
Approximation Algorithms
for TSP, Vertex Cover and

Set Cover

Approximation Algorithm

Definition: Let P be a minimization problem, and I be an instance of P. Let A be an algorithm that

finds feasible solution to instances of P. Let A(I) is the cost of the solution returned by A for instance
I, and OPT(I) is the cost of the optimal solution (mimimum) for I. Then, A is said to be an
α-approximation algorithm for P if

 where α ≥ 1.

Traveling Salesman Problem

Source: https://www.javatpoint.com/travelling-sales-person-problem

https://www.javatpoint.com/travelling-sales-person-problem

Theorem: For any constant k, it is NP-hard to approximate TSP to a factor of k.

Proof:

● Hamiltonian Cycle is NP-Complete

● If we could approximate TSP we could find a hamiltonian cycle in polynomial time

● P≠NP

Approximation Algorithm for Metric TSP

1. Compute a weighted MST of G.

2. Root MST arbitrarily and traverse in pre-order v
1
, v

2
, …, v

n
.

3. Output tour v
1
→ v

2
→ …→v

n
→v

1
.

Claim: A is a 2-approximation algorithm for (metric) TSP

Proof:

If σ is a full walk along the MST in pre-order, σ* an optimum tour and T a spanning tree

A(I)≤cost(σ)=2*MST(I) (1)

OPT(I)=cost(σ*)≥cost(T)≥MST(I) (2)

(1), (2) ⇒ A(I)≤2×MST(I)≤2×OPT(I)

Christofides’ Algorithm
1. Find a minimum spanning tree T

2. Find a minimum-weight perfect matching M for the odd-degree vertices in T

3. Add M to T

4. Find an Euler tour

5. Cut short

Claim: A is a 1.5-approximation algorithm for (metric) TSP

Proof:

If σ is a full walk along the MST in pre-order and σ* an optimum tour

OPT(I)=cost(σ*)≥cost(T)≥MST(I) (1)

cost(M)≤ 0.5 OPT(I) (2)

(1), (2) ⇒cost(C)≤ cost(T)+ cost(M)≤1.5*OPT(I)

Set Cover

Problem:

Given a universe U of elements {1, . . . , n}, and

a collection of subsets S = {S
1
, . . . , S

m
} of subsets of U,

together with cost a cost function c(S
i
) > 0,

find a minimum cost subset of S, that covers all elements in U.

Theorem: The algorithm gives us a [ln n + O(1)]-approximation for set cover.

Proof: Let e
1
, . . . , e

n
 be the elements in the order they are covered by the algorithm. At iteration k, there must

be a set from S that is contained in the optimal solution and covers some of the remaining elements U \ C

including e
k
 at cost at most OPT. Thus we have

price-per-item(e
k
) ≤ =

and using this, we can upper bound the total cost of the greedy solution by

Total Cost = ∑
k∈[1,n]

 price-per-item(e
k
) ≤ ∑

k∈[1,n]
= ∑

k∈[1,n]
= OPT · H

n
 ≈ OPT·(ln n + 0.6)

1

k

Reminder (Harmonic Number):

H
n
=∑

k∈[1,n]

lim
n→∞(H

n
-ln ln)=γ

γ≈ 0.5772156649

Euler–Mascheroni constant.

OPT

|U \ C|

OPT

n − k + 1

OPT

n − k + 1

OPT

k

Vertex Cover

Note: Algorithm A finds a

maximal matching M

Claim 1: This algorithm gives a vertex cover

Proof: Every edge ∈ M is clearly covered. If an edge, e ∉M is not covered, then M ∪{e} is a

matching, which contradict to maximality of M.

Claim 2: This vertex cover has size ≤ 2×minimum size (optimal solution)

Proof: The optimum vertex cover must cover every edge in M. So, it must include at least one of

the endpoints of each edge ∈ M, where no 2 edges in M share an endpoint. Hence, optimum

vertex cover must have size

OPT(I) ≥|M|

But the algorithm A return a vertex cover of size 2|M|, so ∀I we have

A(I) = 2|M| ≤ 2 ×OPT(I)

implying that A is a 2-approximation algorithm.

Linear Programming
1. Linear Function:

f(x
1
,x

2
)=c

1
x

1
+c

2
x

2

2. Constraints:

a
11

x
1
+a

12
x

2
≤

b

1

a
21

x
1
+a

22
x

2
≤

b

2

a
31

x
1
+a

32
x

2
≤

b

3

3. Non-negative variables:

x
1
≥0

x
2
≥0

Integer Programming:

x
i
∈Z

Example: Linear Programming in 2D
1. max f(x

1
,x

2
)=4x+5y

2. x+y≤20

3x+4y≤72

3. x≥0

y≥0

f(0,18)=90

f(0,0)=0

f(20,0)=100

f(8,12)=92

Weighted Vertex Cover

Input: An undirected graph G = (V, E) with vertex weights w
i
 ≥ 0.

Problem: Find a minimum-weight subset of nodes S such that every

e ∈ E is incident to at least one vertex in S.

IP Formulation

minimize ∑
i∈V

w
i
x

i

subject to x
i
+x

j
≥1 ∀ (i,j)∈E

x
i
∈{0,1} ∀ i∈V

LP Rexalation

minimize ∑
i∈V

w
i
x

i

subject to x
i
+x

j
≥1 ∀ (i,j)∈E

x
i
≥1 ∀ i∈V

LP can be solved in polynomial

time, while IP is NP-hard.

LP- Rounding Algorithm:

1. Let x* be an optimal solution.

➢ Define x
v
=1, if x

v
*≥1/2

➢ Define x
u
=0, if x

u
*< 1/2

2. Let S = {i∈ V : x
i
 = 1}

The set S is a valid vertex cover, because for each edge (u, v) it is true hat x
u
*+x

v
*≥1,

and so at least one of x
u
* or x

v
* must be at least 1/2, and so at least one of u or v

belongs to S

Claim: A is a 2-approximation algorithm

Proof: ∑
v∈S

w(v)

=∑
v∈V

w(v)x
v

≤∑
v∈V

w(v)⋅2⋅x
v
*

=2⋅OPT(LP)

≤2⋅OPT(VC), every solution to the IP is also a solution to the LP, hence

OPT
LP

 ≤ OPT
IP

Dual LP
Primal LP

minimize ∑
i∈V

w
i
x

i

subject to x
i
+x

j
≥1 ∀ edge (i,j)∈E

x
i
≥1 ∀ vertex i∈V

Dual LP

maximize ∑
e∈E

y
e

subject to ∑
e: e hits v

≤w
v

∀ v∈V

y
e
≥0 ∀ e∈E

DualFeasible≤DualOPT=PrimalOPT≤PrimalFeasible

Bar-Yehuda and Even Algorithm

● Inititally all edges are uncovered.

● While ∃ an uncovered edge in G:
○ Choose an arbitrary edge, e.

○ Raise the value of y
e
 for that edge until one of its incident vertices, v, becomes full (i.e

∑
e:e hits v

y
e
=w

v
)

○ S ← S ∪ {v}

○ Any edge that touches v is considered to be covered

● Return S as our vertex cover

Claim 1: The set S returned is a vertex cover.

Reason: At termination, for each edge e= (u,v), at least one of u and v is tight ⇒ at least one of u and v is in

S.

Claim 2: The Pricing Method is a 2-approximation algorithm for MWVC.

Proof: Let S*be an optimum vertex cover. Then w(S)≤2w(S*).

w(S) = ∑
i∈S

w
i

= ∑
i∈S

∑
e=(i,j)

y
e

≤∑
i∈V

∑
e=(i,j)

y
e

= 2 ∑
e∈E

y
e

≤2 w(S*)

