
Fast Fourier Transform

Selected Topics in Algorithms

ΑΛΜΑ, ΣΗΜΜΥ

Selected Topics in Algorithms Fast Fourier Transform

But what is FFT?

Nothing more than a clever computation of a function
FFT : Cn → Cn,FFT(a) = V · a

V is an invertible n × n matrix and we get
IFFT : Cn → Cn, IFFT(y) = V−1 · y

Main use: Computing convolution
(a0, a1, . . . , an−1)

(b0, b1, . . . , bn−1)

Return (a0b0, a0b1 + a1b0, . . . ,
∑n−1

i=0 aibn−1−i, . . . ,
∑2(n−1)

i=0 aib2n−1−i)

Selected Topics in Algorithms Fast Fourier Transform

Polynomials

Representations of polynomials

Polynomial of degree n − 1 can be described using
the coefficients (a0, a1, . . . , an−1), or
n evaluatons on n different points

e.g., A(x) = 3 + x + 2x2 can be uniquely defined by vector (3, 1, 2) or by
points (−1, 4), (0, 3), (1, 6).

Operations on polynomials

evaluating polynomials
adding polynomials
multiplying polynomials

Selected Topics in Algorithms Fast Fourier Transform

Representations vs Time

When given as coefficient vector (a0, . . . , an−1)

evaluation: O(n) operations, A(x) = a0 + x(a1 + x(a3 + . . .) . . .)

addition: O(n) operations, (a0 + b0)x0 + . . .+ (an−1 + bn−1)xn−1

multiplication: k-th term is
∑k−1

i=0 aibk−1−i, naively O(n2)

When given n evaluations (x0, y0), . . . , (xn−1, yn−1)

evaluation: O(n2) using interpolation
addition: O(n), (xi,A(xi)), (xi,B(xi)) → (xi,A(xi) + B(xi))

multiplication: O(n), (xi,A(xi)), (xi,B(xi))→ (xi,A(xi)B(xi))

FFT: quick jump from vector representation to evaluations representation

Selected Topics in Algorithms Fast Fourier Transform

Evaluating Polynomials

Let (a0, . . . , an−1) represent a polynomial. How to get evaluation?

pick X = {x0, x1, . . . , xn−1}
compute for every i, a0x0i + a1x1i + . . .+ an−1xn−1

i , or, all together,
1 x0 x20 . . . xn−1

0

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2

...
...

...
1 xn−1 x2n−1 . . . xn−1

n−1




a0
a1
a2
...

an−1

 =


y0
y1
y2
...

yn−1



Selected Topics in Algorithms Fast Fourier Transform

Divide and Conquer

Consider A(x) = a0 + a1x + a2x2 + . . .+ an−1xn−1 (wlog assume n = 2l)
Let Aeven(x) = a0 + a2x + a4x2 + . . .+ an−2xn/2−1

Let Aodd(x) = a1 + a3x + a5x2 + . . .+ an−1xn/2−1

A(x) = Aeven(x2) + xAodd(x2)

Idea: Recursively evaluate Aeven and Aodd for points in X2 = {x20, . . . , x2n−1}

if evaluated, extra O(|X|) to combine solutions

In total: T(n, |X|) = 2T(n/2, |X2|) + O(n + |X|)

|X| = n and we expect |X2| = n. But X is our choice + ∃X : |X2| = |X|/2 (‼!)

In total: T(n) = 2T(n/2) + O(n)

Selected Topics in Algorithms Fast Fourier Transform

Picking X: |X2| = |X|/2 in every recursion

Roots of unity
square root: {1,−1}
11/4: {1,−1, i,−i}
11/8: {1,−1, i,−i,±

√
2
2 (1 + i),±

√
2
2 (−1 + i)}

11/n: {e k
n2πi}k=1...n (we care for n = 2l)

Key fact: The even n-th roots of unity coincide with the n/2-roots of unity

(e k
n2πi)2 = e 2k

n 2πi = e
k

n/22πi

Selected Topics in Algorithms Fast Fourier Transform

But what is FFT? (Revisited)

Nothing more than a function : Cn → Cn,FFT(a) = V · a, where

V =


1 x0 x20 . . . xn−1

0

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2

...
...

...
1 xn−1 x2n−1 . . . xn−1

n−1


with xk = e k

n2πi, computed using the mentioned divide and conquer idea

Interestingly V is invertible with a very nice structure

V−1 =
1

nV̄

where V̄ is the convex conjugate of V
Selected Topics in Algorithms Fast Fourier Transform

The Ιnverse FFT

Still, nothing more than a function : Cn → Cn, IFFT(y) = V−1 · y, where

V−1 =
1

n


1 x0 x20 . . . xn−1

0

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2

...
...

...
1 xn−1 x2n−1 . . . xn−1

n−1


with xk = e− k

n2πi, computed using the mentioned divide and conquer idea

Proof of 1
nVV̄ = I ⇔ VV̄ = nI:

pjk =

n−1∑
m=0

em j
n2πie−k m

n 2πi =
n−1∑
m=0

e(j−k)m
n 2πi =

{
n, j = k
(e(j−k)2πi/n)n−1

e(j−k)2πi/n−1
= 0, j ̸= k

Selected Topics in Algorithms Fast Fourier Transform

Applications

Multiplication of polynomials in O(n log n)

Given the coefficients of A(x) and B(x) compute A∗ = FFT(A) and
B∗ = FFT(B)
Compute C∗ = A∗B∗ (pointwise)
The coefficients of C(x) = A(x)B(x) are simply IFFT(C∗)

String matching in O(n log n)

Consider text 10011010011100110011000100111001010010110010 . . .
and a string 10011101100 of length k.
Change all 0's to −1's
Reverse the string and add 0's to match text's length
Let both strings define polynomials
Coefficient k for xm in their product implies that the string is matched
in positions m − k + 1 to m

Selected Topics in Algorithms Fast Fourier Transform

