall, 1962). Best known algorithm runs in $\mathcal{O}\left(n^{3} / \exp (\sqrt{\log n})\right)$ (Williams 2014), using Circuit Complexity tools, namely the Razborov-Smolensky polynomials.
- For any of these problems, is there a complexity theoretic reason (a.k.a. barrier) to obtaining a better algorithm?
- Or else, is the reason for this hardness the same for all -or even for some- these problems?

Introduction

Fine-Grained Approach

- Start with a problem solvable in $\mathcal{O}(t(n))$, and nothing much better known, and formulate a hypothesis.
- Connect this problem to others via fine-grained reductions, so that for a problem having an $\mathcal{O}(T(n))$ algorithm, obtaining an $\mathcal{O}\left(T^{1-\varepsilon}(n)\right)$ algorithm for $\varepsilon>0$, would violate the hypothesis.

Introduction

Fine-Grained Approach

- Start with a problem solvable in $\mathcal{O}(t(n))$, and nothing much better known, and formulate a hypothesis.
- Connect this problem to others via fine-grained reductions, so that for a problem having an $\mathcal{O}(T(n))$ algorithm, obtaining an $\mathcal{O}\left(T^{1-\varepsilon}(n)\right)$ algorithm for $\varepsilon>0$, would violate the hypothesis.
- P vs NP is model indepedent, but in a fine-grained analysis, the precise computational model does matter.
- We use the Word RAM model with $\mathcal{O}(\log n)$ bit words (i.e. operations on $\mathcal{O}(\log n)$ bit chunks of data in constant time).

Fine-Grained Standard Conjectures

SETH

For all $\delta<1$ exists a $k \geq 3$ such that kSAT requires $2^{\delta n}$ time.

The 3SUM Conjecture

Any algorithm requires $n^{2-o(1)}$ time to determine whether a set $S \subset\left\{-n^{3}, \cdots, n^{3}\right\}$ of integers of size $|S|=n$ contains 3 distinct elements $a, b, c \in S$ such that $a+b=c$.

APSP Conjecture

Any algorithm requires $n^{3-o(1)}$ time to compute the distances between every pair of vertices in an n node graph with edge weights in $\left\{1, \ldots, n^{c}\right\}$, for some constant c.

- These conjectures can be extended to randomized algorithms.

ETH, SETH and implications

Exponential Time Hypothesis

- We need a more strict formalization to work with:
- Let:
$s_{k}=\inf \left\{c \mid\right.$ there is a $\mathcal{O}^{*}\left(2^{c \cdot n}\right)$ algorithm for kSAT with n variables $\}$
- Then:

Exponential Time Hypothesis

- We need a more strict formalization to work with:
- Let:
$s_{k}=\inf \left\{c \mid\right.$ there is a $\mathcal{O}^{*}\left(2^{c \cdot n}\right)$ algorithm for kSAT with n variables $\}$
- Then:

ETH

$$
s_{3}>0
$$

Exponential Time Hypothesis

- We need a more strict formalization to work with:
- Let:
$s_{k}=\inf \left\{c \mid\right.$ there is a $\mathcal{O}^{*}\left(2^{c \cdot n}\right)$ algorithm for kSAT with n variables $\}$
- Then:

ETH

$$
s_{3}>0
$$

SETH

$$
\lim _{k \rightarrow \infty} s_{k}=1
$$

The Need for Sparsification

- Can we relate SETH to ETH?
- Recall the classic reduction from NP-completeness theory:

Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for every $k \geq 3$.

- Can we say the same for subexponential time solvability?

The Need for Sparsification

- Can we relate SETH to ETH?
- Recall the classic reduction from NP-completeness theory:

Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for every $k \geq 3$.

- Can we say the same for subexponential time solvability?
- Recall the proof of the above theorem:
- For every k-clause $C=\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)$, we introduce new variables $y_{3}, y_{4}, \ldots, y_{k-1}$ and replace C by:

$$
\left(x_{1} \vee x_{2} \vee y_{3}\right) \wedge\left(\bar{y}_{3} \vee x_{3} \vee y_{4}\right) \wedge\left(\bar{y}_{4} \vee x_{4} \vee y_{5}\right) \wedge \cdots \wedge\left(\bar{y}_{k-1} \vee x_{k-1} \vee x_{k}\right)
$$

The Need for Sparsification

- Can we relate SETH to ETH?
- Recall the classic reduction from NP-completeness theory:

Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for every $k \geq 3$.

- Can we say the same for subexponential time solvability?
- Recall the proof of the above theorem:
- For every k-clause $C=\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)$, we introduce new variables $y_{3}, y_{4}, \ldots, y_{k-1}$ and replace C by:

$$
\left(x_{1} \vee x_{2} \vee y_{3}\right) \wedge\left(\bar{y}_{3} \vee x_{3} \vee y_{4}\right) \wedge\left(\bar{y}_{4} \vee x_{4} \vee y_{5}\right) \wedge \cdots \wedge\left(\bar{y}_{k-1} \vee x_{k-1} \vee x_{k}\right)
$$

- If we use the above reduction, we'll fail:

For each clause we introduce $k-3$ variables, thus the new formula has $n+(k-3) m$ variables.

- If we can solve 3SAT in subexponential time, suppose $\mathcal{O}\left(2^{\varepsilon n}\right)$ for some $\varepsilon>0$, then the above reduction algorithm gives us $\mathcal{O}\left(2^{\varepsilon(n+(k-3) m)}\right)$. If $m=\mathcal{O}\left(n^{2}\right)$, then it's a disaster.

The Need for Sparsification

- We clearly need an intermediate step here:

Theorem (The Sparsification Lemma)

For all $\varepsilon>0$ and positive q, there is a constant $C=C(\varepsilon, q)$ such that any q CNF formula ϕ with n variables can be expressed as $\phi=\bigvee_{i=1}^{t} \psi_{i}$, where $t \leq 2^{\varepsilon n}$ and each ψ_{i} is a q CNF formula over the same variable set as ϕ and at most Cn clauses.
This disjunction can be computed in $\mathcal{O}^{*}\left(2^{\varepsilon n}\right)$ time.

- Using the above lemma, we can "sparsify" the k CNF formula, in order to avoid the previously mentioned phenomena.

Exponential Time Hypothesis

Theorem

SETH \Rightarrow ETH

Proof.

- Assume, for the sake of contradiction, that $s_{3}=0$.
- So, for every $c>0$ there exists algorithm A_{c} solving 3SAT in $\mathcal{O}^{*}\left(2^{c n}\right)$ time.

Exponential Time Hypothesis

Theorem

SETH \Rightarrow ETH

Proof.

- Assume, for the sake of contradiction, that $s_{3}=0$.
- So, for every $c>0$ there exists algorithm A_{c} solving 3SAT in $\mathcal{O}^{*}\left(2^{c n}\right)$ time.
- Consider the following method for solving qSAT:
- Given formula ϕ, apply the sparsification lemma for some $\varepsilon>0$.
- We now have in $\mathcal{O}^{*}\left(2^{\varepsilon n}\right)$ time at most $2^{\varepsilon n} \psi_{i}$'s, ϕ is satisfiable iff any of the ψ_{i} 's is, and each ψ_{i} has at most $C(\varepsilon, q) n$ clauses.
- Now apply the classic reduction from qSAT to 3SAT on any ψ_{i} (recall that for every q-clause of ψ_{i} we introduce $q-3$ new variables and $q-2$ new clauses).
- This results to a 3CNF formula ψ_{i}^{\prime} with at most $(1+q C(\varepsilon, q)) n$ variables.

Exponential Time Hypothesis

Theorem

SETH \Rightarrow ETH

Proof. (cont'd)

- Now, if we apply the algorithm A_{δ} to ψ_{i}^{\prime}, for some $\delta>0$, we can solve satisfiability of ψ_{i}^{\prime} in $\mathcal{O}^{*}\left(2^{\delta^{\prime} n}\right)$, for $\delta^{\prime}=\delta \cdot(1+q C(\varepsilon, q))$.
- By applying the procedure to all ψ_{i} 's, we can solve satisfiability of ϕ in $\mathcal{O}^{*}\left(2^{\delta^{\prime \prime} n}\right)$, for $\delta^{\prime \prime}=\varepsilon+\delta^{\prime}=\varepsilon+\delta \cdot(1+q C(\varepsilon, q))$.
- Since $s_{3}=0$, we can choose ε and δ arbitrarily close to 0 , so $\delta^{\prime \prime}$ is arbitrarily close to 0 , hence $s_{k}=0$ for $k \geq 3$, which contradicts SETH.

Fine-Grained Reductions

Fine-Grained Reductions

Fine-Grained Reduction

Let $a(n), b(n)$ be nondecreasing functions of n.
Problem A is (a, b)-reducible to problem $B\left(A \leq_{a, b} B\right)$, if:
$\forall \varepsilon>0 \exists \delta>0$, an algorithm F with oracle access to B,

- Fruns in at most $d \cdot a^{1-\delta}(n)$ time
- F makes at most $k(n)$ oracle queries adaptively (the $j^{\text {th }}$ instance B_{j} is a function of $\left\{B_{i}, a_{i}\right\}_{1 \leq i<j}$)
- The sizes $\left|B_{i}\right|=n_{i}$ for any choice of oracle answers a_{i} obey the inequality:

$$
\sum_{i=1}^{k(n)} b^{1-\varepsilon}\left(n_{i}\right) \leq d \cdot a^{1-\delta}(n)
$$

- Improvements over $b(n)$ for B imply inprovements over $a(n)$ for A.

The Orthogonal Vectors Problem

- A key problem for understanding fine-grained reductions is the Orthogonal Vectors problem.

Orthogonal Vectors (OV)

Let $d=\omega(\log n)$. Given two sets $A, B \subseteq\{0,1\}^{*}$, with $|A|=|B|=n$, decide whether there exist $a \in A, b \in B$ such that $a \cdot b=0$.

k-Orthogonal Vectors (kOV)

Let $d=\omega(\log n)$. Given sets $A_{1}, \ldots, A_{k} \subseteq\{0,1\}^{*}$, with $\left|A_{i}\right|=n$ for all $i \in[k]$, decide whether there exist $\alpha_{1} \in A_{1}, \ldots, \alpha_{k} \in A_{k}$ such that: $\alpha_{1} \cdot \alpha_{2} \cdots \alpha_{k}=\sum_{i=1}^{d} \prod_{j=1}^{k} \alpha_{j}[i]=0$.

- Naïve solution in $\mathcal{O}\left(n^{k} d\right)$ time.
- Best known algorithm runs in $\mathcal{O}\left(n^{k-1 / \Theta(d / \log n)}\right)$ time.

The Orthogonal Vectors Problem

- A key problem for understanding fine-grained reductions is the Orthogonal Vectors problem.

Orthogonal Vectors (OV)

Let $d=\omega(\log n)$. Given two sets $A, B \subseteq\{0,1\}^{*}$, with $|A|=|B|=n$, decide whether there exist $a \in A, b \in B$ such that $a \cdot b=0$.

k-Orthogonal Vectors (kOV)

Let $d=\omega(\log n)$. Given sets $A_{1}, \ldots, A_{k} \subseteq\{0,1\}^{*}$, with $\left|A_{i}\right|=n$ for all $i \in[k]$, decide whether there exist $\alpha_{1} \in A_{1}, \ldots, \alpha_{k} \in A_{k}$ such that:
$\alpha_{1} \cdot \alpha_{2} \cdots \alpha_{k}=\sum_{i=1}^{d} \prod_{j=1}^{k} \alpha_{j}[i]=0$.

- Naïve solution in $\mathcal{O}\left(n^{k} d\right)$ time.
- Best known algorithm runs in $\mathcal{O}\left(n^{k-1 / \Theta(d / \log n)}\right)$ time.

The kOV Hypothesis

There is no (randomized) algorithm that can solve kOV in $n^{k-\varepsilon} \operatorname{poly}(d)$ time for constant $\varepsilon>0$.

Fine-Grained Reductions

Theorem (Williams 2005)

SAT $\leq_{2^{n}, n^{k}} \mathrm{KOV}$

Fine-Grained Reductions

Theorem (Williams 2005)

SAT $\leq_{2^{n}, n^{k}} \mathrm{KOV}$

Proof.

- Let $F(n, m)$ be the given formula.
- We can assume, due to the Sparsification Lemma, that Fhas $\mathcal{O}(n)$ clauses.
- Split the n variables into k sets V_{1}, \ldots, V_{k}.
- For every $j \in[k]$, create a set A_{j} containing a vector $\alpha^{j}(\phi)$ for each of the $N=2^{n / k}$ partial t.a.'s., where:

$$
\alpha^{j}(\phi)[c]=0, \text { iff the } c^{t h} \text { clause of } F \text { is satisfied by } \phi .
$$

- If for some $\alpha_{1}\left(\phi_{1}\right), \alpha_{2}\left(\phi_{2}\right), \ldots, \alpha_{k}\left(\phi_{k}\right): \sum_{c} \prod_{j} \alpha_{j}\left(\phi_{j}\right)[c]=0$, then for every c there is some vector $\alpha_{j}\left(\phi_{j}\right)$ that is 0 in c, so ϕ_{j} satisfies c.
- Thus, the concatenation $\bigcirc_{\ell=1}^{k} \phi_{\ell}$ satisfies all clauses.

Fine-Grained Reductions

Theorem (Williams 2005)

SAT $\leq_{2^{n}, n^{k}} \mathrm{kOV}$

Proof. (cont'd)

- Conversely, if ϕ satisfies all clauses, then $\phi_{j}=\phi \upharpoonright V_{j}$ and so $\sum_{c} \Pi_{j} \alpha_{j}\left(\phi_{j}\right)[c]=0$.
- So, if we can solve kOV in $N^{k-\varepsilon} \operatorname{poly}(m)$ time in $\{0,1\}^{m}$, then we can solve kSAT in $\left(2^{n / k}\right)^{k-\varepsilon} \operatorname{poly}(m)=2^{n\left(1-\varepsilon^{\prime}\right)}$ poly (m), contradicting SETH.

Fine-Grained Reductions

Theorem (Williams 2005)

$$
\mathrm{SAT} \leq_{2^{n}, n^{k}} \mathrm{kOV}
$$

Proof. (cont'd)

- Conversely, if ϕ satisfies all clauses, then $\phi_{j}=\phi \upharpoonright_{V_{j}}$ and so $\sum_{c} \Pi_{j} \alpha_{j}\left(\phi_{j}\right)[c]=0$.
- So, if we can solve kOV in $N^{k-\varepsilon} \operatorname{poly}(m)$ time in $\{0,1\}^{m}$, then we can solve kSAT in $\left(2^{n / k}\right)^{k-\varepsilon} \operatorname{poly}(m)=2^{n\left(1-\varepsilon^{\prime}\right)} \operatorname{poly}(m)$, contradicting SETH.
- It is simply to see that $\mathrm{kOV} \leq_{n^{k}, n^{k-1}}(\mathrm{k}-1) \mathrm{OV} \cdots \leq_{n^{3}, n^{2}} 2 \mathrm{OV}$.
- $\mathrm{So}, 2 \mathrm{OV}$ is the hardest of these problems.
- The above reduction can be routed through kDOMINATING SET.

Thank You!

