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Classical Cryptography

A cryptographic system is a single parameter family {SK}K∈{K} of
invertible transformations

SK : {P} → {C}

for a space {P} of plaintext messages to a space {C} of ciphertext
messages. The parameter K is called the key and is selected from a finite
set {K} called the keyspace.
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Classical Cryptography

For example, let us encode the english alphabet {A,B, . . . ,Z} to the
alphabet Σ = {1, 2, . . . , 26}.

The Caeser cipher with {P} = {C} = Σ∗ and {K} = Σ uses the invertible
transformations

SK (a1a2 . . . an) = (a1+K mod 26)(a2+K mod 26) . . . (an+K mod 26).
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Classical Cryptography

Similarly, the One-Time-Pad with {P} = {C} = {K} = Σ∗ uses keys as
long as the plaintext:

SK (a1a2 . . . an) = (a1+k1 mod 26)(a2+k2 mod 26) . . . (an+kn mod 26),

where K = k1k2 . . . kn.
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Classical Cryptography

Classifying the threats:

Ciphertext-only attack: totally insecure systems

Known plaintext attack: not secure in case of later public disclosure

Chosen plaintext attack: allows to opponents to plant messages
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Classical Cryptography

Private Key Exchange

A basic problem in conventional cryptography is to ensure a secure
communication via a private channel
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Classical Cryptography

Private Key Exchange

Due to physical constraints, this is infeasible when developing large,
secure, telecommunication systems.

immediate, fast communication

communication of unknown parties

n different users who wish to communicate privately from others
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Public Key Cryptography
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Public Key Cryptography

A public key cryptosystem is a pair of families {EK}K∈{K}, {DK}K∈{K} of
algorithms representing invertible transformations:

EK : {M} → {M}

DK : {M} → {M}

where {M} = {P} = {C} is a finite message space, such that

for every K ∈ {K}, EK is the inverse of DK ,

for every K ∈ {K} and M ∈ {M}, the algorithms EK and DK are
easy to compute,

for almost every K ∈ {K}, each easily computed algorithm equivalent
to DK is computationally infeasible to derive from EK ,

for every K ∈ {K} it is feasible to compute inverse pairs EK and DK

from K .

Raskopoulou Vasiliki (Algorithms and Complexity) The Diffie-Hellman Key Exchange February 17, 2022 12 / 28



Public Key Cryptography

A public key cryptosystem is a pair of families {EK}K∈{K}, {DK}K∈{K} of
algorithms representing invertible transformations:

EK : {M} → {M}

DK : {M} → {M}

where {M} = {P} = {C} is a finite message space, such that

for every K ∈ {K}, EK is the inverse of DK ,

for every K ∈ {K} and M ∈ {M}, the algorithms EK and DK are
easy to compute,

for almost every K ∈ {K}, each easily computed algorithm equivalent
to DK is computationally infeasible to derive from EK ,

for every K ∈ {K} it is feasible to compute inverse pairs EK and DK

from K .

Raskopoulou Vasiliki (Algorithms and Complexity) The Diffie-Hellman Key Exchange February 17, 2022 12 / 28



Public Key Cryptography

A public key cryptosystem is a pair of families {EK}K∈{K}, {DK}K∈{K} of
algorithms representing invertible transformations:

EK : {M} → {M}

DK : {M} → {M}

where {M} = {P} = {C} is a finite message space, such that

for every K ∈ {K}, EK is the inverse of DK ,

for every K ∈ {K} and M ∈ {M}, the algorithms EK and DK are
easy to compute,

for almost every K ∈ {K}, each easily computed algorithm equivalent
to DK is computationally infeasible to derive from EK ,

for every K ∈ {K} it is feasible to compute inverse pairs EK and DK

from K .

Raskopoulou Vasiliki (Algorithms and Complexity) The Diffie-Hellman Key Exchange February 17, 2022 12 / 28



Public Key Cryptography

A public key cryptosystem is a pair of families {EK}K∈{K}, {DK}K∈{K} of
algorithms representing invertible transformations:

EK : {M} → {M}

DK : {M} → {M}

where {M} = {P} = {C} is a finite message space, such that

for every K ∈ {K}, EK is the inverse of DK ,

for every K ∈ {K} and M ∈ {M}, the algorithms EK and DK are
easy to compute,

for almost every K ∈ {K}, each easily computed algorithm equivalent
to DK is computationally infeasible to derive from EK ,

for every K ∈ {K} it is feasible to compute inverse pairs EK and DK

from K .

Raskopoulou Vasiliki (Algorithms and Complexity) The Diffie-Hellman Key Exchange February 17, 2022 12 / 28



Public Key Cryptography

A public key cryptosystem is a pair of families {EK}K∈{K}, {DK}K∈{K} of
algorithms representing invertible transformations:

EK : {M} → {M}

DK : {M} → {M}

where {M} = {P} = {C} is a finite message space, such that

for every K ∈ {K}, EK is the inverse of DK ,

for every K ∈ {K} and M ∈ {M}, the algorithms EK and DK are
easy to compute,

for almost every K ∈ {K}, each easily computed algorithm equivalent
to DK is computationally infeasible to derive from EK ,

for every K ∈ {K} it is feasible to compute inverse pairs EK and DK

from K .

Raskopoulou Vasiliki (Algorithms and Complexity) The Diffie-Hellman Key Exchange February 17, 2022 12 / 28



Public Key Cryptography

Each user generates a pair of inverse transformations, E and D. The
enciphering algorithm E can de made public, while the deciphering
transformation D must be kept secret.
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Public Key Cryptography

A naive example

Let the message to be enciphered be a binary n-vector m, and E be an
invertible n × n matrix, i.e., c = Em. Then D = E−1 and m = Dc.

E is the inverse of D

Em and Dc are easy to compute (about n2 operations)

Calculating D from E (matrix inversion) is a harder problem (but not
hard enough!→ n3 operations)

It is simpler to obtain a pair of inverse matrices than it is to invert a
given matrix
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Public Key Cryptography

Example: RSA

Let K = (p, q), where p, q are prime numbers (secret), N = pq (public)
and {M} = Z∗N .
Then

EK : Z∗N → Z∗N ,m 7→ me mod N,

where e < N and

DK : Z∗N → Z∗N , c 7→ cd mod N,

for some d such that ed = 1 mod φ(N).

Raskopoulou Vasiliki (Algorithms and Complexity) The Diffie-Hellman Key Exchange February 17, 2022 15 / 28



Public Key Cryptography

Example: RSA

EK is the inverse of DK :

DK (EK (m)) = EK (m)dmodN = (me)dmodN = medmodN = m

EK (m) and DK (c) are easy to compute

Calculating DK from EK (given e, find d) is an NP problem

It is feasible to find e, d such that ed = 1 mod φ(pq)
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Public Key Cryptography

“EK (m) and DK (c) are easy to compute”:
Modular Exponentiation am mod n can be done in O(log k), where k is
the exponent’s length in binary.

Require: a, n, b0, b1, . . . , bk−1 such that m = (bk−1 . . . b1b0)2

1: x := a
2: y := 1
3: for i = 0, . . . k − 1 do
4: if bi = 1 then
5: y := y · x mod n
6: x := x2 mod n
7: end if
8: end for
9: return y
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Public Key Distribution Cryptosystem
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Public Key Distribution Cryptosystem

The Diffie-Hellman Protocol

A and B wish to exchange a private key via a public, insecure channel, in
order to use a symmetric cryptosystem. Let q be a prime number and
a ∈ {2, . . . , q − 1}. q and a are agreed upon by A and B, and they can be
made public.

User A generates a random number X ∈ {1, 2, . . . , q − 1} and keeps
it secret.

Makes public Y = aX mod q.

User B also picks X ′ ∈ {1, 2, . . . , q − 1} (secret) and publicizes
Y ′ = aX

′
mod q.

A computes K = (Y ′)X mod q = aX
′X mod q

B computes Y X ′
mod q = aXX

′
mod q = K

Both A and B have the same key K .
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Public Key Distribution Cryptosystem

The Diffie-Hellman Protocol

Since any other user does not possess neither X nor X ′, they should be
able to compute either loga Y mod q = X or loga Y

′ mod q = X ′, which
is computationally infeasible:

The Discrete Logarithm Problem is in NP.

Proof.

q is a prime and a is a primitive root mod q

iff

ordq(a) = q − 1.

We can verify these conditions in non-deterministic polynomial time:

guess all prime factors p1, . . . , pk of q − 1,

use primality test for all of them,

compute (q − 1)/pi and verify that a(q−1)/pi 6≡ 1 mod q for all pi .
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Public Key Distribution Cryptosystem

So, given q, a, n,m we can verify whether q is a prime and a a primitive
root and if am ≡ n mod q. This means that DLP is in NP.
On the other hand, if am 6≡ n mod q, then

there are i , j with 0 < i , j < q such that ai ≡ aj mod q or

there is an ` ≤ m such that a` ≡ n mod q or

n ≥ q

All of the above can be checked in polynomial time, so DLP is in coNP.
We have that DLP is in NP ∩ coNP.
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One-way Authentication
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One-way Authentication

Conventional Cryptography

Written signature → digital signature

easy to recognize the signature as authentic

impossible to produce it

Digital signature must be recognizable without being known
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One-way Authentication

The ”login” problem

User enters password PW

Computer computes and stores a function f (PW )

Each time a login with X is attempted, computer calculates f (X ) and
compares with stored value f (PW )

Computation time of f must be small, computation of f −1 must be
practically infeasible.

f → one-way function

Still not entirely secure
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One-way Authentication

Public Key Cryptography

A wants to send a message M to B

A deciphers the message DK (M) using his (secret) algorithm DK and
sends it to B, along with M.

B enciphers the message EK (DK (M)) using A’s (public) algorithm
EK .

Obviously, B obtains M and can therefore be assured of the
authenticity of its sender.
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One-way Authentication

Example: RSA digital signature

Let E (x) = xe mod N be A’s public encryption algorithm, and
D(y) = yd mod N their secret decryption algorithm.

A sends (m,m′) to B, where m′ = md mod N.

B computes E (m′) = (m′)e mod N = (md)e mod N = m, and
therefore recognizes the authenticity of the sender.

Conversely, suppose that a third user C claims to be A. Since C has no
knowledge of d , he sends to user B (m,m′), where m′ = md ′

mod N for
some d ′ 6= d . B computes E (m′) = (m′)e mod N = (md ′

)e mod N 6= m
and sees through C’s forgery.
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Thank You!
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