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P-reducibility

S,T sets of strings
S P-red to T iff there is

▶ qTM M

▶ polynomial Q(n)

T-computation of M with input w halts within Q(|w |) steps
P-red transitive
(S ,T ) ∈ E iff S,T P-red to each other
E equivalence relation, deg(S) equivalence class containing S
deg(S) polynomial degree of difficulty of S
L∗ = deg({0})
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Tautologyhood

M nondeterministic, accepts a set S of strings in time Q(n)
input w, |w | = n

{σ1, · · · , σl} tape alphabet of M
{q1, · · · , qr} states of M
T = Q(N) number of steps of the computation
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▶ P i
s,t , i ∈ [1, l ], s, t ∈ [1,T ]

true iff at step t, cell s contains σi
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true iff at step t M is in state qj
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Tutologyhood

Bt = (S1,t ∨ · · · ∨ ST ,t) ∧ (
∧

1≤i ,j≤T (¬(Si ,t ∨ Sj ,t)) is true iff at
step t M scans exactly one cell
B = B1 ∧ · · · ∧ BT

Cs,t true iff at step t there exists exactly one symbol in cell s
C =

∧
1≤s,t≤T Cs,t

D true iff at every step M is in exactly one state
E = Q1

1 ∧ S1
1 ∧ P i1

1,1 ∧ · · · ∧ P in
n,1 ∧ P1

n+1,1 ∧ P1
T ,1

w = σi1 · · ·σin , q1 initial state, σ1= ϵ
E true iff initial conditins for M are met
F ,G ,H true iff truth values of P,Q,S are updated properly
I true iff M is at ”yes” state at some step t ∈ [1,T ]
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Clearly, the whole construction can be carried out in time bounded
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As a corollary, each of the ”special sets of strings” is P-reducible to
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Reductions

A = B1 ∨ · · · ∨ Bk , B1 = R1 ∧ · · ·s , each Ri atom or negation of an
atom, s > 3
A in DNF

A is a tautology iff A’ is a tautology, where
A′ = P ∧ R3 ∧ · · ·s ∨ ¬P ∧ R1 ∧ R2 ∧ B2 ∧ · · · ∧ Bk

reduced number of conjuncts in B1

process repeated until a formula with at most three conjuncts per
disjunct is reached.
This process is time-bounded by a polynomial in the length of A
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A formula in D3, A = C1 ∨ · · · ∨ Ck , where Ci = Ri1 ∧ Ri2 ∧ Ri3

G1 = Kk with vertices {v1, · · · , vk}
G2 is the graph with vertices {uij}, 1 ≤ i ≤ k , 1 ≤ j ≤ 3 such that
uij is connected by edge to urs iff i ̸= r and (Rij ,Rrs) not an
opposite pair of literals.
Thus, there is a falsifying truth assignment to A iff there is a graph
homomorphism ϕ : G1 −→ G2 such that for each i , ϕ(i) = uij for
some j
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Predicate Calculus

TM MQ and recursive function TQ(k). MQ is of type Q and runs
for TQ(k) steps iff
MQ(A) halts iff A is unsatisfiable, and for all k , if ϕ(A) ≤ k and
|A| ≤ log2k, then MQ halts within TQ(k) steps.
In this case, we will say that TQ(k) is of type Q.

For any TQ(k) of type Q,
TQ(k)√
k/(logk)2

is unbounded

There exists TQ(k) of type Q such that TQ(k) ≤ k2k(logk)
2
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