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Introduction

Problem: Nearest neighbor (NN)

Given a set P of n distinct points in Rd under some norm ∥·∥.

Goal

Given some query points q ∈ Rd . Output the point p ∈ P that
minimizes ∥p − q∥.

As we will answer a number of queries for set P . It is
beneficial to construct a data structure and use it for efficient
search given a query.
So we have trade offs between the query processing time, the
space of our data structure and the preprocessing time.
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Introduction

The algorithm and especially the k-Nearest Neighbohrs version
has a lot of applications in Machine Learning and Data
Processing.
Typically in those application we have problems where n and d
are large (n is in the millions).
This problem has a naive solution: Compute the distances
between all the points and find the minimum.
The query time for this algorithm is O(n · d). This is not
efficient as n is large. Also we have not used any preprocessing.
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Algorithms for Low Dimensional Settings

For the case where d=1 all points lie on the axis and so the
problem can be efficiently solved with binary search.

space:O(n) query time:O(logn).

Figure 1: 1D case
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Algorithms for Low Dimensional Settings
For the case of d=2 we can have a generalization of this idea using
Voronoi Diagrams. And there are multidimensional equivalents of
the binary search tree for this problem, k-d tree (k-dimensional
tree) and Vantage Point Tree.

Figure 2: Voronoi diagram
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Curse Of Dimensionality

But as d grows the complexity of the space partition is grows
exponentially. The Voronoi diagram has size O(n⌈d/2⌉)

In fact there is a hardness results that states: An exact
algorithm with query time n1−b for some b > 0 and poly(n)
preprocessing would violate SETH.
This is the case for many algorithms in data processing.
Usually their complexity depends exponentially with the
dimension of the data. This problem is called curse of
dimensionality.
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Approximate Nearest Neighbors

For obtaining better guaranties we will relax the problem to output
an approximate solution.

Problem: Approximate Nearest neighbor (ANN)

Given a set P of n distinct points in Rd under some norm ∥·∥.
Construct a data structure that given a point q, returns a point
p ∈ P such that d(p, q) ≤ c ·minp′∈P d(p′, q)
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Point Location in Equal Balls

Problem: Point Location in Equal Balls (PLEB)

Given a set P of n distinct points in Rd under some norm ∥·∥.
Construct a data structure that given a point q:

if there is a p ∈ P such that d(p, q) ≤ r1, return YES and any
point p′ ∈ P with d(p′, q) ≤ r2.
if there is no point p ∈ P such that d(p, q) ≤ r2, return NO.
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Reduction from ANN to PLEB

Theorem: Reduction from ANN to PLEB
If for every r there is a data structure with space and time bound S
and T , that solves (r , (1 + ϵ)r)-PLEB. Then there is an algorithm
for (1 + ϵ)2-ANN with space bound O(S · log1+ϵ

Dmax
Dmin

) and query
time O(T · log log1+ϵ

Dmax
Dmin

), where Dmax and Dmin the largest and
smallest interpoint distances.

There are more efficient reductions use (r , (1 + ϵr))-PLEB and
solve (1 + ϵ)-ANN. But outside of the scope of this presentation.
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Reduction from ANN to PLEB

Proof.
Assuming that we are looking for the nearest point p of q in a set
P . Let the sequence R = {Dmin

2 , (1 + ϵ)Dmin
2 , . . . , (1 + ϵ)k Dmin

2 }
where k ∈ N such that (1+ ϵ)k Dmin

2 ≥ Dmax =⇒ k ≥ log1+ϵ
2Dmax
Dmin

.

Find r∗ the min{r ∈ R : PLEB(r , (1 + ϵ)r) = YES}.
Because PLEB(r∗, (1 + ϵ)r∗) = YES we know that
d(p′, q) ≤ (1 + ϵ)r∗ also because PLEB(r∗/(1 + ϵ), r∗) = NO
d(p, q) ≥ r∗/(1 + ϵ).
So the output point of PLEB(r∗, (1 + ϵ)r∗) p′ is a
(1 + ϵ)2-approximation for p.Finding r∗ can be done with binary
search with log k PLEB calls so the query time is
O(T log k) = O(T · log log1+ϵ

Dmax
Dmin

). While data structures are
created for every possible PLEB call in preprocessing so we use
space O(sk) = O(S · log1+ϵ

Dmax
Dmin

).
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Locality Sensitive Hashing

Definition: Locality Sensitive Hash (LSH)

A hash family H = {h : U → S} is called (r1, r2, p1, p2)-locally
sensitive if for all points p, p′ ∈ U,

if d(p, p′) ≤ r1, then Pr [h(p) = h(p′)] ≥ p1

if d(p, p′) ≥ r2, then Pr [h(p) = h(p′)] ≤ p2

Example: Let U = {0, 1}d and our notion of distance be the
hamming distance, d(p, p′) = |{i : p(i) ̸= p′(i)}|. Then
H = {hi : hi (p) = p(i), i ∈ [d ]} is (r , cr , 1 − r

d , 1 − cr
d ) locality

sensitive.
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Solving PLEB using LSH

Theorem: Locality Sensitive Hash (LSH) to PLEB

Suppose that there is some (r1, r2, p1, p2)-LSH H = {h : U → S}.
Then there is an algorithm for (r1, r2)-PLEB which uses:

O(dn + n1+ρ) space
O(nρ) query time, measured in hash evaluations

where ρ = ln 1/p1
ln 1/p2

. This algorithm succeds with constant probability.
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Solving PLEB using LSH

Algorithm: Locality Sensitive Hash (LSH) to PLEB

Let k and l parameters. From H we define an other function family
G = {g : U → Sk |g(p) = (h1, . . . , hk), hi ∈ H), ∀i ∈ [k]}.
Preprocessing: 1) Choose l hash functions from G g1, . . . , gl
independently uniformly at random.
2) Store all p ∈ P to buckets g1(p), . . . , gl(p) retaining only non
empty buckets.

For query q: 1) Search through the buckets g1(q), . . . , gl(q) and
stop after the first 2l points.
2) If any of these points p has d(p, q) ≤ r2, return p with YES,
otherwise, return NO.
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Solving PLEB using LSH

Proof: Locality Sensitive Hash (LSH) to PLEB

We will show that the following hold with constant probability:
1) If there exists p ∈ P : d(p, q) ≤ r1 then there exists a
j ∈ [l ] : gj(p) = gj(q).
2) There are at most 2l − 1 points p ∈ P : d(p, q) ≥ r2 and there
exists a j ∈ [l ] : gj(p) = gj(q).

The expected number of points satisfying (2) is l · n · p2
k = l if k is

set to log1/p2 n. So by Markov Pr [|{p : satify (2)}| ≥ 2l ] ≤ 1
2 .

Therefore the Pr [(2) holds] > 1
2 .

Let p : d(p, q) ≤ r1 then Pr(gj(p) = gj(q)) = p1
k = n−ρ.

So Pr [(1) hold] = 1 − (1 − n−ρ)l = 1 − (1 − n−ρ)n
ρ ≥ 1 − 1

e > 1
2 .

If we set l to nρ.
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LSH for l2

Locality Sensitive Hash family for l2

A (r1, r2, p1, p2)-Locality Sensitive hash family for l2 is the following
H = {hg ,a(x) = ⌊gx+a

w ⌋}. Where g a vector of iid normal random
variables (gi ∼ N(0, 1)) and a ∼ [0,w ]. We can show that the
collision probability given ∥p − q∥ < s is:

p(s) =

∫ w

0

1
s
f (

t

s
)(1 − t

w
)dt
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LSH for l2

Proof.
Given x , q let’s calculate the probability of collision:
Pr [hg ,a(x) = hg ,a(q)] let s = ∥x − q∥. We get a collision if
|gx − gq| < w and a divider does not fall between gx and gq.
But because g is a vector of iid normal r.v. we have that
|g(x − q)| = sZ ,Z ∼ N(0, 1).
Also that a divider falls beteen gx and gq is their interval length
divided by w .
Thus the probability of collision is:

p(s) =

∫ w/s

0
f (z)(1 − zs

w
)dz =

∫ w

0

1
s
f (

t

s
)(1 − t

w
)dt, t = zs

For fixed parameter w the probability monotonically decreases with
s = ∥x − q∥. w is typically set to r1.
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LSH for l2
Recall that for p1 = p(r) and p2 = p(cr) we are interested in
ρ = ln 1/p1

ln 1/p2
it is true that in this case ρ < 1/c .
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Johnson–Lindenstrauss lemma

Theorem: Johnson–Lindenstrauss lemma

Given 0 < ϵ < 1, a set X of m points in RN , and a number
b > 8 ln(m)/ϵ2, there is a linear map f : R → Rn such that:

(1 − ϵ)∥u − v∥2 ≤ ∥f (u)− f (v)∥2 < (1 + ϵ)∥u − v∥2

for all u, v ∈ X .
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Thank you for your attention.
Are there any questions?
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