FFT

We want efficient algoriths for these
 Polynomial Operations (Multiplication, Addition, Evaluation)

Some reperesentations

$$
\begin{gathered}
2+3 x+x^{2} \rightarrow A=[2,3,1] \\
(-1,0),(0,2),(1,6)
\end{gathered}
$$

Fact: A polynomial of degree d can be uniquely represented by its values in any $d+1$ points. (at least $d+1$)

Algorithms vs.
Representations
Coefficients Roots Samples

Evaluation	$O(n)$	$O(n)$	$O\left(n^{2}\right)$
Addition	$O(n)$	∞	$O(n)$
Multiplication	$O\left(n^{2}\right)$	$O(n)$	$O(n)$

So we want Coef \rightarrow Value representation Multiply
and then Value \rightarrow Coef.

NAINE APPROACH

$$
\begin{gathered}
\left\{\left(x_{0}, P\left(x_{0}\right)\right),\left(x_{1}, P\left(x_{1}\right)\right), \ldots,\left(x_{d}, P\left(x_{d}\right)\right)\right\} \\
P(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{d} x^{d} \\
P\left(x_{0}\right)=p_{0}+p_{1} x_{0}+p_{2} x_{0}^{2}+\cdots+p_{d} x_{0}^{d} \\
P\left(x_{1}\right)=p_{0}+p_{1} x_{1}+p_{2} x_{1}^{2}+\cdots+p_{d} x_{1}^{d} \\
\vdots \\
P\left(x_{d}\right)=p_{0}+p_{1} x_{d}+p_{2} x_{d}^{2}+\cdots+p_{d} x_{d}^{d}
\end{gathered}
$$

$$
\left[\begin{array}{c}
P\left(x_{0}\right) \\
P\left(x_{1}\right) \\
\vdots \\
P\left(x_{d}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{d} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{d} & x_{d}^{2} & \cdots & x_{d}^{d}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{d}
\end{array}\right]
$$

To find the values in $d+1$ point computation is $O\left(d^{2}\right)$

$$
\left[\begin{array}{c}
P\left(x_{0}\right) \\
P\left(x_{1}\right) \\
\vdots \\
P\left(x_{d}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{d} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{d} & x_{d}^{2} & \cdots & x_{d}^{d}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{d}
\end{array}\right]
$$

To find the values in $d+1$ point computation is $O\left(d^{2}\right)$

A nudge towards the Solution

What will happen when I compute $A\left(x_{0}\right)$ and $A\left(-x_{0}\right)$???

$$
3+4 x+6 x^{2}+2 x^{3}+x^{4}+10 x^{5}=\left(3+6 x^{2}+x^{4}\right)+x\left(4+2 x^{2}+10 x^{4}\right) .
$$

A nudge towards the Solution

What will happen when I compute $P\left(x_{0}\right)$ and $P\left(-x_{0}\right)$???

$$
\begin{gathered}
3+4 x+6 x^{2}+2 x^{3}+x^{4}+10 x^{5}=\left(3+6 x^{2}+x^{4}\right)+x\left(4+2 x^{2}+10 x^{4}\right) . \\
P\left(x_{i}\right)=P_{e}\left(x_{i}^{2}\right)+x_{i} P_{o}\left(x_{i}^{2}\right) \\
P\left(-x_{i}\right)=P_{e}\left(x_{i}^{2}\right)-x_{i} P_{o}\left(x_{i}^{2}\right)
\end{gathered}
$$

Evaluate only at squares of the original points ($n / 2$).

The degree of P_{e} and P_{o} also drops to half!!

Evaluate $\begin{gathered}P(x):\left[p_{0}, p_{1}, \ldots, p_{n-1}\right] \\ {\left[\pm x_{1}, \pm x_{2}, \ldots, \pm x_{n / 2}\right]}\end{gathered}$

$$
P(x)=P_{e}\left(x^{2}\right)+x P_{o}\left(x^{2}\right)
$$

$$
\begin{gathered}
P\left(x_{i}\right)=P_{e}\left(x_{i}^{2}\right)+x_{i} P_{o}\left(x_{i}^{2}\right) \\
P\left(-x_{i}\right)=P_{e}\left(x_{i}^{2}\right)-x_{i} P_{o}\left(x_{i}^{2}\right) \\
i=\{1,2, \ldots, n / 2\}
\end{gathered}
$$

It would be of a good complexity if there was no problem

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(n)=O(n \lg n)
$$

X the set of all points stops geting halfed after step 1.

Solution: nth Roots of unity $z^{n}=1$

Example 4th roots: $\{1,-1, \mathrm{i},-\mathrm{i}\}$
Example 2nd roots: $\{1,-1\}$
Example 1st root: $\{1\}$

Expand the domain of the polynomials to \mathbb{C} and everything still holds. With the help of some equations we denote the nth- roots by the complex
numbers $1, \omega, \omega^{2}, \cdots, \omega^{n-1}$ where $\omega=e^{i 2 \pi / n}$. And pick $n=2^{l}$.

Expand the domain of the polynomials to \mathbb{C} and everything still holds. With the help of some equations we denote the nth- roots by the complex numbers $1, \omega, \omega^{2}, \cdots, \omega^{n-1}$ where $\omega=e^{i 2 \pi / n}$. And pick $n=2^{l}$ for convinience.

$$
\begin{aligned}
& {\left[\begin{array}{c}
P\left(x_{0}\right) \\
P\left(x_{1}\right) \\
P\left(x_{2}\right) \\
\vdots \\
P\left(x_{n-1}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-1}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
\vdots \\
p_{n-1}
\end{array}\right]} \\
& {\left[\begin{array}{c}
P\left(\omega^{0}\right) \\
P\left(\omega^{1}\right) \\
P\left(\omega^{2}\right) \\
\vdots \\
P\left(\omega^{n-1}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
\vdots \\
p_{n-1}
\end{array}\right]}
\end{aligned}
$$

So in cases where V is as follows we have the FFT.

IFFT

Now given the values of a polynomial computed in the roots of unity how to go back to the coef representation ?

We solved $V * C_{o e f}=Y$ now to solve $C_{o e f}=V^{-1} * Y$. How V^{-1} looks like?

IFFT

$$
\begin{gathered}
{\left[\begin{array}{c}
p_{k}=\omega^{k} \text { where } \omega=e^{\frac{2 \pi i}{n}} \\
p_{1} \\
p_{2} \\
\vdots \\
p_{n-1}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]^{-1}\left[\begin{array}{c}
P\left(\omega^{0}\right) \\
P\left(\omega^{1}\right) \\
P\left(\omega^{2}\right) \\
\vdots \\
P\left(\omega^{n-1}\right)
\end{array}\right]} \\
{\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
\vdots \\
p_{n-1}
\end{array}\right]=\frac{\downarrow}{n}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \cdots & \omega^{-(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
P\left(\omega^{0}\right) \\
P\left(\omega^{1}\right) \\
P\left(\omega^{2}\right) \\
\vdots \\
P\left(\omega^{n-1}\right)
\end{array}\right]}
\end{gathered}
$$

IFFT

So if $V^{-1}=\frac{1}{n} \bar{V}$ we have that the conjugates of the roots of unity ara also roots of unity of we can apply the FFT with $\omega=\omega^{-1}$ and then divide the resulting array by $1 / n$.

Proof. We claim that $P=V \cdot \bar{V}=n I$:

$$
\begin{aligned}
p_{j k} & =(\text { row } j \text { of } V) \cdot(\text { col. } k \text { of } \bar{V}) \\
& =\sum_{m=0}^{n-1} e^{i j \tau m / n} \overline{e^{i k \tau m / n}} \\
& =\sum_{m=0}^{n-1} e^{i j \tau m / n} e^{-i k \tau m / n} \\
& =\sum_{m=0}^{n-1} e^{i(j-k) \tau m / n}
\end{aligned}
$$

Now if $j=k, p_{j k}=\sum_{m=0}^{n-1}=n$. Otherwise it forms a geometric series.

$$
\begin{aligned}
p_{j k}= & =\sum_{m=0}^{n-1}\left(e^{i(j-k) \tau / n}\right)^{m} \\
& =\frac{\left(e^{i \tau(j-k) / n}\right)^{n}-1}{e^{i \tau(j-k) / n}-1} \\
& =0
\end{aligned}
$$

