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Introduction

▶ The time hierarchy Theorem states that there are problems
solved in T(n), for a constructible function T, but not in
O
(
T1−ε(n)

)
, for ε > 0.

▶ All known bn-time kSAT algorithms have: limk→∞ b = 2 (all the
results are of the form O∗ (2n− cn

k
)
).

▶ NP-hardness is a useful tool for polynomial time hardness, but
it doesn’t capture non-polynomial times. For example, an

O∗
(
2
√

n
)

algorithm for kSAT would be a great advancement. It

would be difficult the P vs NP conjecture to be strong enough to
prove exponential lower bounds for kSAT.

▶ The optimality conjecture of the exponential-time kSAT
algorithms is formalized as the Strong Exponential Time
Hypothesis (Impagliazzo, Paturi, 2001).
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Introduction

Exponential TimeHypothesis [ETH]

There exists an ε > 0 such that 3SAT requires 2εn time.

Strong Exponential TimeHypothesis [SETH]

For all δ < 1 exists a k ≥ 3 such that kSAT requires 2δn time.
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Introduction

▶ Other problems in P have similar behaviour:

▶ The Edit Distance problem, for example, admits a classical DP
O
(
n2

)
algorithm (Wagner, Fisher 1974), but till today the best

improvement is O
(
n2/ log2 n

)
(Masek, Paterson 1980).

▶ Similar observations hold for the Longest Common
Subsequence Problem (LCS).

▶ The 3SUM problem: Given a set S of integers, are there x, y, z ∈ S
such that x+ y+ z = 0? We have a trivial O

(
n2 logn

)
algorithm,

and the best known runs in O
(
n2(log logn)2/ log2 n

)
(Baran,

Demaine, Patrascu, 2008).
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Introduction

▶ The Colinearity Problem in Computational Geometry: Given n
points in the plane, are any three colinear? The best known
algorithms runs in n2−o(1).

▶ The APSP (All-Pairs Shortest Paths) Problem. There is the
classical DP O

(
n3

)
algorithm (Floyd, Warshall, 1962). Best

known algorithm runs in O
(
n3/exp(

√
logn)

)
(Williams 2014),

using Circuit Complexity tools, namely the
Razborov-Smolensky polynomials.

▶ For any of these problems, is there a complexity theoretic
reason (a.k.a. barrier) to obtaining a better algorithm?

▶ Or else, is the reason for this hardness the same for all -or even
for some- these problems?
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Introduction

Fine-Grained Approach

▶ Start with a problem solvable in O (t(n)), and nothing much
better known, and formulate a hypothesis.

▶ Connect this problem to others via fine-grained reductions, so
that for a problem having an O (T(n)) algorithm, obtaining an
O
(
T1−ε(n)

)
algorithm for ε > 0, would violate the hypothesis.

▶ P vs NP is model indepedent, but in a fine-grained analysis, the
precise computational model does matter.

▶ We use the Word RAM model with O (logn) bit words
(i.e. operations on O (log n) bit chunks of data in constant time).

6



Introduction

Fine-Grained Approach

▶ Start with a problem solvable in O (t(n)), and nothing much
better known, and formulate a hypothesis.

▶ Connect this problem to others via fine-grained reductions, so
that for a problem having an O (T(n)) algorithm, obtaining an
O
(
T1−ε(n)

)
algorithm for ε > 0, would violate the hypothesis.

▶ P vs NP is model indepedent, but in a fine-grained analysis, the
precise computational model does matter.

▶ We use the Word RAM model with O (logn) bit words
(i.e. operations on O (log n) bit chunks of data in constant time).

6



Fine-Grained Standard Conjectures

SETH

For all δ < 1 exists a k ≥ 3 such that kSAT requires 2δn time.

The 3SUMConjecture

Any algorithm requires n2−o(1) time to determine whether a set
S ⊂ {−n3, · · · ,n3} of integers of size |S| = n contains 3 distinct
elements a,b, c ∈ S such that a+ b = c.

APSP Conjecture

Any algorithm requires n3−o(1) time to compute the distances
between every pair of vertices in an n node graph with edge
weights in {1, . . . ,nc}, for some constant c.

▶ These conjectures can be extended to randomized algorithms.
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Exponential TimeHypothesis

▶ We need a more strict formalization to work with:

▶ Let:

sk = inf{c | there is a O∗ (2c·n) algorithm for kSAT with n variables}

▶ Then:

ETH

s3 > 0

SETH

lim
k→∞

sk = 1
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The Need for Sparsification

▶ Can we relate SETH to ETH?
▶ Recall the classic reduction from NP-completeness theory:

Theorem

If 3SAT can be solved in polynomial time, then so can kSAT, for
every k ≥ 3.

▶ Can we say the same for subexponential time solvability?

▶ Recall the proof of the above theorem:
For every k-clause C = (x1 ∨ x2 ∨ · · · ∨ xk), we introduce new
variables y3, y4, . . . , yk−1 and replace C by:

(x1 ∨ x2 ∨ y3)∧ (ȳ3 ∨ x3 ∨ y4)∧ (ȳ4 ∨ x4 ∨ y5)∧ · · · ∧ (ȳk−1 ∨ xk−1 ∨ xk)

▶ If we use the above reduction, we’ll fail:
For each clause we introduce k− 3 variables, thus the new formula has
n+ (k− 3)m variables.

▶ If we can solve 3SAT in subexponential time, suppose O (2εn) for some

ε > 0, then the above reduction algorithm gives us O
(
2ε(n+(k−3)m)

)
. If

m = O
(
n2

)
, then it’s a disaster.
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The Need for Sparsification

▶ We clearly need an intermediate step here:

Theorem (The Sparsification Lemma)

For all ε > 0 and positive q, there is a constant C = C(ε,q) such that
any qCNF formula ϕwith n variables can be expressed as
ϕ =

∨t
i=1 ψi, where t ≤ 2εn and each ψi is a qCNF formula over the

same variable set as ϕ and at most Cn clauses.
This disjunction can be computed in O∗ (2εn) time.

▶ Using the above lemma, we can “sparsify” the kCNF formula, in
order to avoid the previously mentioned phenomena.
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Exponential TimeHypothesis

Theorem

SETH ⇒ ETH

Proof.

▶ Assume, for the sake of contradiction, that s3 = 0.
▶ So, for every c > 0 there exists algorithm Ac solving 3SAT in

O∗ (2cn) time.

▶ Consider the following method for solving qSAT:
Given formula ϕ, apply the sparsification lemma for some ε > 0.
We now have in O∗ (2εn) time at most 2εn ψi’s, ϕ is satisfiable iff
any of the ψi’s is, and each ψi has at most C(ε, q)n clauses.
Now apply the classic reduction from qSAT to 3SAT on any ψi

(recall that for every q-clause of ψi we introduce q− 3 new
variables and q− 2 new clauses).
This results to a 3CNF formula ψ′

i with at most (1 + qC(ε, q))n
variables.
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Exponential TimeHypothesis

Theorem

SETH ⇒ ETH

Proof. (cont’d)

▶ Now, if we apply the algorithm Aδ to ψ′
i , for some δ > 0, we can

solve satisfiability of ψ′
i in O∗

(
2δ

′n
)
, for δ′ = δ · (1+ qC(ε,q)).

▶ By applying the procedure to all ψi’s, we can solve satisfiability

of ϕ in O∗
(
2δ

′′n
)
, for δ′′ = ε+ δ′ = ε+ δ · (1+ qC(ε,q)).

▶ Since s3 = 0, we can choose ε and δ arbitrarily close to 0, so δ′′ is
arbitrarily close to 0, hence sk = 0 for k ≥ 3, which contradicts
SETH. □
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Fine-Grained Reductions

Fine-Grained Reduction

Let a(n),b(n) be nondecreasing functions of n.
Problem A is (a,b)-reducible to problem B (A ≤a,b B), if:
∀ε > 0 ∃δ > 0, an algorithm F with oracle access to B,

▶ F runs in at most d · a1−δ(n) time

▶ F makes at most k(n) oracle queries adaptively
(the jth instance Bj is a function of {Bi, ai}1≤i<j)

▶ The sizes |Bi| = ni for any choice of oracle answers ai obey the
inequality:

k(n)∑
i=1

b1−ε(ni) ≤ d · a1−δ(n)

▶ Improvements over b(n) for B imply inprovements over a(n) for A.
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The Orthogonal Vectors Problem

▶ A key problem for understanding fine-grained reductions is the
Orthogonal Vectors problem.

Orthogonal Vectors (OV)

Let d = ω(logn). Given two sets A,B ⊆ {0, 1}∗, with |A| = |B| = n,
decide whether there exist a ∈ A,b ∈ B such that a · b = 0.

k-Orthogonal Vectors (kOV)

Let d = ω(logn). Given sets A1, . . . ,Ak ⊆ {0, 1}∗, with |Ai| = n for all
i ∈ [k], decide whether there exist α1 ∈ A1, . . . , αk ∈ Ak such that:
α1 · α2 · · ·αk =

∑d
i=1

∏k
j=1 αj[ i ] = 0.

▶ Naïve solution in O
(
nkd

)
time.

▶ Best known algorithm runs in O
(
nk−1/Θ(d/ log n)

)
time.

The kOVHypothesis

There is no (randomized) algorithm that can solve kOV in
nk−εpoly(d) time for constant ε > 0.
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Fine-Grained Reductions

Theorem (Williams 2005)

SAT ≤2n,nk kOV

Proof.

▶ Let F(n,m) be the given formula.
▶ We can assume, due to the Sparsification Lemma, that F has

O (n) clauses.
▶ Split the n variables into k sets V1, . . . ,Vk.
▶ For every j ∈ [k], create a set Aj containing a vector αj(ϕ) for

each of the N = 2n/k partial t.a.’s., where:

αj(ϕ)[c] = 0, iff the cth clause of F is satisfied by ϕ.

▶ If for some α1(ϕ1), α2(ϕ2), . . . , αk(ϕk):
∑

c

∏
j αj(ϕj)[c] = 0 , then

for every c there is some vector αj(ϕj) that is 0 in c, so ϕj satisfies
c.

▶ Thus, the concatenation ⃝k
ℓ=1ϕℓ satisfies all clauses.

15



Fine-Grained Reductions

Theorem (Williams 2005)

SAT ≤2n,nk kOV

Proof.

▶ Let F(n,m) be the given formula.
▶ We can assume, due to the Sparsification Lemma, that F has

O (n) clauses.
▶ Split the n variables into k sets V1, . . . ,Vk.
▶ For every j ∈ [k], create a set Aj containing a vector αj(ϕ) for

each of the N = 2n/k partial t.a.’s., where:

αj(ϕ)[c] = 0, iff the cth clause of F is satisfied by ϕ.

▶ If for some α1(ϕ1), α2(ϕ2), . . . , αk(ϕk):
∑

c

∏
j αj(ϕj)[c] = 0 , then

for every c there is some vector αj(ϕj) that is 0 in c, so ϕj satisfies
c.

▶ Thus, the concatenation ⃝k
ℓ=1ϕℓ satisfies all clauses.

15



Fine-Grained Reductions

Theorem (Williams 2005)

SAT ≤2n,nk kOV

Proof. (cont’d)

▶ Conversely, if ϕ satisfies all clauses, then ϕj = ϕ ↾Vj and so∑
c

∏
j αj(ϕj)[c] = 0.

▶ So, if we can solve kOV in Nk−εpoly(m) time in {0, 1}m, then we
can solve kSAT in (2n/k)k−εpoly(m) = 2n(1−ε′)poly(m),
contradicting SETH. □

▶ It is simply to see that kOV ≤nk,nk−1 (k− 1)OV · · · ≤n3,n2 2OV.

▶ So, 2OV is the hardest of these problems.

▶ The above reduction can be routed through
kDOMINATING SET.
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Thank You!
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