Expected Time Bounds for
Selection

Aea T{avnc
AANMA
AekepfBploc,2021

Introduction

selection problem can be succinctly stated as follows:
given a set X of n distinct numbers and an integer i,
1 < i < n, determine the ith smallest element of X
with as few comparisons as possible, The jth smallest
element, denoted by /8 X, is that element which is
larger than exactly i — 1 other elements, so that | § X
is the smallest, and » & X the largest, element in X,

Definitions

* f(i,n) = “The expected number of comparisons
required to select i6X”

* tpX = “Rank of an element teX, so that
(tpX)OX=t"

Algorithms

1. Hoare’s Find (Quickselect)
2. Select (Version 1)
3. Improved Select (Version 2)

Hoare’s Find/Quickselect

Given an array All,...,p], we search for the ith
smallest element of the array

* Select (random) a pivot element
e Partition (A[l,...,q],A[g+1,...,p])
 Compute the index k of pivot element

1.
2.
3.

if

If
If

<=1, t

<>l T

K<I, t

hen A[k] is the answer
hen run quickselect for All,...,q]

nen run quickselect for A[g+1,p]

Trivial Lower and Upper Bound

f{;’,n] > - 1,r for 1 < I <n {l} For every selection algorithm
f“!”] < 2“-'1 + I}H,L _— [.ﬁ' +3—-—iH._ i1 (2] l:gggﬁ/ll_\s(SISOFRANGEQUICKSELECTANDRELATED
—(i+ 2)H; + n + 3), CONRADO MART'INEZ, ALOIS PANHOLZER, AND HELMUT

PRODINGER

Select

= s(n) is

Step 1. A small random sample S of size s

drawn from X.

Step 2. Two elements, w and v, (u < v), are selected
from S, using SELECT recursively, such that the set
{xeX|u < x < v]is expected to be of size. o(n) and
yet expected to contain i # X. Selecting u and v parti-

tions S into those elements less than w (set A), those
elements between w and v (set B), and those elements

greater than v (set C).

Step 3. The partitioning of X into these three sets is
then completed by comparing each element xin X' — §
to wand v, If i < [n/277, x is compared to v first,

and then towonly if x < v. If i > ['n/271, the order

of the comparisons is reversed.
Step 4. With probability approaching 1 (as n — =},
i 8 X will lie in set B, and the algorithm is applied

recursively to select i § X from B. (Otherwise SELECT

is applied to A or C as appropriate.)

Fig. 1.

ih"‘
'.fr' bl
’i b
e ~
i *
Ao %
F i %
LA] e
*
F LA A
L] c %
Fﬂ‘:ﬂ%‘t Sample S
s as "u L %
o Fl nr “
s ¥ i \
7 ! 1 .
£ f i *
LY
’ [%
S ’r i X
i ¥ \.‘
- Il [%
F i LY
i ¥ .
I Y
“"' . LY
- L
s ! i .
¥ L
,’ L : L
Fi LY
i
A ¥ B ¥ _.E- s
W i P 4 b TR
L L} i_'_..
u iae W L1

Total comparisons

Choice of uand v

Partitioning (both elements of S and X\S)
Select iBX from B

Select iBX from A or C

f(i,n) = sum(all of the above)

If s(n), u, and v can be chosen so that s(n) = o(n),
E(|B|) = o(n), and P(i8 X¢ B) = o(n™"), then the
total number of comparisons expected is:

n + min(i,;n — i) + o(n)

Choice of uand v

For fixed tpS, we can compute where t should fall in X (Expected value and variance)

i . {(n+1) A
E(rpX) = G+ D (tpS), (10)
altpX) .
N ((rpS}(.': — (tpS) + in+ 1)(n — 5})’
=\ —) an

(s + 1)*s + 2)

1{in+ Dn—5\ _1 n
S_(s)55@'

[E%]

For the conditions reported previously

ElupX) 4+ 2do(upX)=i= E(vp X)
— 2ds(v p X),

where d=d(n) a slowly unbounded growing function of n
(d=(In(n))*(1/2) toensure P(i < upXori> vpX) = o(n™))

(12)

The above equations mean that

upS = (s (E’j_”s(ﬂ - SJ)) (ni l)

(s +1) !
Em d'x-?):
and “4)
- (n4+ Dn— s\ (s +1
ros (i o (EE=0)) (0
< I(S l:] +£f(5:l;

=+ 1)

Upper bound for select

Let g{i,n) denote the expected number of com-

parisons made by SELECT. It will be shown inductively
that

gli,n)y = n + min(i,n — i) + O(n In*(n}) (15)

The cost of selecting u and v can be estimated as follows:

*First we apply select recursively to S to select u, and then

*We extract v from those elements of S which are greater than u.
These to operations cost:

glupSs) +glvpS —upS+1s—ups)

<254+ vpS —upS+ 0 In'(s) (16)
< 25 + 2d(s)* + O(s! Ini(s))
COmparisons.

There are n-s(n) elements to compare, and the propability that 2 comparisons will be
made for an element is min(upS,s+1-upS)/(s+1) so that the total is:
(n — s(n))(1 + min(in — i)/n + ds™). (17)

The cost of finishing up, if 7 6 X falls in B, is at most
g(| B1/2, | B|). But
E(JB|) = (vpS — upS)n/s = 2dns* (18)
so that

g(|B|/2,| B|) = 3dns LIS _)
O((dns) (In(dns). (19)

Upper Bound for Select

Considering that the probability that iBXeA or
10XeC is from (13) less than c/(dn), so that the
Total work expected in this case is less than
3c/(2d) (which goes to 0 as n-->c) we have the
total cost :

glin) < 25 + 2d(s)! + O(s* In'(s))
+ (n — s)(1 + min(i,n — i)/n + ds)
+ 2dns™ + 3¢/(2d)
< n+ min(in — i) + s + ds
— min{i,n — i)s/n
+ 3dns™t + 3¢/(2d) + O(s' In's). (20)

Improved Select

Let S, C S C --- C S = X bea nested series
of random samples from X of sizes sy, 8, - -+, 5, = n.

For each sample §;, let u; and v; be chosen from S; as
in (14) so that

. (n 4+ Din — s\ [s; + 1
““’SJ‘(‘““*(5))'(ﬂ"l)

and (22)

= o)) (11

Thus it is very likely, for any j, that u;p X < i <
v; p X. Furthermore, as j approaches k (i.e. as s; gets
large), u; and v; surround i 6 X ever more closely. In
fact, uy = i8X = w.. The cost of finding w, and v;
directly from S, is of course prohibitive for large values
of s;, However, since

l
E{”J—IPS:) = (Hj—lpS_,-_l) ' S*’ +

S0 +]" < u;psS;, (23)

and similarly E(v;1p8;) 2 v;p S;, we can use u;,
and v;_, to bound the search for u; and v;.

Improved Select

Step 1. Draw a random sample S, of size 5; from X,
and select u; and w, using this algorithm recursively
(and the ranks given in (22).

Step 2. Determine the sets 4., B, and C., a partition
of 5., by comparing each element in & — 5, to
and v (using the same order of comparison strategy
as the original SELECT).

Step 3. Next, determine w; and w by applying this
algorithm recursively to B, (in the most likely case;
else 4, or C3).

Step 4. Extend the partition of S, determined by wu.
and w into a partition A;, B3, C; of §; by comparing
each element of §; — 5. to w and » with the same
comparison strategy.

Step 5. Continue in this fashion until a partition A,
B:, C; of the set 5. = X has been created.

Step 6. Then use the algorithm recursively once more
to extract i 8 X from By (or A or C,, if necessary).

Fig. 2.
A
. \‘_‘
rd b
~
*x
Pl B | g — 5,
1
"’J S : . .,
s - Y -
P -1 it 3 -5
& T T L =1
& ! 1 ~
i A. ! i" Bll : c]’ K
¥ N ——S
-~ ’;“_ 'l‘_ . (] .
- i L] . .
R4 ¥ [} \\ .
& u v, ~
o k=1 k-1 LY .._5|
| o T T 1
’.«' ,l] *u
! b
. Ak /Bt Sk B

- — 4
18X iax X = sh naxX

Upper Bound for Select (version 2)

g(jym) = m + min(jm — j) + O(m?),

for m<n 1l <j<m (26)

The expected size of B; is easily estimated:
f_‘.(| B.r” = {V}—lpSJ -1 — “)—IPSJ'—I) . (—-‘U') (27)
§j-1 Lal)

‘_“.i Zd-‘-ﬂ'f(-"'i—l J !-

The cost of selecting wa,w,, ti_1, Ve—y from the sets
Bi, ..., By_1is just

-r,z (g(usp B;, i B; |) + g(v;p B; — u;p B,
T B ~u 0 BY) 28y Where the cost of selecting u1,v1 from S1 < 2s1 + 2(d(s1))1/2,
<, 2 (4dsi/(s;) + 2d(s))Y), and the cost of selecting uk=vk=i0X from Bk is (3dn)/(sk-1)"(1/2)

The cost of partitioning $ — &, & — &, ..., 8% —
Si-1about w, and w, wy and v, . .., Wy and vy is just

o2, 5 = 801+ min(in — i)/ 4 d/(s,4)"). 31)
Adding these all together, we have
glin) < n + min{in — i) +
X (Sdsy/(s;)} + d(s,)") (32)
2152

+ si(1 — min(i,n — i)/n) + d(s)!

— dn/ (s O
This sum can be approximately minimized if we let
$1, 81, ..., & increase geometrically with ratio 7, so

2j =2
that s; = r’ s, and

il

gliyn) < n+ min (i,n — i) !
5d [.\1)
(@) B

A

n 4 min (i, n = i)

sd ()" AT\ . (33)
+(@*’T)'(F—r)"

< n-4 min(i,n —i)

S
r - 5 r

This is approximately minimized when s, = In'x, and
r o= 432, yielding

glin) < n + min(i;n — i) + O(n'), (34)

On the lower bound of (n-1)
comparisons

THEOREM 1. Any selection algorithm that has deter-
mined i 8 X to be some element y € X must also have
determined, for any x € X, x # y, whether x < y or
y < X.

Proor. Assume that there exists an x incomparable
with y in the partial order determined by the algorithm.
Then there exists a linear ordering of X, consistent with
the partial order determined, in which x and p are ad-
jacent (since any element required to lie between x and
y would imply a relationship between x and y in the
partial order). But then x and y may be interchanged
in the linear order without contradicting the partial
order-—demonstrating an uncertainty of at least one in
y p X, so that y is not necessarily i § X. O

On the lower bound of (n-1)
comparisons

LEMMA 1. A selection algorithm must make exactly
n — | key comparisons to select i 9 X, where | X | = n.

Definition 1. The key comparison for an element
x € X, x # i6 X, is defined to be the first comparison
x : y such that

y=iXorx<ypyp<igXorigX <y<x (35
(we use notation x:y to denote a comparison between elements x and y)

Proof

Firstly, we should mention that to determine which comparison is the key
comparison for an element x, we must have already made all the comparisons
and iBX must have already been selected.

Assume that there is an element x!=i6X that doesn’t have a key comparison.
This means its uncomparable with iBX, a contradiction to Theorem 1.

On the lower bound of (n-1)
comparisons

LemMA 2. A selection algorithm must make exactly
n — 1 joining comparisons to select i 6 X, where | X | = n.

We will start by giving some definitions:

Definition 1
A fragment of a partial ordering (X,<) is a maximal connected component of the

partial ordering, that is, a maximal subset S of X such that the Hasse diagram of
“<” restricted to S is a connected graph.

Any partial ordering can be uniquely described up
to 1somorphism as the union of distinct fragments. A
selection algorithm thus begins with a partial ordering
consisting of n fragments of size 1. To illustrate, let &,
be the set of all fragments having at most k elements:

&y = { b }s
5. = {1},

5= {*, 3, &NV.8, and so on.

Definition 2
A joining comparison is any comparison between elements belonging to distinct

fragments

On the lower bound of (n-1)
comparisons

LemMA 2. A selection algorithm must make exactly
n — 1 joining comparisons to select i 6 X, where | X | = n.

PROOF. As long as more than one fragment exists,
there must be some element incomparable with i 6 X,
since elements in distinct fragments are incomparable.
The lemma then follows from Theorem 1.

EYXAPIZTQ INA THN NMPOzOXH zAz

	Expected Time Bounds for Selection
	Introduction
	Definitions
	Algorithms
	Hoare’s Find/Quickselect
	Trivial Lower and Upper Bound
	Select
	Total comparisons
	Choice of u and v
	Upper bound for select
	Upper Bound for Select
	Improved Select
	Improved Select
	Upper Bound for Select (version 2)
	On the lower bound of (n-1) comparisons
	On the lower bound of (n-1) comparisons
	On the lower bound of (n-1) comparisons
	On the lower bound of (n-1) comparisons
	Slide Number 19

