Fine-Grained Complexity

An Introduction

Antonis Antonopoulos 9/11/2018

CoReLab, NTUA

- 1. Introduction
- 2. ETH, SETH and implications
- 3. Fine-Grained Reductions

- ► The time hierarchy Theorem states that there are problems solved in *T*(*n*), for a constructible function *T*, but not in *O*(*T*^{1-ε}(*n*)), for ε > 0.
- ▶ All known b^n -time kSAT algorithms have: $\lim_{k\to\infty} b = 2$ (all the results are of the form $\mathcal{O}^*(2^{n-\frac{cn}{k}})$).
- NP-hardness is a useful tool for polynomial time hardness, but it doesn't capture non-polynomial times. For example, an O^{*} (2^{√n}) algorithm for kSAT would be a great advancement. It would be difficult the P vs NP conjecture to be strong enough to prove exponential lower bounds for kSAT.
- The optimality conjecture of the exponential-time kSAT algorithms is formalized as the Strong Exponential Time Hypothesis (*Impagliazzo, Paturi, 2001*).

Exponential Time Hypothesis [ETH]

There exists an $\varepsilon > 0$ such that 3SAT requires $2^{\varepsilon n}$ time.

Strong Exponential Time Hypothesis [SETH]

For all $\delta < 1$ exists a $k \ge 3$ such that kSAT requires $2^{\delta n}$ time.

• Other problems in **P** have similar behaviour:

- Other problems in **P** have similar behaviour:
- ▶ The Edit Distance problem, for example, admits a classical DP $O(n^2)$ algorithm (*Wagner, Fisher 1974*), but till today the best improvement is $O(n^2/\log^2 n)$ (*Masek, Paterson 1980*).

- Other problems in **P** have similar behaviour:
- ► The Edit Distance problem, for example, admits a classical DP $O(n^2)$ algorithm (*Wagner, Fisher 1974*), but till today the best improvement is $O(n^2/\log^2 n)$ (*Masek, Paterson 1980*).
- Similar observations hold for the Longest Common Subsequence Problem (LCS).

- Other problems in **P** have similar behaviour:
- ► The Edit Distance problem, for example, admits a classical DP $O(n^2)$ algorithm (*Wagner, Fisher 1974*), but till today the best improvement is $O(n^2/\log^2 n)$ (*Masek, Paterson 1980*).
- Similar observations hold for the Longest Common Subsequence Problem (LCS).
- ▶ The 3SUM problem: *Given a set S of integers, are there x, y, z* ∈ *S such that x* + *y* + *z* = 0? We have a trivial $O(n^2 \log n)$ algorithm, and the best known runs in $O(n^2(\log \log n)^2/\log^2 n)$ (*Baran, Demaine, Patrascu,* 2008).

► The Colinearity Problem in Computational Geometry: Given n points in the plane, are any three colinear? The best known algorithms runs in n^{2-o(1)}.

- ► The Colinearity Problem in Computational Geometry: Given n points in the plane, are any three colinear? The best known algorithms runs in n^{2-o(1)}.
- ► The APSP (All-Pairs Shortest Paths) Problem. There is the classical DP $O(n^3)$ algorithm (Floyd, Warshall, 1962). Best known algorithm runs in $O(n^3/exp(\sqrt{\log n}))$ (Williams 2014), using Circuit Complexity tools, namely the Razborov-Smolensky polynomials.

- ► The Colinearity Problem in Computational Geometry: *Given n* points in the plane, are any three colinear? The best known algorithms runs in n^{2-o(1)}.
- ► The APSP (All-Pairs Shortest Paths) Problem. There is the classical DP $O(n^3)$ algorithm (Floyd, Warshall, 1962). Best known algorithm runs in $O(n^3/exp(\sqrt{\log n}))$ (Williams 2014), using Circuit Complexity tools, namely the Razborov-Smolensky polynomials.
- For any of these problems, is there a complexity theoretic reason (a.k.a. barrier) to obtaining a better algorithm?

- ► The Colinearity Problem in Computational Geometry: *Given n* points in the plane, are any three colinear? The best known algorithms runs in n^{2-o(1)}.
- ► The APSP (All-Pairs Shortest Paths) Problem. There is the classical DP $O(n^3)$ algorithm (Floyd, Warshall, 1962). Best known algorithm runs in $O(n^3/exp(\sqrt{\log n}))$ (Williams 2014), using Circuit Complexity tools, namely the Razborov-Smolensky polynomials.
- For any of these problems, is there a complexity theoretic reason (a.k.a. barrier) to obtaining a better algorithm?
- Or else, is the reason for this hardness the same for all -or even for some- these problems?

Fine-Grained Approach

- Start with a problem solvable in $\mathcal{O}(t(n))$, and nothing much better known, and formulate a *hypothesis*.
- Connect this problem to others via *fine-grained reductions*, so that for a problem having an O (T(n)) algorithm, obtaining an O (T^{1-ε}(n)) algorithm for ε > 0, would violate the hypothesis.

Fine-Grained Approach

- Start with a problem solvable in $\mathcal{O}(t(n))$, and nothing much better known, and formulate a *hypothesis*.
- Connect this problem to others via *fine-grained reductions*, so that for a problem having an O (T(n)) algorithm, obtaining an O (T^{1-ε}(n)) algorithm for ε > 0, would violate the hypothesis.

- ▶ **P** vs **NP** is model indepedent, but in a fine-grained analysis, the precise computational model *does* matter.
- ► We use the Word RAM model with O (log n) bit words (i.e. operations on O (log n) bit chunks of data in constant time).

Fine-Grained Standard Conjectures

SETH

For all $\delta < 1$ exists a $k \ge 3$ such that kSAT requires $2^{\delta n}$ time.

The 3SUM Conjecture

Any algorithm requires $n^{2-o(1)}$ time to determine whether a set $S \subset \{-n^3, \dots, n^3\}$ of integers of size |S| = n contains 3 distinct elements $a, b, c \in S$ such that a + b = c.

APSP Conjecture

Any algorithm requires $n^{3-o(1)}$ time to compute the distances between every pair of vertices in an *n* node graph with edge weights in $\{1, ..., n^c\}$, for some constant *c*.

• These conjectures can be extended to randomized algorithms.

ETH, SETH and implications

• We need a more strict formalization to work with:

► Let:

 $s_k = \inf\{c \mid \text{there is a } \mathcal{O}^*(2^{c \cdot n}) \text{ algorithm for kSAT with } n \text{ variables}\}$

► Then:

• We need a more strict formalization to work with:

► Let:

 $s_k = \inf\{c \mid \text{there is a } \mathcal{O}^*(2^{c \cdot n}) \text{ algorithm for kSAT with } n \text{ variables}\}$

► Then:

ETH $s_3 > 0$

• We need a more strict formalization to work with:

► Let:

 $s_k = \inf\{c \mid \text{there is a } \mathcal{O}^*(2^{c \cdot n}) \text{ algorithm for kSAT with } n \text{ variables}\}$

► Then:

ETH	SETH
$s_3 > 0$	$\lim_{k\to\infty}s_k=1$

The Need for Sparsification

► Can we relate SETH to ETH?

► Recall the classic reduction from **NP**-completeness theory:

Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for every $k \ge 3$.

• Can we say the same for subexponential time solvability?

The Need for Sparsification

► Can we relate SETH to ETH?

► Recall the classic reduction from **NP**-completeness theory:

Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for every $k \ge 3$.

- Can we say the same for subexponential time solvability?
- Recall the proof of the above theorem:
 - For every *k*-clause $C = (x_1 \lor x_2 \lor \cdots \lor x_k)$, we introduce new variables $y_3, y_4, \ldots, y_{k-1}$ and replace *C* by:

 $(x_1 \lor x_2 \lor y_3) \land (\bar{y}_3 \lor x_3 \lor y_4) \land (\bar{y}_4 \lor x_4 \lor y_5) \land \dots \land (\bar{y}_{k-1} \lor x_{k-1} \lor x_k)$

The Need for Sparsification

► Can we relate SETH to ETH?

► Recall the classic reduction from **NP**-completeness theory:

Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for every $k \ge 3$.

- Can we say the same for subexponential time solvability?
- Recall the proof of the above theorem:
 - For every *k*-clause $C = (x_1 \lor x_2 \lor \cdots \lor x_k)$, we introduce new variables $y_3, y_4, \ldots, y_{k-1}$ and replace *C* by:

 $(x_1 \lor x_2 \lor y_3) \land (\bar{y}_3 \lor x_3 \lor y_4) \land (\bar{y}_4 \lor x_4 \lor y_5) \land \dots \land (\bar{y}_{k-1} \lor x_{k-1} \lor x_k)$

▶ If we use the above reduction, we'll **fail**: For each clause we introduce k - 3 variables, thus the new formula has n + (k - 3)m variables.

▶ If we can solve 3SAT in subexponential time, suppose $\mathcal{O}(2^{\varepsilon n})$ for some $\varepsilon > 0$, then the above reduction algorithm gives us $\mathcal{O}\left(2^{\varepsilon(n+(k-3)m)}\right)$. If $m = \mathcal{O}(n^2)$, then it's a disaster.

• We clearly need an intermediate step here:

Theorem (The Sparsification Lemma)

For all $\varepsilon > 0$ and positive q, there is a constant $C = C(\varepsilon, q)$ such that any qCNF formula ϕ with n variables can be expressed as $\phi = \bigvee_{i=1}^{t} \psi_i$, where $t \le 2^{\varepsilon n}$ and each ψ_i is a qCNF formula over the same variable set as ϕ and at most Cn clauses. This disjunction can be computed in $\mathcal{O}^*(2^{\varepsilon n})$ time.

► Using the above lemma, we can "sparsify" the *k*CNF formula, in order to avoid the previously mentioned phenomena.

Exponential Time Hypothesis

Theorem

 $SETH \Rightarrow ETH$

Proof.

- Assume, for the sake of contradiction, that $s_3 = 0$.
- ► So, for every c > 0 there exists algorithm A_c solving 3SAT in $\mathcal{O}^*(2^{cn})$ time.

Exponential Time Hypothesis

Theorem

 $SETH \Rightarrow ETH$

Proof.

- Assume, for the sake of contradiction, that $s_3 = 0$.
- ► So, for every c > 0 there exists algorithm A_c solving 3SAT in $\mathcal{O}^*(2^{cn})$ time.
- Consider the following method for solving *qSAT*:
 - Given formula ϕ , apply the sparsification lemma for some $\varepsilon > 0$.
 - We now have in O^{*} (2^{εn}) time at most 2^{εn} ψ_i's, φ is satisfiable iff any of the ψ_i's is, and each ψ_i has at most C(ε, q)n clauses.
 - Now apply the classic reduction from qSAT to 3SAT on any ψ_i (recall that for every *q*-clause of ψ_i we introduce q 3 new variables and q 2 new clauses).
 - This results to a 3CNF formula ψ'_i with at most $(1 + qC(\varepsilon, q))n$ variables.

Exponential Time Hypothesis

Theorem

 $SETH \Rightarrow ETH$

Proof. (*cont'd*)

- ► Now, if we apply the algorithm A_{δ} to ψ'_i , for some $\delta > 0$, we can solve satisfiability of ψ'_i in $\mathcal{O}^*\left(2^{\delta' n}\right)$, for $\delta' = \delta \cdot (1 + qC(\varepsilon, q))$.
- ► By applying the procedure to all ψ_i 's, we can solve satisfiability of ϕ in $\mathcal{O}^*\left(2^{\delta''n}\right)$, for $\delta'' = \varepsilon + \delta' = \varepsilon + \delta \cdot (1 + qC(\varepsilon, q))$.
- Since s₃ = 0, we can choose ε and δ arbitrarily close to 0, so δ" is arbitrarily close to 0, hence s_k = 0 for k ≥ 3, which contradicts SETH.

Fine-Grained Reductions

Fine-Grained Reduction

Let a(n), b(n) be nondecreasing functions of n. Problem A is (a, b)-reducible to problem B ($A \leq_{a,b} B$), if: $\forall \varepsilon > 0 \ \exists \delta > 0$, an algorithm F with oracle access to B,

- *F* runs in at most $d \cdot a^{1-\delta}(n)$ time
- ► F makes at most k(n) oracle queries adaptively (the jth instance B_j is a function of {B_i, a_i}_{1≤i<j})
- ► The sizes |B_i| = n_i for any choice of oracle answers a_i obey the inequality:

$$\sum_{i=1}^{k(n)} b^{1-arepsilon}(n_i) \leq d \cdot a^{1-\delta}(n)$$

• Improvements over b(n) for B imply inprovements over a(n) for A.

The Orthogonal Vectors Problem

 A key problem for understanding fine-grained reductions is the Orthogonal Vectors problem.

Orthogonal Vectors (OV)

Let $d = \omega(\log n)$. Given two sets $A, B \subseteq \{0, 1\}^*$, with |A| = |B| = n, decide whether there exist $a \in A, b \in B$ such that $a \cdot b = 0$.

k-Orthogonal Vectors (kOV)

Let $d = \omega(\log n)$. Given sets $A_1, \ldots, A_k \subseteq \{0, 1\}^*$, with $|A_i| = n$ for all $i \in [k]$, decide whether there exist $\alpha_1 \in A_1, \ldots, \alpha_k \in A_k$ such that: $\alpha_1 \cdot \alpha_2 \cdots \alpha_k = \sum_{i=1}^d \prod_{j=1}^k \alpha_j [i] = 0.$

▶ Naïve solution in $\mathcal{O}(n^k d)$ time.

► Best known algorithm runs in $O(n^{k-1/\Theta(d/\log n)})$ time.

The Orthogonal Vectors Problem

 A key problem for understanding fine-grained reductions is the Orthogonal Vectors problem.

Orthogonal Vectors (OV)

Let $d = \omega(\log n)$. Given two sets $A, B \subseteq \{0, 1\}^*$, with |A| = |B| = n, decide whether there exist $a \in A, b \in B$ such that $a \cdot b = 0$.

k-Orthogonal Vectors (kOV)

Let $d = \omega(\log n)$. Given sets $A_1, \ldots, A_k \subseteq \{0, 1\}^*$, with $|A_i| = n$ for all $i \in [k]$, decide whether there exist $\alpha_1 \in A_1, \ldots, \alpha_k \in A_k$ such that: $\alpha_1 \cdot \alpha_2 \cdots \alpha_k = \sum_{i=1}^d \prod_{j=1}^k \alpha_j [i] = 0.$

- ▶ Naïve solution in $\mathcal{O}(n^k d)$ time.
- ▶ Best known algorithm runs in $O(n^{k-1/\Theta(d/\log n)})$ time.

The *kOV*Hypothesis

There is no (randomized) algorithm that can solve kOV in $n^{k-\varepsilon} poly(d)$ time for constant $\varepsilon > 0$.

Fine-Grained Reductions

Theorem (Williams 2005)

 $SAT \leq_{2^n, n^k} kOV$

Fine-Grained Reductions

Theorem (Williams 2005)

SAT $\leq_{2^n, n^k} kOV$

Proof.

- Let F(n, m) be the given formula.
- We can assume, due to the Sparsification Lemma, that *F* has $\mathcal{O}(n)$ clauses.
- Split the *n* variables into *k* sets V_1, \ldots, V_k .
- For every *j* ∈ [*k*], create a set A_j containing a vector α^j(φ) for each of the N = 2^{n/k} partial t.a.'s., where:

 $\alpha^{j}(\phi)[c] = 0$, iff the c^{th} clause of *F* is satisfied by ϕ .

- If for some $\alpha_1(\phi_1), \alpha_2(\phi_2), \ldots, \alpha_k(\phi_k)$: $\sum_c \prod_j \alpha_j(\phi_j)[c] = 0$, then for every *c* there is some vector $\alpha_j(\phi_j)$ that is 0 in *c*, so ϕ_j satisfies *c*.
- Thus, the concatenation $\bigcirc_{\ell=1}^k \phi_\ell$ satisfies all clauses.

Theorem (Williams 2005)

SAT $\leq_{2^n, n^k} kOV$

Proof. (cont'd)

- Conversely, if ϕ satisfies all clauses, then $\phi_j = \phi \upharpoonright_{V_j}$ and so $\sum_c \prod_j \alpha_j(\phi_j)[c] = 0.$
- So, if we can solve kOV in N^{k-ε} poly(m) time in {0,1}^m, then we can solve kSAT in (2^{n/k})^{k-ε} poly(m) = 2^{n(1-ε')} poly(m), contradicting SETH.

Theorem (Williams 2005)

 $SAT \leq_{2^n, n^k} kOV$

Proof. (cont'd)

- Conversely, if ϕ satisfies all clauses, then $\phi_j = \phi \upharpoonright_{V_j}$ and so $\sum_c \prod_j \alpha_j(\phi_j)[c] = 0.$
- So, if we can solve kOV in N^{k-ε} poly(m) time in {0,1}^m, then we can solve kSAT in (2^{n/k})^{k-ε} poly(m) = 2^{n(1-ε')} poly(m), contradicting SETH.
- ▶ It is simply to see that $kOV \leq_{n^k, n^{k-1}} (k-1)OV \cdots \leq_{n^3, n^2} 2OV$.
- ► So, 2OV is the hardest of these problems.
- The above reduction can be routed through kDOMINATING SET.

Thank You!