Fast Fourier Transform

Selected Topics in Algorithms

A $1 \mathrm{MA}, ~ \Sigma H M M Y$

But what is FFT?

Nothing more than a clever computation of a function

- FFT: $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, F F T(a)=V \cdot a$
V is an invertible $n \times n$ matrix and we get
- IFFT: $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, \operatorname{IFFT}(y)=V^{-1} \cdot y$

Main use: Computing convolution

- $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$
- $\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$

Return $\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, \ldots, \sum_{i=0}^{n-1} a_{i} b_{n-1-i}, \ldots, \sum_{i=0}^{2(n-1)} a_{i} b_{2 n-1-i}\right)$

Polynomials

Representations of polynomials
Polynomial of degree $n-1$ can be described using

- the coefficients ($a_{0}, a_{1}, \ldots, a_{n-1}$), or
- n evaluatons on n different points
e.g., $A(x)=3+x+2 x^{2}$ can be uniquely defined by vector $(3,1,2)$ or by points $(-1,4),(0,3),(1,6)$.

Operations on polynomials

- evaluating polynomials
- adding polynomials
- multiplying polynomials

Representations vs Time

When given as coefficient vector $\left(a_{0}, \ldots, a_{n-1}\right)$

- evaluation: $O(n)$ operations, $A(x)=a_{0}+x\left(a_{1}+x\left(a_{3}+\ldots\right) \ldots\right)$
- addition: $O(n)$ operations, $\left(a_{0}+b_{0}\right) x^{0}+\ldots+\left(a_{n-1}+b_{n-1}\right) x^{n-1}$
- multiplication: k-th term is $\sum_{i=0}^{k-1} a_{i} b_{k-1-i}$, naively $O\left(n^{2}\right)$

When given n evaluations $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)$

- evaluation: $O\left(n^{2}\right)$ using interpolation
- addition: $O(n),\left(x_{i}, A\left(x_{i}\right)\right),\left(x_{i}, B\left(x_{i}\right)\right) \rightarrow\left(x_{i}, A\left(x_{i}\right)+B\left(x_{i}\right)\right)$
- multiplication: $O(n),\left(x_{i}, A\left(x_{i}\right)\right),\left(x_{i}, B\left(x_{i}\right)\right) \rightarrow\left(x_{i}, A\left(x_{i}\right) B\left(x_{i}\right)\right)$

FFT: quick jump from vector representation to evaluations representation

Evaluating Polynomials

Let $\left(a_{0}, \ldots, a_{n-1}\right)$ represent a polynomial. How to get evaluation?

- pick $X=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$
- compute for every i, $a_{0} x_{i}^{0}+a_{1} x_{i}^{1}+\ldots+a_{n-1} x_{i}^{n-1}$, or, all together,

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n-1}
\end{array}\right]
$$

Divide and Conquer

Consider $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}$ (wlog assume $n=2^{\prime}$)

- Let $A_{\text {even }}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots+a_{n-2} x^{n / 2-1}$
- Let $A_{\text {odd }}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots+a_{n-1} x^{n / 2-1}$

$$
A(x)=A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)
$$

Idea: Recursively evaluate $A_{\text {even }}$ and $A_{\text {odd }}$ for points in $X^{2}=\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}$

- if evaluated, extra $O(|X|)$ to combine solutions

$$
\text { In total: } T(n,|X|)=2 T\left(n / 2,\left|X^{2}\right|\right)+O(n+|X|)
$$

$|X|=n$ and we expect $\left|X^{2}\right|=n$. But X is our choice $+\exists X:\left|X^{2}\right|=|X| / 2(!!!)$

$$
\text { In total: } T(n)=2 T(n / 2)+O(n)
$$

Picking $X:\left|X^{2}\right|=|X| / 2$ in every recursion

Roots of unity

- square root: $\{1,-1\}$
- $1^{1 / 4}:\{1,-1, i,-i\}$
- $1^{1 / 8}:\left\{1,-1, i,-i, \pm \frac{\sqrt{2}}{2}(1+i), \pm \frac{\sqrt{2}}{2}(-1+i)\right\}$
- $1^{1 / n}:\left\{e^{\frac{k}{n} 2 \pi i}\right\}_{k=1 \ldots n}$ (we care for $n=2^{\prime}$)

Key fact: The even n-th roots of unity coincide with the $n / 2$-roots of unity

$$
\left(e^{\frac{k}{n} 2 \pi i}\right)^{2}=e^{\frac{2 k}{n} 2 \pi i}=e^{\frac{k}{n / 2} 2 \pi i}
$$

But what is FFT? (Revisited)

Nothing more than a function : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, F F T(a)=V \cdot a$, where

$$
V=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n-1}
\end{array}\right]
$$

with $x_{k}=e^{\frac{k}{n} 2 \pi i}$, computed using the mentioned divide and conquer idea
Interestingly V is invertible with a very nice structure

$$
V^{-1}=\frac{1}{n} \bar{V}
$$

where \bar{V} is the convex conjugate of V

The Inverse FFT

Still, nothing more than a function : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, \operatorname{IFFT}(y)=V^{-1} \cdot y$, where

$$
V^{-1}=\frac{1}{n}\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n-1}
\end{array}\right]
$$

with $x_{k}=e^{-\frac{k}{n} 2 \pi i}$, computed using the mentioned divide and conquer idea

$$
\text { Proof of } \frac{1}{n} V \bar{V}=I \Leftrightarrow V \bar{V}=n I:
$$

$$
p_{j k}=\sum_{m=0}^{n-1} e^{m \frac{j}{n} 2 \pi i} e^{-k \frac{m}{n} 2 \pi i}=\sum_{m=0}^{n-1} e^{(j-k) \frac{m}{n} 2 \pi i}= \begin{cases}n, & j=k \\ \frac{\left(e^{(j-k) 2 \pi i / n)^{n}}-1\right.}{e^{(j-k) 2 \pi i / n}-1}=0, & j \neq k\end{cases}
$$

Applications

Multiplication of polynomials in $O(n \log n)$

- Given the coefficients of $A(x)$ and $B(x)$ compute $A^{*}=F F T(A)$ and $B^{*}=F F T(B)$
- Compute $C^{*}=A^{*} B^{*}$ (pointwise)
- The coefficients of $C(x)=A(x) B(x)$ are simply IFFT $\left(C^{*}\right)$

String matching in $O(n \log n)$

- Consider text $10011010011100110011000100111001010010110010 \ldots$
- and a string 10011101100 of length k.
- Change all 0 's to -1 's
- Reverse the string and add 0's to match text's length
- Let both strings define polynomials
- Coefficient k for x^{m} in their product implies that the string is matched in positions $m-k+1$ to m

