
4
The Polynomial Method

Version: 158

In this chapter we will introduce an algorithm design technique called
“polynomial method”, and we will use it to design the fastest known
algorithm for OV. We assume some familiarity with randomized algo-
rithms. Recall that OV is the following problem.

Problem 4.1.
Orthogonal Vectors (OV)
Given: Sets A, B ⊆ {0, 1}d of size n
Determine: Is there an orthogonal pair a ∈ A, b ∈ B?
Conjecture: No O(n2−εpoly(d))-time algorithm exists.

The naive algorithm for this problem runs in time O(n2d). In small
dimension, we can make use of the fact that there are at most 2d differ-
ent vectors, leading to an algorithm that runs in time O(nd · 2d). This
is subquadratic time for d ≤ (1− ε) log n.1 So what about dimension 1 By “log” we always denote the loga-

rithm base 2. One can use additional
simple tricks to push this bound to d ≤
(2− ε) log n and even slightly beyond.

d = 100 log n? As it turns out, in this regime OV still is in strongly
subquadratic time, as shown by our main result of this chapter.

Theorem 4.2. (Polynomial Method for OV2) Let c = c(n) with c ≥ 2 and 2 A. Abboud, R. Williams, and H. Yu.
More applications of the polynomial
method to algorithm design. In Proc.
26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’15), pages
218–230, 2015

c = no(1/ log log n). There is a randomized algorithm solving OV in dimension
d = c · log n in time

n2− 1
O(log c) .

Let us discuss the implications of this theorem.

• For any constant c, OV is in time O(n2−εc) for some constant εc > 0.

• The above theorem does not falsify OVH, since for any c = ω(1) the
running time is n2−o(1), which is not strongly subquadratic. How-
ever, it yields non-trivial lower order improvements over quadratic
time, e.g., for c = log n (thus, d = log2 n) the time bound is

n2−1/O(log log n) = n2/2Ω(log n/ log log n).

• Combining the above theorem with the reduction from k-SAT to OV
from Lecture 2 recovers one of the best algorithms for k-SAT. What
running time do we get for k-SAT? (→ exc.)

2 fine-grained complexity theory

Notation We will use a parameter s to be chosen later. For simplicity
we assume that s divides n and we set g := n

s .
We denote by OV = OV s,d a function OV : {0, 1}2sd → {0, 1} that

encodes the orthogonal vectors problem as follows. We will inter-
changeably interpret the input of OV as 2sd bits or as two sets of s
vectors of length d. Thus, the function OV is given sets A, B of vectors
in {0, 1}d, with |A| = |B| = s, and returns OV(A, B) = 1 if there is an
orthogonal pair a ∈ A, b ∈ B, and OV(A, B) = 0 otherwise.

Algorithm Outline Our plan is to solve OV as follows on input A, B.

1. Split A, B into groups A1, . . . , Ag, B1, . . . , Bg of size s each.

2. Compute a suitable representation of the function OV = OV s,d.

3. Evaluate OV(Ai, Bj) for all pairs 1 ≤ i, j ≤ g.

4. Output ‘yes’ if OV(Ai, Bj) = 1 for some i, j, and ’no’ otherwise.

The two non-trivial steps of this outline are steps 2 and 3 (note that
naively step 3 takes time O(n2d)). These steps correspond to the two
ingredients of the polynomial method. For step 2, we will convert
the function OV into a multivariate polynomial with few monomials (or,
more precisely, a distribution from which we will sample a random
multivariate polynomial with few monomials). For step 3, we will
show an efficient evaluation algorithm for multivariate polynomials
with few monomials.

We start with the latter, i.e., by describing the basics of multivariate
polynomials and showing how to evaluate them efficiently.

4.1 Multivariate Polynomial Evaluation

Basics of Multivariate Polynomials

Let F be a field (e.g., the real numbers R). A multivariate polynomial Multivariate means that the function p
has multiple variables X1, . . . , Xk , in con-
trast to a univariate polynomial p(X)
which has only one variable.

over F is a function p : Fk → F of the form

p(X1, . . . , Xk) = ∑
(i1,...,ik)∈M

αi1,...,ik · X
i1
1 · · ·X

ik
k ,

where M is a finite subset of Nk. Each summand Xi1
1 · · ·X

ik
k is called We denote N = {0, 1, 2, . . .}.

a monomial and the corresponding factor αi1,...,ik ∈ F is its coefficient.
In this lecture, we will always consider the field F = F2. Recall that F2 is the set {0, 1} with the

operations “⊕” (addition modulo 2) and
“·” (multiplication), defined by:

0⊕ 0 = 0 0 · 0 = 0

0⊕ 1 = 1 0 · 1 = 0

1⊕ 0 = 1 1 · 0 = 0

1⊕ 1 = 0 1 · 1 = 1

Observation 4.3. Over F2 we can assume without loss of generality that
M ⊆ {0, 1}k. In particular, any polynomial with k variables has at most 2k

monomials.

the polynomial method, version: 158 3

Proof. Follows from x2 = x for any x ∈ F2.

Example 4.4. An example for a multivariate polynomial is p(X1, X2, X3) =

2X1X2X3 + 3X2
1X3 + X2 − 1. Reducing its coefficients modulo 2, we obtain

a polynomial over F2, namely X2
1X3 ⊕ X2 ⊕ 1. This is the same function as

X1X3 ⊕ X2 ⊕ 1 over F2, as X2
1 = X1.

Polynomial Evaluation (on Cartesian Products)

Let us write m for the number of monomials of polynomial p. For
given values x1, . . . , xk ∈ F we can evaluate the polynomial p at the
point (x1, . . . , xk) in time O(km). In particular, we can evaluate p at n
given points in time O(kmn).

This running time can be improved in case the given points form
a Cartesian product. More precisely, suppose we are given “left half-
points” A1, . . . , Ag and “right half-points” B1, . . . , Bg and our task is
to evaluate p on all combinations (Ai, Bj). In particular, the output
size is g2. The following tool asserts that this polynomial evaluation
problem can be solved in time near-linear in the output size, assuming
that m is not too large.

Lemma 4.5. Let A1, . . . , Ag, B1, . . . , Bg ∈ Fk, let p : F2k → F be a poly-
nomial with m monomials, and suppose that m, k = O(g0.1). Then we can
compute p(Ai, Bj) for all pairs 1 ≤ i, j ≤ g in total time O(g2 log2 g).

We will use this lemma in order to
implement step 3 of the algorithm
overview given earlier.

To prove this lemma we will make use of rectangular matrix multipli-
cation, which we introduce next.

(Rectangular) Matrix Multiplication

In matrix multiplication we are given an n1 × n2-matrix A and an
n2 × n3-matrix B, both with entries in F. The task is to compute the
n1 × n3-matrix C = A · B (again with entries in F) given by

C[i, j] :=
n2

∑
k=1

A[i, k] · B[k, j] for any 1 ≤ i ≤ n1, 1 ≤ j ≤ n3.

A well-studied case is n1 = n2 = n3 = n, where it is known that the
problem can be solved in time O(nω) with:

• ω ≤ 3: naive evaluation,

• ω ≤ 2.81: Strassen3, 3 V. Strassen. Gaussian elimination is
not optimal. Numerische Mathematik,
13(4):354–356, Aug 1969

• ...

• ω ≤ 2.376: Coppersmith and Winograd4, 4 D. Coppersmith and S. Winograd. Ma-
trix multiplication via arithmetic pro-
gressions. Journal on Symbolic Computa-
tion, 9(3):251–280, 1990

• ω ≤ 2.3736898: Vassilevska Williams5, Stothers6,

5 V. Vassilevska Williams. Multiply-
ing matrices faster than Coppersmith-
Winograd. In Proc. 44th Annual ACM
Symposium on Theory of Computing Con-
ference (STOC’12), pages 887–898, 2012

6 A. J. Stothers. On the complexity of ma-
trix multiplication. 2010. PhD Thesis

• ω ≤ 2.3728639: Le Gall7,

7 F. Le Gall. Powers of tensors and fast
matrix multiplication. In Proc. 39th Inter-
national Symposium on Symbolic and Alge-
braic Computation (ISSAC’14), pages 296–
303, 2014

4 fine-grained complexity theory

Rectangular matrix multiplication refers to the case n1 = n3 = n
and n2 = nα for some small constant α > 0. In this case, the input size
is proportional to n1+α (since A, B have n1+α entries) and the output
size is n2. Surprisingly, rectangular matrix multiplication can be solved
in near-linear time in the output size!

Theorem 4.6. (Rectangular Matrix Multiplication8) Multiplication of an 8 D. Coppersmith. Rapid multiplication
of rectangular matrices. SIAM J. Comput.,
11(3):467–471, 1982

n× nα-matrix with an nα × n-matrix is in time O(n2 log2 n) for any α ≤
0.172.

We will use this theorem as a black box, since its proof is well be-
yond the scope of this course. We refer to Bläser9 for an introduction 9 M. Bläser. Fast matrix multiplication.

Theory of Computing, Graduate Surveys,
5:1–60, 2013

to fast matrix multiplication.

Polynomial Evaluation on Cartesian Products, Continued

Equipped with rectangular matrix multiplication, let us design a fast
algorithm for polynomial evaluation over a Cartesian product.

Proof of Lemma 4.5. We can write any polynomial p on 2k variables
consisting of m monomials in the form

p(X1, . . . , Xk, Y1, . . . , Yk) =
m

∑
r=1

αr · X
sr,1
1 · · ·X

sr,k
k ·Y

tr,1
1 · · ·Ytr,k

k .

Denote by Ai,1, . . . , Ai,k the entries of the input vector Ai ∈ Fk, simi-
larly let Bj,1, . . . , Bj,k be the entries of Bj.

We start by computing the values

Â[i, r] := αr · A
sr,1
i,1 · · · A

sr,k
i,k

B̂[r, j] := Btr,1
j,1 · · · B

tr,k
j,k ,

for 1 ≤ i, j ≤ g and 1 ≤ r ≤ m. Note that Â is a g×m-matrix and B̂ is
an m× g-matrix, so the product C := Â · B̂ is well-defined. We obtain

C[i, j] =
m

∑
r=1

Â[i, r] · B̂[r, j] !
= p(Ai, Bj).

The notation !
= indicates a step that

needs more thought than usual to verify.The matrices Â and B̂ can be constructed in time O(gmk). By the
assumption m, k = O(g0.1), this takes time O(g2). Using rectangular
matrix multiplication (Theorem 4.6), matrix C can be computed in time
O(g2 log2 g).

4.2 Conversion to Multivariate Polynomial

In order to use the tools developed in the last section, the obvious plan
now is to convert the function OV : {0, 1}sd → {0, 1} to a multivariate
polynomial with few monomials.

the polynomial method, version: 158 5

We start by expressing OV as a Boolean circuit (or more precisely
Boolean formula). That is, we formally define the behaviour of OV
using the operations ∧ (and), ∨ (or), and ¬ (negation). Writing the
input to OV as A = {a1, . . . , as}, B = {b1, . . . , bs} ⊂ {0, 1}d, observe
that we can express OV as follows:

OV(A, B) :=
∨

1≤i,j≤s
Orth(ai, bj)

Orth(a, b) :=
d∧

`=1

(¬a[`]) ∨ (¬b[`]).

Our plan is to transform this Boolean circuit into a polynomial over F2.
That is, instead of using the logical operations ∧,∨,¬ we now want to
use the operations ⊕, · over F2.

Lemma 4.7. For converting between logical and F2-operations, we may use
the following rewriting rules:

¬x = 1⊕ x

x1 ∧ x2 ∧ . . . ∧ xn = x1 · x2 · · · xn

x1 ∨ x2 ∨ . . . ∨ xn = 1⊕
(
(1⊕ x1) · (1⊕ x2) · · · (1⊕ xn)

)
.

Proof. The first two of these rewriting rules can be easily checked from
the definitions of the involved operations. For the last rule, we use the
DeMorgan rule to express

x1 ∨ . . . ∨ xn = ¬
(
(¬x1) ∧ . . . ∧ (¬xn)

)
,

and then apply the first two rewriting rules.

Applying these rules to our logical formulation of OV would yield
the following expression:

OV(A, B) = 1⊕ ∏
1≤i,j≤s

(
1⊕Orth(ai, bj)

)
Orth(a, b) =

d

∏
`=1

(
1⊕ a[`] · b[`]

)
.

In order to express OV as a sum of monomials, we need to expand
the products in the above expression. However, already the expanded
form of Orth(a, b) consists of 2d monomials, which is too large to even
construct. This issue also propagates to OV . In fact, it can be shown
that any function f : {0, 1}k → {0, 1} has a unique representation as a
polynomial over F2 (in the form of Observation 4.3), and therefore this
is an inherent issue: OV has no representation as a polynomial over
F2 with less than 2d monomials!

6 fine-grained complexity theory

Probabilistic Polynomials

A typical workaround when exact representations fail is to relax the
goal and ask for representations that may err on some inputs, but are
correct almost everywhere. This notion is particularly useful when it
is combined with randomness, in such a way that the errors occur at
random places. More precisely, we want that on each fixed input the
representation is correct with good probability.

This leads to the notion of a probabilistic polynomial.

Definition 4.8. We denote by r a sequence of random bits r1, r2, . . . , rL.
A probabilistic polynomial is a polynomial pr = pr(X1, . . . , Xk) whose
coefficients depend on r. A probabilistic polynomial yields a distribution
over polynomials. To sample from this distribution, we sample the random
bits r1, r2, . . . , rL and then evaluate the coefficients of pr.

Example 4.9. Consider the probabilistic polynomial

pr(X1, X2) = r1X1X2 ⊕ (1− r1)X1 ⊕ X2 ⊕ r1.

Here r1 denotes a random bit, i.e., Pr[r1 = 1] = Pr[r1 = 0] = 1
2 . This

expression describes the following distribution over polynomials:

pr(X1, X2) =

X1X2 ⊕ X2 ⊕ 1, with probability 1
2

X1 ⊕ X2, with probability 1
2

Definition 4.10. Let δ ≥ 0. For a function f : {0, 1}k → {0, 1} and a
probabilistic polynomial pr over F2 we write

f ≈δ pr

if for any (x1, . . . , xk) ∈ {0, 1} we have Here the notation “Prr” highlights that
the only randomness that the event de-
pends upon is the sequence r of random
bits.

Prr [f (x1, . . . , xk) 6= pr(x1, . . . , xk)] ≤ δ.

Fortunately, we can indeed represent OV as a probabilistic polyno-
mial with few monomials, as shown by our main result of this section:

Lemma 4.11. Let 12 ≤ s ≤ 2d/6. There is a probabilistic polynomial pOV
with pOV ≈1/3 OV , such that pOV hasO(m) monomials and we can sample
a polynomial from the distribution pOV in time O(m3), where

m := s6
(

d
3 log s

)2
.

In the remainder of this section, we will prove this lemma. Instead
of representing an expression

∧n
`=1 x` by the product ∏n

`=1 x` as in
Lemma 4.7, we want to represent it by a polynomial of smaller degree.
The following construction achieves this goal.

the polynomial method, version: 158 7

Lemma 4.12. (Razborov10-Smolensky11) Define for any t ∈N, 10 A. A. Razborov. Lower bounds on
the size of bounded depth circuits over
a complete basis with logical addition.
Mathematical Notes of the Academy of Sci-
ences of the USSR, 41(4):333–338, 1987

11 R. Smolensky. Algebraic methods in
the theory of lower bounds for boolean
circuit complexity. In STOC, pages 77–
82. ACM, 1987

RSt(x1, . . . , xn) :=
t

∏
k=1

(
1⊕

n⊕
`=1

rk,` · (1⊕ x`)

)
.

where the rk,` are (independent, uniform) random bits. Then we have

n∧
`=1

x` ≈2−t RSt(x1, . . . , xn).

Proof. Since rk,` · (1 ⊕ x`) is equal to rk,` if x` = 0, and equal to 0
otherwise, we can write

RSt(x1, . . . , xn) =
t

∏
k=1

(
1⊕

⊕
`∈Z

rk,`

)
,

where Z := {1 ≤ ` ≤ n | x` = 0}.
Case x1 = . . . = xn = 1: In this case we have Z = ∅ and thus

RSt(x1, . . . , xn) = ∏t
k=1(1⊕ 0) = 1 =

∧n
`=1 x`. Since this is indepen-

dent of the random bits rk,`, it holds with probability 1.
Case x` = 0 for some 1 ≤ ` ≤ n: Then

∧n
`=1 x` = 0 and thus

Pr

[
RSt(x1, . . . , xn) 6=

n∧
`=1

x`

]
= Pr

[
∀k ∈ {1, . . . , t} :

⊕
`∈Z

rk,` = 0

]

= Pr
[
r1, . . . , r|Z| has even number of 1’s

]t

=
1
2t .

In both cases, we have Pr [RSt(x1, . . . , xn) 6=
∧n
`=1 x`] ≤ 2−t.

Using Razborov-Smolensky, we construct a probabilistic polynomial
for OV by following the same steps as before.

Lemma 4.13. On input A = {a1, . . . , as}, B = {b1, . . . , bs} ⊂ {0, 1}d,
define the polynomials In this notation we suppress the vari-

ables that these polynomials depend
upon. To be more precise, we should
write pi,j,`(ai [`], bj[`]), pi,j(ai , bj), and
pOV (A, B).

pi,j,` := 1⊕ ai[`] · bj[`]

pi,j := RS3 log s(pi,j,1, . . . , pi,j,d)

pOV := 1⊕ RS2(1⊕ p1,1, 1⊕ p1,2, . . . , 1⊕ ps,s)

Then if s ≥ 12 we have

pi,j,` = (¬ai[`]) ∨ (¬bj[`])

pi,j ≈s−3 Orth(ai, bj)

pOV ≈1/3 OV(A, B)

8 fine-grained complexity theory

Proof. For pi,j,` we simply used the rewriting rules of Lemma 4.7.
Correctness of pi,j follows directly from using Razborov-Smolensky

on the ∧-operation of Orth(a, b) =
∧d
`=1(¬a[`]) ∨ (¬b[`]).

By correctness of pi,j and the Union Bound, we have

Pr
[
∃i, j : pi,j 6= Orth(ai, bj)

]
≤ ∑

1≤i,j≤s
Pr
[
pi,j 6= Orth(ai, bj)

]
≤ s2

s3 =
1
s

.

Moreover, using DeMorgan and Razborov-Smolensky on the ∨ opera-
tion of OV(A, B) =

∨
1≤i,j≤s Orth(ai, bj) yields

Pr [1⊕ RS2 (1⊕Orth(a1, b1), . . . , 1⊕Orth(as, bs)) 6= OV(A, B)] ≤ 1
4

.

Combining these two bounds with the Union Bound yields

Pr [pOV 6= OV(A, B)] ≤ 1
s
+

1
4
≤ 1

3
,

for s ≥ 12.

To finally obtain a probabilistic polynomial for OV we simply ex-
pand our expression for pOV . It remains to show that this probabilistic
polynomial pOV satisfies the properties promised in Lemma 4.11, i.e.,
we need to show that pOV has few monomials, and that we can effi-
ciently sample from the distribution described by pOV .

Number of monomials

Let us bound the number of monomials of pOV . Observe that

pi,j =
3 log s

∏
k=1

(
1⊕

d⊕
`=1

rk,` · ai[`] · bj[`]

)
.

Thus, any monomial of pi,j corresponds to a subset of {1, . . . , d} of
size at most 3 log s. We can therefore bound the number of monomials
of pi,j by

3 log s

∑
q=0

(
d
q

)
≤ 3 log s ·

(
d

3 log s

)
= O

(
s
(

d
3 log s

))
,

where we used the assumption s ≤ 2d/6 to argue that (d
3 log s) is the

largest among the binomial coefficients (d
k).

Moreover, observe that

pOV = 1⊕
2

∏
k=1

1⊕
⊕

1≤i,j≤d

rk,i,j · pi,j

 .

Since each pi,j has O
(

s(d
3 log s)

)
monomials, the sum

⊕
1≤i,j≤d rk,i,j · pi,j

has O
(

s3(d
3 log s)

)
monomials, and the product over k ∈ {1, 2} has

O
(

s6(d
3 log s)

2)
monomials.

the polynomial method, version: 158 9

Sampling a polynomial

In order to sample from the distribution pOV , we first sample all in-
volved random bits. We then compute each polynomial pi,j by expand-
ing its definition (as given in Lemma 4.13). Finally, we compute pOV
by expanding its definition.

In this procedure, we have to perform O(s2 log s) = O(m) polyno-
mial multiplications, each on at most m monomials. Since multiplying
two polynomials with m monomials can be done in time O(m2), we
obtain total time O(m3). This finishes the proof of Lemma 4.11.

4.3 Final Algorithm

We combine our probabilistic polynomial for OV (Lemma 4.11) with
the efficient evaluation of multivariate polynomials (Lemma 4.5) and
standard boosting of the success probability to obtain our final algo-
rithm.

Final Algorithm On input A, B we do the following.

0. Split A, B into groups A1, . . . , Ag, B1, . . . , Bg of size s each.

1. For t = 1, . . . , 100 ln n do: By “ln” we denote the natural logarithm,
i.e., base e.

2. Sample polynomial pt from the probabilistic polynomial for OV
3. Evaluate pt(Ai, Bj) for all pairs 1 ≤ i, j ≤ g

4. Let oi,j be the majority vote among p1(Ai, Bj), . . . , p100 ln n(Ai, Bj)

5. Output ‘yes’ if oi,j = 1 for some i, j, and ’no’ otherwise

Claim 4.14 (Correctness). The algorithm outputs the correct answer with
probability at least 1− 1

n .

Proof. Note that for any t the value pt(Ai, Bj) differs from OV(Ai, Bj)

with probability at most 1
3 (by Lemma 4.11). Also, the algorithm only

errs if for some i, j the majority among p1(Ai, Bj), . . . , p100 ln n(Ai, Bj)

differs from OV(Ai, Bj).
We show that the number of samples h := 100 ln n is chosen suffi-

ciently large for a high overall success probability. Note that by boost-
ing (Lemma A.11), for fixed i, j the output oi,j is correct with proba-
bility at least 1− exp(−h/20) = 1− exp(−5 ln n) = 1− 1/n5. By a
union bound over all 1 ≤ i, j ≤ g, we obtain success probability at
least 1− g2/n5 ≥ 1− 1/n3.

Claim 4.15 (Applicability of Multivariate Polynomial Evaluation). There
is a constant ε > 0 (independent of n and d) such that s := nε/ log c satisfies

m = s6(d
3 log s)

2 ≤ g0.1.

10 fine-grained complexity theory

Before proving this claim, we use it to analyze the running time
of our algorithm. In order to use our fast polynomial evaluation
(Lemma 4.5) in step 3, we need to check that the number m of mono-
mials and the number k of variables of each polynomial pt satisfy
m, k = O(g0.1). For m, this follows from the upper bound O(m) (by
Lemma 4.11) together with the above claim. For k, we observe that
k = 2s2d is smaller than m. Therefore, fast polynomial evaluation is ap-
plicable and the running time for step 3 is O(g2 log2 g) = O(g2 log2 n),
since g = n

s ≤ n. Over O(log n) repetitions, this yields total time
O(g2 log3 n).

The running time of step 2 is (by Lemma 4.11) O(m3) = O(g0.3).
The remaining steps can be performed in time O(g2 log n). This is
dominated by the time for step 3.

Hence, the total running time of our algorithm is O(g2 log3 n) =

O(n2s−2 log3 n). Plugging in s := nε/ log c yields time

O
(

n2−ε/ log c log3 n
)

.

Note that n2−ε/ log c = n2−Ω(1/ log c) = n2−1/O(log c).
Finally, we argue that for c = no(1/ log log n) the log3 n-factor can

be ignored. Note that s = nε/ log c = 2ε log n/ log c ≥ 2ω(log log n) =

(log n)ω(1) using the presumed bound on c. Thus, s � log3 n, and
we can bound s−2 log3 n = O(s−1). Using this bound yields the same
asymptotic savings as before, but without the log3 n-factor.

It remains to prove Claim 4.15 to finish the analysis of the final
algorithm.

Proof of Claim 4.15. We use the fact (n
k) ≤ (en

k)k to bound

m = s6
(

d
3 log s

)2
≤ s6

(
ed

3 log s

)6 log s
≤ s6

(
d

log s

)6 log s
. (4.1)

Since s = nε/ log c we have log s = ε log n/ log c. Using d = c log n, we
bound

d
log s

=
c log c log n

ε log n
≤ c2

ε
.

Together with (4.1) this yields

log m ≤ 6 log s + 6 log s · (2 log c + log(1/ε))

=
6ε log n

log c
· (1 + 2 log c + log(1/ε))

=

(
6ε

log c
+ 12ε +

6ε log(1/ε)

log c

)
log n.

Using c ≥ 2, and thus log c ≥ 1, we further bound

log m ≤ (18ε + 6ε log(1/ε)) log n.

the polynomial method, version: 158 11

Observe that for ε→ 0 this factor tends to 0. Therefore, for sufficiently
small ε > 0 we obtain

log m ≤ 0.05 log n,

which is equivalent to m ≤ n0.05. Since s = nε/ log c ≤ n0.5 for suffi-
ciently small ε, we can further bound m ≤ (n

s)
0.1 = g0.1.

Bibliography

Version: 158

[1] A. Abboud, R. Williams, and H. Yu. More applications of the
polynomial method to algorithm design. In Proc. 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’15), pages
218–230, 2015.

[2] M. Bläser. Fast matrix multiplication. Theory of Computing, Grad-
uate Surveys, 5:1–60, 2013.

[3] D. Coppersmith. Rapid multiplication of rectangular matrices.
SIAM J. Comput., 11(3):467–471, 1982.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progressions. Journal on Symbolic Computation, 9(3):251–280,
1990.

[5] F. Le Gall. Powers of tensors and fast matrix multiplication. In
Proc. 39th International Symposium on Symbolic and Algebraic Com-
putation (ISSAC’14), pages 296–303, 2014.

[6] A. A. Razborov. Lower bounds on the size of bounded depth
circuits over a complete basis with logical addition. Mathematical
Notes of the Academy of Sciences of the USSR, 41(4):333–338, 1987.

[7] R. Smolensky. Algebraic methods in the theory of lower bounds
for boolean circuit complexity. In STOC, pages 77–82. ACM, 1987.

[8] A. J. Stothers. On the complexity of matrix multiplication. 2010.
PhD Thesis.

[9] V. Strassen. Gaussian elimination is not optimal. Numerische
Mathematik, 13(4):354–356, Aug 1969.

[10] V. Vassilevska Williams. Multiplying matrices faster than
Coppersmith-Winograd. In Proc. 44th Annual ACM Symposium on
Theory of Computing Conference (STOC’12), pages 887–898, 2012.

	The Polynomial Method, Version: 158
	Multivariate Polynomial Evaluation
	Conversion to Multivariate Polynomial
	Final Algorithm

	Bibliography, Version: 158

