The Complexity of Theorem-Proving Procedures

Stefanos Mitsis-Koutoukis
ALMA

February 2022

Query TMs

- Query Machine multitape TM query tape, query state

Query TMs

- Query Machine multitape TM query tape, query state
- T-computation set of strings T
TM in query state, s in query tape $s \in T \Rightarrow \mathrm{TM}$ in "yes" state
$s \notin T \Rightarrow \mathrm{TM}$ in " no" state

P-reducibility

S,T sets of strings
$S P$-red to T iff there is

P-reducibility

S,T sets of strings
S P-red to T iff there is

- qTM M
- polynomial $Q(n)$

P-reducibility

S,T sets of strings
$S P$-red to T iff there is

- qTM M
- polynomial $Q(n)$

T-computation of M with input w halts within $Q(|w|)$ steps

P-reducibility

S,T sets of strings
$S P$-red to T iff there is

- qTM M
- polynomial $Q(n)$

T-computation of M with input w halts within $Q(|w|)$ steps
P-red transitive
$(S, T) \in E$ iff S , T P-red to each other
E equivalence relation, $\operatorname{deg}(S)$ equivalence class containing S

P-reducibility

S,T sets of strings
$S P$-red to T iff there is

- qTM M
- polynomial $Q(n)$

T-computation of M with input w halts within $Q(|w|)$ steps P-red transitive
$(S, T) \in E$ iff S, T P-red to each other
E equivalence relation, $\operatorname{deg}(S)$ equivalence class containing S $\operatorname{deg}(S)$ polynomial degree of difficulty of S

P-reducibility

S,T sets of strings
$S P$-red to T iff there is

- qTM M
- polynomial $Q(n)$

T-computation of M with input w halts within $Q(|w|)$ steps
P-red transitive
$(S, T) \in E$ iff S, T P-red to each other
E equivalence relation, $\operatorname{deg}(S)$ equivalence class containing S $\operatorname{deg}(S)$ polynomial degree of difficulty of S
$\mathcal{L}_{*}=\operatorname{deg}(\{0\})$

Special sets of strings

- \{subgraph pairs\}

Special sets of strings

- \{subgraph pairs\}
- \{isomorphic graphpairs $\}$

Special sets of strings

- \{subgraph pairs\}
- \{isomorphic graphpairs\}
- \{primes $\}$

Special sets of strings

- \{subgraph pairs\}
- \{isomorphic graphpairs\}
- \{primes\}
- \{DNF tautologies $\}$

Special sets of strings

- \{subgraph pairs\}
- \{isomorphic graphpairs\}
- \{primes\}
- \{DNF tautologies $\}$
- D_{3}

Tautologyhood

M nondeterministic, accepts a set S of strings in time $Q(n)$ input $w,|w|=n$

Tautologyhood

M nondeterministic, accepts a set S of strings in time $Q(n)$ input $w,|w|=n$
$\left\{\sigma_{1}, \cdots, \sigma_{l}\right\}$ tape alphabet of M
$\left\{q_{1}, \cdots, q_{r}\right\}$ states of M
$T=Q(N)$ number of steps of the computation

Tautologyhood

- $P_{s, t}^{i}, i \in[1, l], s, t \in[1, T]$
true iff at step t, cell s contains σ_{i}

Tautologyhood

- $P_{s, t}^{i}, i \in[1, l], s, t \in[1, T]$
true iff at step t, cell s contains σ_{i}
- $Q_{t}^{j}, t \in[1, T], j \in[1, r]$
true iff at step $t \mathrm{M}$ is in state q_{j}

Tautologyhood

- $P_{s, t}^{i}, i \in[1, l], s, t \in[1, T]$ true iff at step t, cell s contains σ_{i}
- $Q_{t}^{j}, t \in[1, T], j \in[1, r]$ true iff at step $t \mathrm{M}$ is in state q_{j}
- $S_{s, t}, s, t \in[1, T]$ true iff at step $t \mathrm{M}$ is scanning cell s

Tutologyhood

$B_{t}=\left(S_{1, t} \vee \cdots \vee S_{T, t}\right) \wedge\left(\bigwedge_{1 \leq i, j \leq T}\left(\neg\left(S_{i, t} \vee S_{j, t}\right)\right)\right.$ is true iff at step $t \mathrm{M}$ scans exactly one cell
$B=B_{1} \wedge \cdots \wedge B_{T}$

Tutologyhood

$B_{t}=\left(S_{1, t} \vee \cdots \vee S_{T, t}\right) \wedge\left(\bigwedge_{1 \leq i, j \leq T}\left(\neg\left(S_{i, t} \vee S_{j, t}\right)\right)\right.$ is true iff at step $t \mathrm{M}$ scans exactly one cell
$B=B_{1} \wedge \cdots \wedge B_{T}$
$C_{s, t}$ true iff at step t there exists exactly one symbol in cell s $C=\bigwedge_{1 \leq s, t \leq T} C_{s, t}$

Tutologyhood

$B_{t}=\left(S_{1, t} \vee \cdots \vee S_{T, t}\right) \wedge\left(\bigwedge_{1 \leq i, j \leq T}\left(\neg\left(S_{i, t} \vee S_{j, t}\right)\right)\right.$ is true iff at step $t \mathrm{M}$ scans exactly one cell
$B=B_{1} \wedge \cdots \wedge B_{T}$
$C_{s, t}$ true iff at step t there exists exactly one symbol in cell s
$C=\bigwedge_{1 \leq s, t \leq T} C_{s, t}$
D true iff at every step M is in exactly one state

Tutologyhood

$B_{t}=\left(S_{1, t} \vee \cdots \vee S_{T, t}\right) \wedge\left(\bigwedge_{1 \leq i, j \leq T}\left(\neg\left(S_{i, t} \vee S_{j, t}\right)\right)\right.$ is true iff at step $t \mathrm{M}$ scans exactly one cell
$B=B_{1} \wedge \cdots \wedge B_{T}$
$C_{s, t}$ true iff at step t there exists exactly one symbol in cell s
$C=\bigwedge_{1 \leq s, t \leq T} C_{s, t}$
D true iff at every step M is in exactly one state
$E=Q_{1}^{1} \wedge S_{1}^{1} \wedge P_{1,1}^{i_{1}} \wedge \cdots \wedge P_{n, 1}^{i_{n}} \wedge P_{n+1,1}^{1} \wedge P_{T, 1}^{1}$
$w=\sigma_{i_{1}} \cdots \sigma_{i_{n}}, q_{1}$ initial state, $\sigma_{1}=\epsilon$
E true iff initial conditins for M are met

Tutologyhood

$B_{t}=\left(S_{1, t} \vee \cdots \vee S_{T, t}\right) \wedge\left(\bigwedge_{1 \leq i, j \leq T}\left(\neg\left(S_{i, t} \vee S_{j, t}\right)\right)\right.$ is true iff at step $t \mathrm{M}$ scans exactly one cell
$B=B_{1} \wedge \cdots \wedge B_{T}$
$C_{s, t}$ true iff at step t there exists exactly one symbol in cell s
$C=\bigwedge_{1 \leq s, t \leq T} C_{s, t}$
D true iff at every step M is in exactly one state
$E=Q_{1}^{1} \wedge S_{1}^{1} \wedge P_{1,1}^{i_{1}} \wedge \cdots \wedge P_{n, 1}^{i_{n}} \wedge P_{n+1,1}^{1} \wedge P_{T, 1}^{1}$
$w=\sigma_{i_{1}} \cdots \sigma_{i_{n}}, q_{1}$ initial state, $\sigma_{1}=\epsilon$
E true iff initial conditins for M are met
F, G, H true iff truth values of P, Q, S are updated properly

Tutologyhood

$B_{t}=\left(S_{1, t} \vee \cdots \vee S_{T, t}\right) \wedge\left(\bigwedge_{1 \leq i, j \leq T}\left(\neg\left(S_{i, t} \vee S_{j, t}\right)\right)\right.$ is true iff at step $t \mathrm{M}$ scans exactly one cell
$B=B_{1} \wedge \cdots \wedge B_{T}$
$C_{s, t}$ true iff at step t there exists exactly one symbol in cell s
$C=\bigwedge_{1 \leq s, t \leq T} C_{s, t}$
D true iff at every step M is in exactly one state
$E=Q_{1}^{1} \wedge S_{1}^{1} \wedge P_{1,1}^{i_{1}} \wedge \cdots \wedge P_{n, 1}^{i_{n}} \wedge P_{n+1,1}^{1} \wedge P_{T, 1}^{1}$
$w=\sigma_{i_{1}} \cdots \sigma_{i_{n}}, q_{1}$ initial state, $\sigma_{1}=\epsilon$
E true iff initial conditins for M are met
F, G, H true iff truth values of P, Q, S are updated properly
I true iff M is at "yes" state at some step $t \in[1, T]$

Tautologyhood

$$
A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I
$$

Tautologyhood

$$
A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I
$$

A satisfiable iff M accepts W, A in CNF

Tautologyhood

$A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I$
A satisfiable iff M accepts W, A in CNF $\neg A$ tautology iff $w \notin S, \neg A$ in DNF

Tautologyhood

$A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I$
A satisfiable iff M accepts W, A in CNF
$\neg A$ tautology iff $w \notin S, \neg A$ in DNF
Clearly, the whole construction can be carried out in time bounded by a polynomial of $|w|$

Tautologyhood

$A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I$
A satisfiable iff M accepts W, A in CNF
$\neg A$ tautology iff $w \notin S, \neg A$ in DNF
Clearly, the whole construction can be carried out in time bounded by a polynomial of $|w|$
S is P -reducible to $\{\mathrm{DNF}$ tautologies\}
As a corollary, each of the "special sets of strings" is P-reducible to \{DNF tautologies\}

Reductions

\{tautologies\}, \{DNF tautologies\}, D_{3}, \{subgraph pairs\} P-red to each other
By the previous corollary, each of the sets is P-red to \{DNF tautologies\}.

Reductions

\{tautologies\}, \{DNF tautologies\}, D_{3}, \{subgraph pairs\}
P-red to each other
By the previous corollary, each of the sets is P-red to \{DNF tautologies $\}$.
Obviously, \{DNF tautologies\} is P-red to \{tautologies\}.

Reductions

$A=B_{1} \vee \cdots \vee B_{k}, B_{1}=R_{1} \wedge \cdots_{s}$, each R_{i} atom or negation of an atom, $s>3$
A in DNF

Reductions

$A=B_{1} \vee \cdots \vee B_{k}, B_{1}=R_{1} \wedge \cdots_{s}$, each R_{i} atom or negation of an atom, $s>3$
A in DNF
A is a tautology iff A^{\prime} is a tautology, where
$A^{\prime}=P \wedge R_{3} \wedge \cdots_{s} \vee \neg P \wedge R_{1} \wedge R_{2} \wedge B_{2} \wedge \cdots \wedge B_{k}$

Reductions

$A=B_{1} \vee \cdots \vee B_{k}, B_{1}=R_{1} \wedge \cdots_{s}$, each R_{i} atom or negation of an atom, $s>3$
A in DNF
A is a tautology iff A^{\prime} is a tautology, where
$A^{\prime}=P \wedge R_{3} \wedge \cdots_{s} \vee \neg P \wedge R_{1} \wedge R_{2} \wedge B_{2} \wedge \cdots \wedge B_{k}$
reduced number of conjuncts in B_{1}
process repeated until a formula with at most three conjuncts per disjunct is reached.

Reductions

$A=B_{1} \vee \cdots \vee B_{k}, B_{1}=R_{1} \wedge \cdots_{s}$, each R_{i} atom or negation of an atom, $s>3$
A in DNF
A is a tautology iff A^{\prime} is a tautology, where
$A^{\prime}=P \wedge R_{3} \wedge \cdots_{s} \vee \neg P \wedge R_{1} \wedge R_{2} \wedge B_{2} \wedge \cdots \wedge B_{k}$
reduced number of conjuncts in B_{1}
process repeated until a formula with at most three conjuncts per disjunct is reached.
This process is time-bounded by a polynomial in the length of A

Reductions

A formula in $D_{3}, A=C_{1} \vee \cdots \vee C_{k}$, where $C_{i}=R_{i 1} \wedge R_{i 2} \wedge R_{i 3}$

Reductions

A formula in $D_{3}, A=C_{1} \vee \cdots \vee C_{k}$, where $C_{i}=R_{i 1} \wedge R_{i 2} \wedge R_{i 3}$ $G_{1}=K_{k}$ with vertices $\left\{v_{1}, \cdots, v_{k}\right\}$

Reductions

A formula in $D_{3}, A=C_{1} \vee \cdots \vee C_{k}$, where $C_{i}=R_{i 1} \wedge R_{i 2} \wedge R_{i 3}$ $G_{1}=K_{k}$ with vertices $\left\{v_{1}, \cdots, v_{k}\right\}$
G_{2} is the graph with vertices $\left\{u_{i j}\right\}, 1 \leq i \leq k, 1 \leq j \leq 3$ such that $u_{i j}$ is connected by edge to $u_{r s}$ iff $i \neq r$ and $\left(R_{i j}, R_{r s}\right)$ not an opposite pair of literals.

Reductions

A formula in $D_{3}, A=C_{1} \vee \cdots \vee C_{k}$, where $C_{i}=R_{i 1} \wedge R_{i 2} \wedge R_{i 3}$
$G_{1}=K_{k}$ with vertices $\left\{v_{1}, \cdots, v_{k}\right\}$
G_{2} is the graph with vertices $\left\{u_{i j}\right\}, 1 \leq i \leq k, 1 \leq j \leq 3$ such that $u_{i j}$ is connected by edge to $u_{r s}$ iff $i \neq r$ and $\left(R_{i j}, R_{r s}\right)$ not an opposite pair of literals.
Thus, there is a falsifying truth assignment to A iff there is a graph homomorphism $\phi: G_{1} \longrightarrow G_{2}$ such that for each $i, \phi(i)=u_{i j}$ for some j

Predicate Calculus

TM M_{Q} and recursive function $T_{Q}(k) . M_{Q}$ is of type Q and runs for $T_{Q}(k)$ steps iff
$M_{Q}(A)$ halts iff A is unsatisfiable, and for all k, if $\phi(A) \leq k$ and $|A| \leq \log _{2} k$, then M_{Q} halts within $T_{Q}(k)$ steps.
In this case, we will say that $T_{Q}(k)$ is of type Q.

Predicate Calculus

TM M_{Q} and recursive function $T_{Q}(k) . M_{Q}$ is of type Q and runs for $T_{Q}(k)$ steps iff
$M_{Q}(A)$ halts iff A is unsatisfiable, and for all k, if $\phi(A) \leq k$ and $|A| \leq \log _{2} k$, then M_{Q} halts within $T_{Q}(k)$ steps.
In this case, we will say that $T_{Q}(k)$ is of type Q.
For any $T_{Q}(k)$ of type $Q, \frac{T_{Q}(k)}{\sqrt{k} /(\log k)^{2}}$ is unbounded

Predicate Calculus

TM M_{Q} and recursive function $T_{Q}(k) . M_{Q}$ is of type Q and runs for $T_{Q}(k)$ steps iff
$M_{Q}(A)$ halts iff A is unsatisfiable, and for all k, if $\phi(A) \leq k$ and $|A| \leq \log _{2} k$, then M_{Q} halts within $T_{Q}(k)$ steps.
In this case, we will say that $T_{Q}(k)$ is of type Q.
For any $T_{Q}(k)$ of type $Q, \frac{T_{Q}(k)}{\sqrt{k} /(\log k)^{2}}$ is unbounded
There exists $T_{Q}(k)$ of type Q such that $T_{Q}(k) \leq k 2^{k(\log k)^{2}}$

Thank you!

