Approximation Algorithms
for TSP, Vertex Cover and

Set Cover




Approximation Algorithm

Definition: Let P be a minimization problem, and | be an instance of P. Let A be an algorithm that
finds feasible solution to instances of P. Let A(l) is the cost of the solution returned by A for instance
I, and OPT(l) is the cost of the optimal solution (mimimum) for I. Then, A is said to be an
a-approximation algorithm for P if

A(I)

I oPr

o Wherea=1.




Traveling Salesman Problem



https://www.javatpoint.com/travelling-sales-person-problem

Theorem: For any constant k, it is NP-hard to approximate TSP to a factor of k.

Proof:

e Hamiltonian Cycle is NP-Complete

e If we could approximate TSP we could find a hamiltonian cycle in polynomial time
e P#NP

Approximation Algorithm for Metric TSP

1. Compute a weighted MST of G.
2. Root MST arbitrarily and traverse in pre-orderv,, v,,
3. Outputtourv,—v,— ...V —V..




Claim: A is a 2-approximation algorithm for (metric) TSP

Proof:

If o is a full walk along the MST in pre-order, * an optimum tour and T a spanning tree
A(1)<cost(a)=2*MST(I) (1)

OPT(l)=cost(0*)=cost(T)=MST(l) (2)

(1), (2) = A(1)<2xMST(1)<2xOPT(1)




Christofides’ Algorithm

Find a minimum spanning tree T

Find a minimum-weight perfect matching M for the odd-degree vertices in T
AddMto T

Find an Euler tour

Cut short

vk wiNR

Claim: A is a 1.5-approximation algorithm for (metric) TSP

Proof:
If o is a full walk along the MST in pre-order and 0* an optimum tour
OPT(l)=cost(0*)=cost(T)=MST(l) (1) O

cost(M)< 0.5 OPT(l) (2)

(1), (2) =cost(C)< cost(T)+ cost(M)<1.5*OPT(l)




Set Cover

Problem:
Given a universe U of elements {1, ..., n}, and
a collection of subsets S = {51' Cel, Sm} of subsets of U,
together with cost a cost function c(Si) >0,

find a minimum cost subset of S, that covers all elements in U.




C 0
Result « ()
while C #U

c(S)

S < argminges 14

Ve € (S \ C) : price-per-item(e) < |§(\SC)~|

C+«CusS
Result < Result U {S}

end
return Result




Theorem: The algorithm gives us a [In n + O(1)]-approximation for set cover.

Proof: Let e, ..., e betheelementsin the order they are covered by the algorithm. At iteration k, there must
be a set from S that is contained in the optimal solution and covers some of the remaining elements U \ C
including e, at cost at most OPT. Thus we have

Reminder (Harmonic Number):
1

OPT OPT H=2 cnm k

price-per-item(e,) < = .
‘ U\ C] n—k+1 lim _ _(H -InIn)=y

y= 0.5772156649
and using this, we can upper bound the total cost of the greedy solution by Euler—-Mascheroni constant.

OPT OPT

kemnl zkE [1,n]
n—k+1

Total Cost = Zke[l . price-per-item(e ) < > =OPT-H_ =OPT:(Inn +0.6)




Vertex Cover

Algorithm 1: ApPROX-VERTEX-COVER(QG)

1 C—0)
2 while E % 0

pick any {u,v} € E
C «— CU{u,v}

delete all eges incident to either u or v

return C'

Note: Algorithm A finds a
maximal matching M




Claim 1: This algorithm gives a vertex cover

Proof: Every edge € M is clearly covered. If an edge, e €M is not covered, then M U{e}is a
matching, which contradict to maximality of M.

Claim 2: This vertex cover has size < 2xminimum size (optimal solution)

Proof: The optimum vertex cover must cover every edge in M. So, it must include at least one of
the endpoints of each edge € M, where no 2 edges in M share an endpoint. Hence, optimum
vertex cover must have size

OPT(l) 2| M|
But the algorithm A return a vertex cover of size 2|M|, so V| we have
A(l) =2|M| <2 xOPT(l)

implying that A is a 2-approximation algorithm.




Linear Programming

1. Linear Function:

f(xl,x2)=c1x1+c2x2

2. Constraints:

2, x+a x<b, Integer Programming:

<
a X, ta x.<h, X eZ

<
a31X1+a32X2_ b3
3. Non-negative variables:
>
x,20

>
xz_O




Example: Linear Programming in 2D

max f(x,,x,)=4x+5y
2. x+y<20

3x+4y<72
3. x20
y=0

f(0,18)=90

f(0,0)=0

f(20,0)=100

£(8,12)=92




Weighted Vertex Cover

Input: An undirected graph G = (V, E) with vertex weights w. 0.

Problem: Find a minimum-weight subset of nodes S such that every

e € Eisincident to at least one vertexin S.




IP Formulation

minimize ). _ WX
subject to xi+xj21 v (i,j) €E

x€{0,1} Vi€V




minimize ). _ WX
subject to xi+xj21

xi21

LP Rexalation

v (i,j)EE

vieVv

LP can be solved in polynomial
time, while IP is NP-hard.




LP- Rounding Algorithm:

1. Let x™ be an optimal solution.
> Define x =1, if xv*21/2
> Define x =0, if xu*< 1/2

2. letS={i€V:x=1)

The set S is a valid vertex cover, because for each edge (u, v) it is true hat x F+x *21,
and so at least one of xu* or xv* must be at least 1/2, and so at least one of uor v

belongs to S




Claim: A is a 2-approximation algorithm

Proof: >, eW(v)
=2, eyWI(V)X,
<D L eyW(v) 2 x *
=2 - OPT(LP)

<2-OPT(VC), every solution to the IP is also a solution to the LP, hence

OPT,, <OPT,




Dual LP

Primal LP

minimize Y _ WX maximize ) __.y,

<w Vveyv

e:ehitsv. v

subject to X+x21 V edge (i,j) €E subjectto )

x21 V vertex i€V y,20 V e€EE

Dual <Dual_,.=Primal _.<Primal

Feasible Feasible




Bar-Yehuda and Even Algorithm

Inititally all edges are uncovered.

O

O

O

O

e While 3 an uncovered edge in G:

Choose an arbitrary edge, e.

Raise the value of y_for that edge until one of its incident vertices, v, becomes full (i.e
Ze:e hits vye=wv)

S«—S U {v}

Any edge that touches v is considered to be covered

Return S as our vertex cover




Claim 1: The set S returned is a vertex cover.

Reason: At termination, for each edge e= (u,v), at least one of u and v is tight = at least one of uand v is in
S.

Claim 2: The Pricing Method is a 2-approximation algorithm for MWVC.

Proof: Let S*be an optimum vertex cover. Then w(S)<2w(S*).

w(s) = 2. ..w,
= Qies Ze=(i,j) Ye
SV icy 2oy Ve
=22 e Ve

<2 w(S*)




