Fine-Grained Complexity

An Introduction

Antonis Antonopoulos
9/11/2018

CoReLab, NTUA

Table of contents

1. Introduction

2. ETH, SETH and implications

3. Fine-Grained Reductions

Introduction

Introduction

» The time hierarchy Theorem states that there are problems
solved in T(n), for a constructible function 7, but not in
O (T'~¢(n)), fore > 0.

» All known b"-time kSAT algorithms have: limy_, ., b = 2 (all the
results are of the form O* (2”*%)).

» NP-hardness is a useful tool for polynomial time hardness, but
it doesn’t capture non-polynomial times. For example, an
o* (Zﬁ) algorithm for kSAT would be a great advancement. It
would be difficult the P vs NP conjecture to be strong enough to
prove exponential lower bounds for kSAT.

» The optimality conjecture of the exponential-time kSAT
algorithms is formalized as the Strong Exponential Time
Hypothesis (Impagliazzo, Paturi, 2001).

Introduction

Exponential Time Hypothesis [ETH]
There exists an ¢ > 0 such that 3SAT requires 2°” time.

Strong Exponential Time Hypothesis [SETH]
For all § < 1 exists a k > 3 such that kSAT requires 2°” time.

Introduction

» Other problems in P have similar behaviour:

Introduction

» Other problems in P have similar behaviour:

» The Edit Distance problem, for example, admits a classical DP
O (n?) algorithm (Wagner, Fisher 1974), but till today the best

improvement is © (n2 / log? n) (Masek, Paterson 1980).

Introduction

» Other problems in P have similar behaviour:

» The Edit Distance problem, for example, admits a classical DP
O (n?) algorithm (Wagner, Fisher 1974), but till today the best

improvement is © (n2 / log? n) (Masek, Paterson 1980).

» Similar observations hold for the Longest Common
Subsequence Problem (LCS).

Introduction

» Other problems in P have similar behaviour:

» The Edit Distance problem, for example, admits a classical DP
O (n?) algorithm (Wagner, Fisher 1974), but till today the best

improvement is © (n2 / log? n) (Masek, Paterson 1980).

» Similar observations hold for the Longest Common
Subsequence Problem (LCS).

» The 3SUM problem: Given a set S of integers, are therex,y,z € S
such that x + y+ z = 02 We have a trivial O (n? log n) algorithm,
and the best known runs in O (nz(log log 1)?/ log? n) (Baran,
Demaine, Patrascu, 2008).

Introduction

» The Colinearity Problem in Computational Geometry: Given n

points in the plane, are any three colinear? The best known

algorithms runs in 72—\,

Introduction

» The Colinearity Problem in Computational Geometry: Given n
points in the plane, are any three colinear? The best known
algorithms runs in 72—\,

» The APSP (All-Pairs Shortest Paths) Problem. There is the
classical DP O (n®) algorithm (Floyd, Warshall, 1962). Best
known algorithm runs in O (n*/exp(y/log n)) (Williams 2014),
using Circuit Complexity tools, namely the
Razborov-Smolensky polynomials.

Introduction

» The Colinearity Problem in Computational Geometry: Given n
points in the plane, are any three colinear? The best known
algorithms runs in 72—\,

» The APSP (All-Pairs Shortest Paths) Problem. There is the
classical DP O (n®) algorithm (Floyd, Warshall, 1962). Best
known algorithm runs in O (n*/exp(y/log n)) (Williams 2014),
using Circuit Complexity tools, namely the
Razborov-Smolensky polynomials.

» For any of these problems, is there a complexity theoretic
reason (a.k.a. barrier) to obtaining a better algorithm?

Introduction

» The Colinearity Problem in Computational Geometry: Given n
points in the plane, are any three colinear? The best known
algorithms runs in 72—\,

» The APSP (All-Pairs Shortest Paths) Problem. There is the
classical DP O (n®) algorithm (Floyd, Warshall, 1962). Best
known algorithm runs in O (n*/exp(y/log n)) (Williams 2014),
using Circuit Complexity tools, namely the
Razborov-Smolensky polynomials.

» For any of these problems, is there a complexity theoretic
reason (a.k.a. barrier) to obtaining a better algorithm?

» Or else, is the reason for this hardness the same for all -or even
for some- these problems?

Introduction

Start with a problem solvable in O (#(n)), and nothing much
better known, and formulate a hypothesis.

Connect this problem to others via fine-grained reductions, so
that for a problem having an O (7(n)) algorithm, obtaining an
O (T'~#(n)) algorithm for e > 0, would violate the hypothesis.

Introduction

Start with a problem solvable in O (#(n)), and nothing much
better known, and formulate a hypothesis.

Connect this problem to others via fine-grained reductions, so
that for a problem having an O (7(n)) algorithm, obtaining an
O (T'~#(n)) algorithm for e > 0, would violate the hypothesis.

» P vs NP is model indepedent, but in a fine-grained analysis, the
precise computational model does matter.

» We use the Word RAM model with O (log n) bit words
(i.e. operations on O (log n) bit chunks of data in constant time).

Fine-Grained Standard Conjectures

Forall § < 1 exists a k > 3 such that kSAT requires 2°” time.

Any algorithm requires 7>~ °(!) time to determine whether a set
Sc {-nd -, n’} of integers of size |S| = n contains 3 distinct
elements a, b, c € Ssuch thata+ b = c.

Any algorithm requires 7°~°1) time to compute the distances
between every pair of vertices in an 7 node graph with edge
weightsin {1, ..., n‘}, for some constant c.

» These conjectures can be extended to randomized algorithms.

ETH, SETH and implications

Exponential Time Hypothesis

» We need a more strict formalization to work with:
> Let:

si = inf{c|thereis a O* (2°"*) algorithm for kSAT with n variables}

» Then:

Exponential Time Hypothesis

» We need a more strict formalization to work with:
> Let:

si = inf{c|thereis a O* (2°"*) algorithm for kSAT with n variables}

» Then:

ETH

s3>0

Exponential Time Hypothesis

» We need a more strict formalization to work with:
> Let:

si = inf{c|thereis a O* (2°"*) algorithm for kSAT with n variables}

» Then:

ETH SETH

s3>0 lim sp=1

k— o0

The Need for Sparsification

» Can we relate SETH to ETH?
» Recall the classic reduction from NP-completeness theory:

Theorem
If 3SAT can be solved in polynomial time, then so can kSAT, for
every k > 3.

» Can we say the same for subexponential time solvability?

The Need for Sparsification

» Can we relate SETH to ETH?
» Recall the classic reduction from NP-completeness theory:
Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for
every k > 3.

» Can we say the same for subexponential time solvability?
» Recall the proof of the above theorem:
e For every k-clause C= (x1 V X2 V - - - V X), we introduce new
variables ys, ya, ..., yx—1 and replace Cby:

(.X,'l\/.XzVy3)/\(jfsVX3\/y4)/\(j/4\/X4\/y5)/\~~~/\(j/k_1 V Xp—1 ka)

The Need for Sparsification

» Can we relate SETH to ETH?
» Recall the classic reduction from NP-completeness theory:

Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for
every k > 3.

» Can we say the same for subexponential time solvability?
» Recall the proof of the above theorem:
e For every k-clause C= (x1 V X2 V - - - V X), we introduce new
variables ys, ya, ..., yx—1 and replace Cby:

(.X,'lV.XzVy3)/\(jlsVX3\/y4)/\(j/4\/X4\/y5)/\~~~/\(j/k_1 V Xp—1 ka)

» If we use the above reduction, we'll fail:
For each clause we introduce k — 3 variables, thus the new formula has
n—+ (k — 3)mvariables.
» If we can solve 3SAT in subexponential time, suppose O (2°") for some
€ > 0, then the above reduction algorithm gives us O (25(”(’6’3)’”)). If
m = O (n?), then it’s a disaster. 9

The Need for Sparsification

» We clearly need an intermediate step here:

For all e > 0 and positive g, there is a constant C = C{(e, g) such that
any gCNF formula ¢ with n variables can be expressed as

o= \/f-:1 1, where t < 2" and each v); is a gCNF formula over the
same variable set as ¢ and at most Cn clauses.

This disjunction can be computed in O* (2¢") time.

» Using the above lemma, we can “sparsify” the k<CNF formula, in
order to avoid the previously mentioned phenomena.

10

Exponential Time Hypothesis

Theorem
SETH = ETH

Proof.

» Assume, for the sake of contradiction, that s3 = 0.

» So, for every c¢ > 0 there exists algorithm A, solving 3SAT in
O* (2°") time.

11

Exponential Time Hypothesis

Theorem
SETH = ETH

Proof.

» Assume, for the sake of contradiction, that s3 = 0.

» So, for every c¢ > 0 there exists algorithm A, solving 3SAT in
O* (2°") time.
» Consider the following method for solving gSAT:

e Given formula ¢, apply the sparsification lemma for some ¢ > 0.

e We now have in O™ (2°") time at most 2°" 1;’s, ¢ is satisfiable iff
any of the ¢;’s is, and each ¢; has at most C(¢, g)n clauses.

o Now apply the classic reduction from qSAT to 3SAT on any 1);
(recall that for every g-clause of ¢); we introduce g — 3 new
variables and g — 2 new clauses).

e This results to a 3CNF formula v; with at most (1 + gC(e, q))n
variables.

11

Exponential Time Hypothesis

Theorem
SETH = ETH

Proof. (contd)

» Now, if we apply the algorithm As to ¢/, for some ¢ > 0, we can
solve satisfiability of ¢} in O* (2‘”), foré’ =6 - (1 + qCe, q)).

» By applying the procedure to all ¢;’s, we can solve satisfiability
of ¢ in O (20) ford” =c+0 =c+0-(1+ qCe, g)).

» Since s3 = 0, we can choose ¢ and § arbitrarily close to 0, so ¢” is
arbitrarily close to 0, hence s;. = 0 for k > 3, which contradicts

SETH. 0

12

Fine-Grained Reductions

Fine-Grained Reductions

Fine-Grained Reduction

Let a(n), b(n) be nondecreasing functions of 7.
Problem Ais (a, b)-reducible to problem B (A <, B), if:
Ve > 034 > 0, an algorithm Fwith oracle access to B,

» Frunsin at most d- a'~%(n) time
» Fmakes at most k(n) oracle queries adaptively
(the j‘h instance B is a function of {B;, a;}1<i<))

» The sizes |B;| = n; for any choice of oracle answers a; obey the

inequality:
k(n)

Zbl “(n;) < d-a~(n)

» Improvements over b(n) for Bimply inprovements over a(n) for A.

13

The Orthogonal Vectors Problem

» A key problem for understanding fine-grained reductions is the
Orthogonal Vectors problem.

Orthogonal Vectors (OV)
Let d = w(log n). Given two sets A, B C {0,1}*, with |A| = |B| = n,
decide whether there exist a € A, b € Bsuch thata- b = 0.
k-Orthogonal Vectors (kOV)
Let d = w(log n). Given sets Ay, ..., Ar C {0,1}*, with |A;| = nfor all
i € [k], decide whether there exist a; € Ay, ..., ar € Ay such that:
) Qo = Z?Zlnjl.c:laj[i] =0.

> Naive solution in O (nfd) time.
> Best known algorithm runs in O (nk~1/6(4/lee M) time.

14

The Orthogonal Vectors Problem

» A key problem for understanding fine-grained reductions is the
Orthogonal Vectors problem.
Orthogonal Vectors (OV)
Let d = w(log n). Given two sets A, B C {0,1}*, with |A| = |B| = n,
decide whether there exist a € A, b € Bsuch thata- b= 0.

k-Orthogonal Vectors (kOV)

Let d = w(log n). Given sets Ay, ..., Ar C {0,1}*, with |A;| = nfor all
i € [k], decide whether there exist a; € Ay, ..., ar € Ay such that:
Q- Q- = Z?:lH]]'C:laj[i] =0.

> Naive solution in O (nfd) time.
> Best known algorithm runs in O (nk~1/6(4/lee M) time.

There is no (randomized) algorithm that can solve kOV in

n*=¢ poly(d) time for constant ¢ > 0. "

Fine-Grained Reductions

SAT <y i KOV

15

Fine-Grained Reductions

Theorem (Williams 2005)
SAT <yn i kOV

Proof.

>
[4

>
>

Let F(n, m) be the given formula.

We can assume, due to the Sparsification Lemma, that Fhas
O (n) clauses.

Split the n variables into ksets Vi, ..., V.

For every j € [k], create a set A; containing a vector o/(¢) for
each of the N = 2"/ partial t.a.’s., where:

o(¢)[d = 0, iff the c™ clause of Fis satisfied by ¢.

If for some a1 (1), a2(¢2), - - ., ar(dr): 2o 11 ai(¢5)[c] = 0, then
for every c there is some vector aj(¢;) that is 0 in ¢, so ¢; satisfies
c.
Thus, the concatenation O}?:lqbg satisfies all clauses.
15

Fine-Grained Reductions

Theorem (Williams 2005)
SAT <yn pk kOV

Proof. (cont’d)

> Conversely, if ¢ satisfies all clauses, then ¢; = ¢ [y, and so
eI i(¢7)ld = 0.

> So, if we can solve kOV in N¥~¢ poly(m) time in {0, 1}, then we
can solve kSAT in (2"/¥)¥=< poly(m) = 2"~<") poly(m),
contradicting SETH. O

16

Fine-Grained Reductions

Theorem (Williams 2005)
SAT <yn pk kOV

Proof. (cont’d)

>

Conversely, if ¢ satisfies all clauses, then ¢; = ¢ [y, and so
eI i(¢7)ld = 0.

So, if we can solve kOV in N*~¢ poly(m) time in {0, 1}"", then we
can solve kSAT in (2"/¥)¥=< poly(m) = 2"~<") poly(m),
contradicting SETH. O

It is simply to see that kOV <, i1 (k—1)OV--- <5 2 20V,
So, 20V is the hardest of these problems.

The above reduction can be routed through
kDOMINATING SET.

16

Thank You!

	Introduction
	ETH, SETH and implications
	Fine-Grained Reductions

