

Approximation Algorithms for TSP, Vertex Cover and Set Cover

Approximation Algorithm

Definition: Let P be a minimization problem, and I be an instance of P. Let A be an algorithm that finds feasible solution to instances of P. Let A(I) is the cost of the solution returned by A for instance I, and OPT(I) is the cost of the optimal solution (mimimum) for I. Then, A is said to be an α -approximation algorithm for P if

$$orall I, \quad rac{A(I)}{OPT(I)} \ \le \ lpha \$$
 where $lpha \ge$ 1.

Traveling Salesman Problem

Theorem: For any constant k, it is NP-hard to approximate TSP to a factor of k.

Proof:

- Hamiltonian Cycle is NP-Complete
- If we could approximate TSP we could find a hamiltonian cycle in polynomial time
- P≠NP

Approximation Algorithm for Metric TSP

- 1. Compute a weighted MST of G.
- 2. Root MST arbitrarily and traverse in pre-order $v_1, v_2, ..., v_n$.
- 3. Output tour $v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n \rightarrow v_1$.

Claim: A is a 2-approximation algorithm for (metric) TSP

Proof:

If σ is a full walk along the MST in pre-order, σ^* an optimum tour and T a spanning tree

 $A(I) \leq \cot(\sigma) = 2^* MST(I)$ (1)

 $OPT(I) = cost(\sigma^*) \ge cost(T) \ge MST(I)$ (2)

 $(1), (2) \Rightarrow A(I) \leq 2 \times MST(I) \leq 2 \times OPT(I)$

Christofides' Algorithm

- 1. Find a minimum spanning tree T
- 2. Find a minimum-weight perfect matching M for the odd-degree vertices in T
- 3. Add M to T
- 4. Find an Euler tour
- 5. Cut short

Claim: A is a 1.5-approximation algorithm for (metric) TSP

Proof:

If σ is a full walk along the MST in pre-order and σ^* an optimum tour

- $OPT(I) = cost(\sigma^*) \ge cost(T) \ge MST(I)$ (1)
- $cost(M) \le 0.5 \text{ OPT}(I)$ (2)

(1), (2) \Rightarrow cost(C) \leq cost(T)+ cost(M) \leq 1.5*OPT(I)

Problem:

Given a universe U of elements {1, . . . , n}, and

a collection of subsets S = {S₁, . . . , S_m} of subsets of U,

together with cost a cost function $c(S_i) > 0$,

find a minimum cost subset of S, that covers all elements in U.

 $C \leftarrow \emptyset$ Result $\leftarrow \emptyset$ while $C \neq U$ $S \leftarrow \arg \min_{S \in \mathcal{S}} \frac{c(S)}{|S \setminus C|}$ $\forall e \in (S \setminus C) : \text{price-per-item}(e) \leftarrow \frac{c(S)}{|S \setminus C|}$ $C \leftarrow C \cup S$ Result \leftarrow Result \cup {S} end return Result

Theorem: The algorithm gives us a [ln n + O(1)]-approximation for set cover.

Proof: Let e_1, \ldots, e_n be the elements in the order they are covered by the algorithm. At iteration k, there must be a set from S that is contained in the optimal solution and covers some of the remaining elements U \ C including e_k at cost at most OPT. Thus we have

price-per-item(e_k)
$$\leq \frac{\text{OPT}}{|\cup \setminus C|} = \frac{\text{OPT}}{n-k+1}$$

and using this, we can upper bound the total cost of the greedy solution by

Reminder (Harmonic Number):
$$H_n = \sum_{k \in [1,n]} \frac{1}{k}$$
 $\lim_{n \to \infty} (H_n - \ln \ln) = \gamma$ γ≈ 0.5772156649Euler-Mascheroni constant.

Total Cost =
$$\sum_{k \in [1,n]}$$
 price-per-item(e_k) $\leq \sum_{k \in [1,n]} \frac{\text{OPT}}{n-k+1} = \sum_{k \in [1,n]} \frac{\text{OPT}}{k} = \text{OPT} \cdot H_n \approx \text{OPT} \cdot (\ln n + 0.6)$

Vertex Cover

Algorithm 1: APPROX-VERTEX-COVER(G)

return C

Note: Algorithm A finds a maximal matching M

Claim 1: This algorithm gives a vertex cover

Proof: Every edge \in M is clearly covered. If an edge, e \notin M is not covered, then M U {e} is a

matching, which contradict to maximality of M.

Claim 2: This vertex cover has size $\leq 2 \times \text{minimum size}$ (optimal solution)

Proof: The optimum vertex cover must cover every edge in M. So, it must include at least one of the endpoints of each edge \in M, where no 2 edges in M share an endpoint. Hence, optimum vertex cover must have size

$OPT(I) \ge |M|$

But the algorithm A return a vertex cover of size 2|M|, so $\forall I$ we have

 $A(I) = 2|M| \le 2 \times OPT(I)$

implying that A is a 2-approximation algorithm.

Linear Programming

- 1. Linear Function:
 - $f(x_1, x_2) = c_1 x_1 + c_2 x_2$
- 2. Constraints:

 $a_{11}x_{1} + a_{12}x_{2} \le b_{1}$ $a_{21}x_{1} + a_{22}x_{2} \le b_{2}$ $a_{31}x_{1} + a_{32}x_{2} \le b_{3}$

3. Non-negative variables:

x₁≥0

x₂≥0

Example: Linear Programming in 2D

- 1. max $f(x_1, x_2) = 4x + 5y$
- 2. x+y≤20

3x+4y≤72

3. x≥0 y≥0

> f(0,18)=90 f(0,0)=0 f(20,0)=100 f(8,12)=92

Weighted Vertex Cover

Input: An undirected graph G = (V, E) with vertex weights $w_i \ge 0$.

Problem: Find a minimum-weight subset of nodes S such that every

 $e \in E$ is incident to at least one vertex in S.

IP Formulation

minimize $\sum_{i \in V} w_i x_i$ subject to $x_i + x_j \ge 1 \quad \forall (i,j) \in E$ $x_i \in \{0,1\} \quad \forall i \in V$

LP Rexalation

minimize $\sum_{i \in V} w_i x_i$ subject to $x_i + x_j \ge 1 \quad \forall (i,j) \in E$ $x_i \ge 1 \quad \forall i \in V$

LP can be solved in polynomial time, while IP is NP-hard.

LP- Rounding Algorithm:

- 1. Let x* be an optimal solution.
 - > Define $x_v = 1$, if $x_v \ge 1/2$
 - > Define $x_u = 0$, if $x_u^* < 1/2$
- 2. Let $S = \{i \in V : x_i = 1\}$

The set S is a valid vertex cover, because for each edge (u, v) it is true hat $x_u^* + x_v^* \ge 1$, and so at least one of x_u^* or x_v^* must be at least 1/2, and so at least one of u or v belongs to S **Claim:** A is a 2-approximation algorithm

Proof: $\sum_{v \in S} w(v)$ = $\sum_{v \in V} w(v) x_v$ $\leq \sum_{v \in V} w(v) \cdot 2 \cdot x_v^*$ = $2 \cdot OPT(LP)$

> $\leq 2 \cdot OPT(VC)$, every solution to the IP is also a solution to the LP, hence $OPT_{LP} \leq OPT_{IP}$

Dual LP

Dual_{Feasible} ≤ Dual_{OPT} = Primal_{OPT} ≤ Primal_{Feasible}

Bar-Yehuda and Even Algorithm

- Inititally all edges are uncovered.
- While \exists an uncovered edge in G:
 - Choose an arbitrary edge, e.
 - Raise the value of y_e for that edge until one of its incident vertices, v, becomes full (i.e $\sum_{e:e \text{ hits } v} y_e = w_v$)
 - $\circ \quad S \leftarrow S \ \cup \ \{v\}$
 - Any edge that touches v is considered to be covered
- Return S as our vertex cover

<u>Claim 1</u>: The set S returned is a vertex cover.

<u>Reason</u>: At termination, for each edge e = (u,v), at least one of u and v is tight \Rightarrow at least one of u and v is in S.

<u>Claim 2:</u> The Pricing Method is a 2-approximation algorithm for MWVC.

Proof: Let S*be an optimum vertex cover. Then $w(S) \leq 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i$$
$$= \sum_{i \in S} \sum_{e=\{i,j\}} y_e$$
$$\leq \sum_{i \in V} \sum_{e=\{i,j\}} y_e$$
$$= 2 \sum_{e \in E} y_e$$
$$\leq 2 w(S^*)$$