Approximation Algorithms for TSP, Vertex Cover and Set Cover

Approximation Algorithm

Definition: Let P be a minimization problem, and I be an instance of P. Let A be an algorithm that finds feasible solution to instances of P. Let $A(I)$ is the cost of the solution returned by A for instance I , and $\operatorname{OPT}(\mathrm{I})$ is the cost of the optimal solution (mimimum) for I . Then, A is said to be an α-approximation algorithm for P if

$$
\forall I, \quad \frac{A(I)}{O P T(I)} \leq \alpha \text { where } \alpha \geq 1
$$

Traveling Salesman Problem

Theorem: For any constant k, it is NP-hard to approximate TSP to a factor of k.

Proof:

- Hamiltonian Cycle is NP-Complete
- If we could approximate TSP we could find a hamiltonian cycle in polynomial time
- $\mathrm{P} \neq \mathrm{NP}$

Approximation Algorithm for Metric TSP

1. Compute a weighted MST of G.
2. Root MST arbitrarily and traverse in pre-order $v_{1}, v_{2}, \ldots, v_{n}$.
3. Output tour $\mathrm{v}_{1} \rightarrow \mathrm{v}_{2} \rightarrow \ldots \rightarrow \mathrm{v}_{\mathrm{n}} \rightarrow \mathrm{v}_{1}$.

Claim: A is a 2-approximation algorithm for (metric) TSP

Proof:

If σ is a full walk along the MST in pre-order, σ^{*} an optimum tour and T a spanning tree

$$
\begin{equation*}
A(I) \leq \operatorname{cost}(\sigma)=2 * \operatorname{MST}(I) \tag{1}
\end{equation*}
$$

$\operatorname{OPT}(\mathrm{I})=\operatorname{cost}\left(\sigma^{*}\right) \geq \operatorname{cost}(\mathrm{T}) \geq \mathrm{MST}(\mathrm{I})$
(2)
(1), (2) $\Rightarrow A(I) \leq 2 \times M S T(I) \leq 2 \times O P T(I)$

Christofides' Algorithm

1. Find a minimum spanning tree T
2. Find a minimum-weight perfect matching M for the odd-degree vertices in T
3. Add M to T
4. Find an Euler tour
5. Cut short

Claim: A is a 1.5-approximation algorithm for (metric) TSP
Proof:
If σ is a full walk along the MST in pre-order and σ^{*} an optimum tour

$$
\begin{align*}
& \operatorname{OPT}(\mathrm{I})=\operatorname{cost}\left(\sigma^{*}\right) \geq \operatorname{cost}(\mathrm{T}) \geq \mathrm{MST}(\mathrm{I}) \tag{1}\\
& \operatorname{cost}(\mathrm{M}) \leq 0.5 \mathrm{OPT}(\mathrm{I}) \tag{2}
\end{align*}
$$

(1), (2) $\Rightarrow \operatorname{cost}(\mathrm{C}) \leq \operatorname{cost}(\mathrm{T})+\operatorname{cost}(\mathrm{M}) \leq 1.5^{*} \mathrm{OPT}(\mathrm{I})$

Set Cover

Problem:

Given a universe U of elements $\{1, \ldots, n\}$, and
a collection of subsets $S=\left\{S_{1}, \ldots, S_{m}\right\}$ of subsets of U,
together with cost a cost function $\mathrm{c}\left(\mathrm{S}_{\mathrm{i}}\right)>0$,
find a minimum cost subset of S, that covers all elements in U.
$C \leftarrow \emptyset$
Result $\leftarrow \emptyset$
while $C \neq U$
$S \leftarrow \arg \min _{S \in \mathcal{S}} \frac{c(S)}{|S \backslash C|}$
$\forall e \in(S \backslash C)$: price-per-item $(\mathrm{e}) \leftarrow \frac{c(S)}{|S \backslash C|}$
$C \leftarrow C \cup S$
Result \leftarrow Result $\cup\{S\}$
end
return Result

Theorem: The algorithm gives us a $[\ln n+O(1)]$-approximation for set cover.
Proof: Let $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$ be the elements in the order they are covered by the algorithm. At iteration k , there must be a set from S that is contained in the optimal solution and covers some of the remaining elements $\mathrm{U} \backslash \mathrm{C}$ including e_{k} at cost at most OPT. Thus we have

$$
\text { price-per-item }\left(e_{k}\right) \leq \frac{O P T}{|U \backslash C|}=\frac{O P T}{n-k+1}
$$

Reminder (Harmonic Number):

$$
\begin{aligned}
& H_{n}=\sum_{k \in[1, n]} \frac{1}{k} \\
& \lim _{n \rightarrow \infty}\left(H_{n}-\ln \operatorname{In}\right)=Y \\
& Y \approx 0.5772156649 \\
& \text { Euler-Mascheroni constant. }
\end{aligned}
$$

Vertex Cover

Algorithm 1: Approx-Vertex-Cover(G)
 $1 C \leftarrow \emptyset$

2 while $E \neq \emptyset$
pick any $\{u, v\} \in E$
$C \leftarrow C \cup\{u, v\}$
delete all eges incident to either u or v
return C

Note: Algorithm A finds a maximal matching M

Claim 1: This algorithm gives a vertex cover
Proof: Every edge $\in M$ is clearly covered. If an edge, $e \notin M$ is not covered, then $M \cup\{e\}$ is a matching, which contradict to maximality of M.

Claim 2: This vertex cover has size $\leq 2 \times$ minimum size (optimal solution)
Proof: The optimum vertex cover must cover every edge in M. So, it must include at least one of the endpoints of each edge $\in M$, where no 2 edges in M share an endpoint. Hence, optimum vertex cover must have size

$$
\operatorname{OPT}(I) \geq|M|
$$

But the algorithm A return a vertex cover of size $2|M|$, so \forall I we have

$$
\mathrm{A}(\mathrm{I})=2|\mathrm{M}| \leq 2 \times \mathrm{OPT}(\mathrm{I})
$$

implying that A is a 2-approximation algorithm.

Linear Programming

1. Linear Function:

$$
f\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}
$$

2. Constraints:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2} \leq b_{2} \\
& a_{31} x_{1}+a_{32} x_{2} \leq b_{3}
\end{aligned}
$$

3. Non-negative variables:

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

Example: Linear Programming in 2D

1. $\max f\left(x_{1}, x_{2}\right)=4 x+5 y$
2. $x+y \leq 20$
$3 x+4 y \leq 72$
3. $x \geq 0$
$y \geq 0$
$f(0,18)=90$
$f(0,0)=0$
$f(20,0)=100$
$f(8,12)=92$

Weighted Vertex Cover

Input: An undirected graph $G=(V, E)$ with vertex weights $w_{i} \geq 0$.
Problem: Find a minimum-weight subset of nodes S such that every $e \in E$ is incident to at least one vertex in S.

IP Formulation

minimize $\quad \sum_{i \in v} w_{i} X_{i}$
subject to $\quad x_{i}+x_{j} \geq 1 \quad \forall(i, j) \in E$

$$
\mathrm{x}_{\mathrm{i}} \in\{0,1\} \quad \forall \mathrm{i} \in \mathrm{~V}
$$

LP Rexalation

minimize $\quad \sum_{i \in v} w_{i} x_{i}$
$\begin{array}{lll}\text { subject to } & x_{i}+x_{j} \geq 1 & \forall(i, j) \in E \\ & x_{i} \geq 1 & \forall i \in V\end{array}$

LP can be solved in polynomial time, while IP is NP-hard.

LP- Rounding Algorithm:

1. Let x^{*} be an optimal solution.
$>$ Define $x_{v}=1$, if $x_{v}{ }^{*} \geq 1 / 2$
$>$ Define $\mathrm{x}_{\mathrm{u}}=0$, if $\mathrm{x}_{\mathrm{u}}{ }^{*}<1 / 2$
2. Let $\mathrm{S}=\left\{\mathrm{i} \in \mathrm{V}: \mathrm{x}_{\mathrm{i}}=1\right\}$

The set S is a valid vertex cover, because for each edge (u, v) it is true hat $x_{u}{ }^{*}+x_{v}{ }^{*} \geq 1$, and so at least one of $x_{u}{ }^{*}$ or $x_{v}{ }^{*}$ must be at least $1 / 2$, and so at least one of u or v belongs to S

Claim: A is a 2-approximation algorithm
Proof: $\quad \sum_{v \in S} w(v)$

$$
\begin{aligned}
& =\sum_{v \in v} w(v) x_{v} \\
& \leq \sum_{v \in v} w(v) \cdot 2 \cdot x_{v}^{*} \\
& =2 \cdot \text { OPT(LP) }
\end{aligned}
$$

$\leq 2 \cdot \mathrm{OPT}(\mathrm{VC}), \quad$ every solution to the IP is also a solution to the LP, hence

$$
\mathrm{OPT}_{\mathrm{LP}} \leq \mathrm{OPT}_{\mathrm{IP}}
$$

Dual LP

[^0]
Bar-Yehuda and Even Algorithm

- Inititally all edges are uncovered.
- While \exists an uncovered edge in G:
- Choose an arbitrary edge, e.
- Raise the value of y for that edge until one of its incident vertices, v, becomes full (i.e $\left.\sum_{\text {e:e hitsv }} y_{e}=w_{v}\right)$
- $S \leftarrow S U\{v\}$
- Any edge that touches v is considered to be covered
- Return S as our vertex cover

Claim 1: The set S returned is a vertex cover.
Reason: At termination, for each edge $e=(u, v)$, at least one of u and v is tight \Rightarrow at least one of u and v is in S .

Claim 2: The Pricing Method is a 2-approximation algorithm for MWVC.
Proof: Let S*be an optimum vertex cover. Then $w(S) \leq 2 w\left(S^{*}\right)$.

$$
\begin{aligned}
w(S) & =\sum_{i \in s} w_{i} \\
& =\sum_{i \in s} \sum_{e=(i, j)} y_{e} \\
& \leq \sum_{i \in v} \sum_{e(i, j)} y_{e} \\
& =2 \sum_{e \in E} y_{e} \\
& \leq 2 w\left(S^{*}\right)
\end{aligned}
$$

[^0]: Dual $_{\text {Feasible }} \leq$ Dual $_{\text {OPT }}=$ Primal $_{\text {OPT }} \leq$ Primal $_{\text {Feasible }}$

