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classify problems according to amount of resources needed for solving them

Why is this quantity well-defined?

.
Extended Church Turing (ECT) Thesis
..

......

Any ''reasonable'' model of computation can be efficiently simulated on a
probabilistic Turing Machine or random access machine.

However, there is evidence that ECT doesn't hold for the quantum world.
Why?
Turing Machine is based on a classical physics model of the Universe, whereas
current physical theory asserts that the Universe is quantum physical.
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Motivation

.. Evidence and Meaning

Some evidence:

• Feynman '82: it's not clear how to simulate a quantum system on a
computer without exponential penalty

• Bernstein & Vazirani '97: relative to an oracle, quantum poly-time
properly contains probabilistic poly-time

• Simon '97: relative to an oracle, quantum poly-time is not contained in
subexponential probabilistic time

• Shor '97: prime factorization and discrete logarithms solved in poly-time
on a quantum computer

• Kerenidis & Zhang '13: players achieve correlated Nash Equilibrium
unconditionally, if quantum communication is enabled
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properly contains probabilistic poly-time

• Simon '97: relative to an oracle, quantum poly-time is not contained in
subexponential probabilistic time

• Shor '97: prime factorization and discrete logarithms solved in poly-time
on a quantum computer

• Kerenidis & Zhang '13: players achieve correlated Nash Equilibrium
unconditionally, if quantum communication is enabled

So, one of the following must hold:

• ECT thesis is false

• Quantum Physics is false

• Our picture of computational complexity theory is false
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Computational Model

Quantum Circuits

.. Quantum Circuit Model

A quantum circuit is an acyclic network of quantum gates connected by

qubit wires. For example:

• convenient model when study the complexity of quantum computation

• acyclic to preserve time ordering of things

• introduced by Deutsch in '85
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Qubit is the basic unit of quantum information. Some math intuition:

An event with n possible outcomes is a vector in Rn: v = (p1, . . . , pn)

• pi ≥ 0
• ∑ pi = 1 ⇒ ∥v∥1 = 1
• e.g. bit can be seen as the vector (p, 1 − p)
• operation: stochastic matrix

why not use 2-norm?

• vector v′ = (a, b) where a, b ∈ C

• ∥v′∥2 = 1 ⇒ a2 + b2 = 1

• operation: unitary matrix (UHU = I)

x
y

z
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Computational Model

Quantum Circuits

.. Qubit

Qubit is a 2D quantum system in Hilbert Space C2

• basis of C2: (0, 1) and (1, 0)

• state of qubit: vector in C2

• Dirac notation: ψ = (a, b) =⇒ |ψ⟩ = a|0⟩+ b|1⟩

Properties of qubits:

• Normalization: |a|2 + |b|2 = 1 = ⟨ψ|ψ⟩
• Superposition: linear combination

• Measurement: state collapses irreversibly to one of the basis states

• Non-Clonability: cannot copy unknown quantum state

• Entanglement: see in a while

Physical implementation:

• electron spin

• photon polarization etc.
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Computational Model

Quantum Circuits

.. 2 Qubits

• space now is C2 ⊗ C2

• 4 basis states: |00⟩, |01⟩, |10⟩, |11⟩
• 2-qubit state: |ψ⟩ = a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩
• ∑

x∈{0,1}2
|ax |2 = 1
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• If 1st qubit is 0 then system collapses to |ψ′⟩ = a00|00⟩+a01|01⟩√p0

• what if |ψ⟩ = |00⟩+|11⟩√
2

(Bell state - EPR pair) ?

• 2nd measurement gives the same with 1st -- maximally entangled state

• Entanglement: perfect (anti) correlation

• n-qubit state is a linear superposition of 2n basis states

• Huge computational power of quantum computers!
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• quantum operations: unitary matrices

• search for a pattern in superposition

• rotate Hilbert space

• same number of input and output qubits

• reversible: no info is lost

• can simulate classical logic gates

Need for Universal gate set

• to compare with other models

• approximate any unitary operation with arbitrary accuracy

.
Solovay-Kitaev theorem
..

......

Informally: any universal gate set can be simulated by another universal

gate set with only a polynomial increase of gates.
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Computational Model

Quantum Circuits

.. Universal gate set

Toffoli Gate

flips qubit c if  a,b are 1

Hadamard Gate

• proved to be quantum universal by Shi, '02

• real entries -- how approximate complex unitary matrices?

• no strict but computational universality

• can be used for fault tolerant purposes
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Computational Model

Quantum Circuits

.. Poly-time Quantum Algorithms

.
Definition
..

......

In the quantum circuit model, a quantum algorithm Q is
described by a family of quantum circuits

Q = {Qn : n ∈ N}

• We require that such a family is poly-time uniform

• To run this algorithm on input x ∈ {0, 1}n we apply Qn to |x⟩ and
measure the output in the standard basis:

• Q(x) denotes the outcome, which is a random variable in general.
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Computational Model

Quantum Turing Machine

.. QTM: informal

• Reminder: internal state of PTM changes in a probabilistic way

• description of configurations: a probability vector p⃗
• step of computation: M · p⃗ = q⃗ where M is a stochastic matrix.

• QTM is the same

• just change M to be unitary and p⃗ to be 2-norm unit vector

PTM
QTM
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Computational Model

Quantum Turing Machine

.. QTM: formal

.
Quantum Turing Machine [Deutsch, '85]
..

......

A QTM is defined by a triplet (Σ, Q, δ), where Σ is the alphabet, Q is a finite
set of states and δ is the quantum transition function

δ : Q × Σ −→ C̃Σ×Q×D

with D = {L, R} and C̃ the set of ''efficiently computable'' complex numbers.

• each state of QTM is a linear combination ∑
c

ac|c⟩ of all classical

configurations c = |a, q, m⟩ (tape content, state, head position)

• δ(p, σ) gives a superposition of all possible (finite) configs which the
machine will take when in state p reading a σ.

• so δ is like a unitary matrix

15 / 50



. . . . . .

Computational Model

Some Algorithms

.. Query Complexity Model

• Almost all quantum algorithms operate in the query complexity model.

• In this model, input is not a bit-string but a ''black box'' computing some

function f : {0, 1}n → {0, 1} which returns f (x) when x is passed in.
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the state: U f ,± : |x⟩ → (−1) f (x)|x⟩ just set target bit to H|1⟩
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U f : |x⟩|y⟩ → |x⟩|y ⊕ f (x)⟩ where f (x) ∈ {0, 1} y is the target bit

• one call to U f is called a query

• another type of query that puts the output variable in the phase of

the state: U f ,± : |x⟩ → (−1) f (x)|x⟩ just set target bit to H|1⟩
• both types of queries simulate each other with only one query

• goal: compute some property of f using the minimum worst case

number of queries

• Algorithm can also apply arbitrary unitary transformations as long as
values of f are not involved in their definitions.

• Pros: if there is a circuit simulating U f just plug it in and return to

computational complexity model.

• Cons: quantum-classical separations are relative to an oracle.
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Computational Model

Some Algorithms

.. Deutsch's Algorithm

• initially proposed by David Deutsch in '85 - improved by Cleve, Ekert,
Macchiavello, and Mosca in '92

• combines quantum parallelism with interference

.
Deutsch's Problem
..

...... given f : {0, 1} → {0, 1} we wish to compute f (0)⊕ f (1)

• classical query complexity is 2

• quantum query complexity is 1
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[
|0⟩+|1⟩√

2

] [
|0⟩−|1⟩√

2

]
• quantum parallelism:

• Observe that: U f |x⟩H|1⟩ = (−1) f (x)|x⟩H|1⟩ (remember phase oracle)

• So: U f |ψ1⟩ = (−1) f (0) |0⟩+(−1) f (1) |1⟩√
2

H|1⟩

• Therefore: |ψ2⟩ =


±

[
|0⟩+|1⟩√

2

]
H|1⟩ if f (0) = f (1)

±
[
|0⟩−|1⟩√

2

]
H|1⟩ if f (0) ̸= f (1)
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
±

[
|0⟩+|1⟩√

2

]
H|1⟩ if f (0) = f (1)

±
[
|0⟩−|1⟩√

2

]
H|1⟩ if f (0) ̸= f (1)

• interference: just apply Hadamard gate to first qubit

• |ψ3⟩ =


±|0⟩H|1⟩ if f (0) = f (1)

±|1⟩H|1⟩ if f (0) ̸= f (1)

• notice that if f (0) = f (1) then f (0)⊕ f (1) = 0

• finally: |ψ3⟩ = | f (0)⊕ f (1)⟩ H|1⟩ ⇒ just measure first qubit!
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Computational Model

Some Algorithms

.. Some query complexity separations (1)

• We've seen only a 2-speedup factor in computing the XOR of n qubits

• Is there a bigger quantum-classical gap?

.
Deutsch-Jozsa Problem
..

......

We have a function f : {0, 1}n → {0, 1} which is either constant or balanced (0
for half the inputs, 1 for the other half). The goal is to find out what it is.

• in classical world, we need 2n−1 + 1 queries (error prob. is not allowed)

• in quantum world, a generalization of prev. algorithm uses only 1 query
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Computational Model

Some Algorithms

.. Some query complexity separations (2)

.
Simon's Problem
..

......

We have a function f : {0, 1}n → {0, 1}n and we are promised that there exists
a ''secret XOR mask'' s ∈ {0, 1}n s.t. f (x) = f (y) ⇔ y = x ⊕ s for all distinct
(x, y) pairs. The goal is to find out the identity of s.

• Deutsch's Problem is a special case for n = 1.
• Classically, we know that any algorithm in the query model (even with

error probability at most ϵ) will make Ω(
√

2n log 1
ϵ ) queries.

• Quantumly, it can be solved with O(n log 1
ϵ ) queries.

So, in the query complexity model, there are quantum algorithms which

do achieve an exponential separation between quantum and classical.
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. . . . . .

BQP

a look inside

.. BQP

• One of the fundamental classes in quantum complexity.

• It describes what we can efficiently solve with a quantum computer.

.
Definition
..

......

BQP: is the class containing all languages L ⊂ {0, 1}∗ for which there exists a
poly-time uniform family Q = {Qn : n ∈ N} of quantum circuits s.t. for all
inputs x it holds that:

x ∈ L ⇒ Pr[Q(x) = 1] ≥ 2/3

x /∈ L ⇒ Pr[Q(x) = 0] ≥ 2/3

• Error reduction: just like BPP, repeat computation and take majority vote

• Assumption: circuits use gates form a universal gate set

• Auxiliary qubits are bounded by some polynomial q:
Q(x) = Q(|x⟩|0⟩⊗q(n))

23 / 50



. . . . . .

BQP

a look inside

.. Some Structural Properties of BQP

.

......

..1 BQP is closed under complement

..2 BQP is closed under intersection (and union)

..3 BQP is low for itself, meaning BQPBQP
= BQP

• If you can't prove 1. and 2. by now, then I completely failed to attract
your interest §

• The proof about 3. is like that of BPP with one exception:

• when a quantum algo terminates, we measure only the output qubit
• all other qubits are considered as garbage

• so when we replace BQP oracle with a BQP subroutine, we have
some subroutine garbage left

• in case of pure states, we just throw them away
• but in case of mixed states, they may annoy interference
• what can we do to avoid this?
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BQP

a look inside

.. Uncomputing

.

......

..1 play subroutine

..2 copy answer qubit to separate location

..3 rewind subroutine

• solution proposed by Bennett in the '80s

• quantum mechanics cleans its mess

• if subroutine has some error probability, it won't erase everything

• solution: apply probability amplification in the subroutine part

25 / 50
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How can we simulate randomness?
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• make classical logic gates reversible: e.g. a Toffoli gate can simulate a
NAND gate, which is universal in the classical set

• By Solovay-Kitaev theorem, with a universal quantum gate set we can
approximate efficiently any other unitary transformation: simulating arbitrary
gates up to exponentially small error, costs only a polynomial overhead

So, a quantum computer is at least as powerful as a classical one.
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BQP

Upper Bounds

.. BQP ⊆ EXP

• We've seen that a quantum state is |ψ⟩ =∑
i

ai |i⟩ where i ∈ {0, 1}n

• so, this state vector moves inside an exponential space

• to simulate with a classical computer the evolution of this vector,
exponential time should suffice

• conclusion: quantum computers can offer no more than an exponential
advantage over classical ones.

• can we find better lower bound?
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. . . . . .

BQP

Upper Bounds

.. BQP ⊆ PSPACE [Bernstein & Vazirani '93]

Basic Idea: integrating over computational paths

• We have a language L ∈ BQP.
• So, there exists a BQP machine M that decides L within time p(n), for

some polynomial p and input x ∈ {0, 1}n.

• The tree of the computation has depth p(n).
• For now, let the transition amplitudes be computed in polynomial time

(and therefore in polynomial space).

• For each path on the tree:

• If path ends up accepting, add its amplitude to a running total.

• Reuse space an repeat process for all paths (2p(n)).

• We conclude that the total amplitude needs poly-space to be stored.

• If we square it, we get the probability that M accepts.

• So L ∈ PSPACE.
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BQP

Upper Bounds

.. BQP ⊆ PSPACE [Bernstein & Vazirani '93]

How to remove the assumption?
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• Given an arbitrary M′ ∈ BQP, Bernstein & Vazirani showed it suffices to
use a similar machine M′′ that its transition amplitudes can be exactly
calculated.

• If the amplitude of M′′ is at least 7
12 we accept, otherwise we reject.

• They proved that this simulation requires polynomial space.
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.. BQP ⊆ PSPACE [Bernstein & Vazirani '93]

How to remove the assumption?

• Given an arbitrary M′ ∈ BQP, Bernstein & Vazirani showed it suffices to
use a similar machine M′′ that its transition amplitudes can be exactly
calculated.

• If the amplitude of M′′ is at least 7
12 we accept, otherwise we reject.

• They proved that this simulation requires polynomial space.

Some backstage notes:

• In a universal gate set, each gate operates in a bounded number of qubits.

• a complex number is represented by two integers (one for the real, and
one for the imaginary part) with some accuracy they fix.
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BQP

Upper Bounds

.. BQP ⊆ PP [Adleman, Demarrais & Huang '97]

• Like before, proof is based on Feynman path integral.

• Let S be the set of basis states where the output qubit will be |1⟩ (accepting

states)

• for each |x⟩ ∈ S loop over all paths that contribute amplitude to it:

• the total amplitude of |x⟩ is ax =∑
i

ax,i

• each ax,i is the amplitude of a path that has |x⟩ as its leaf.

• So Paccept = ∑
x∈S

| ∑
i

ax,i |2 = ∑
x∈S

∑
i,j

ax,i · a∗x,j

• This is a sum of exponentially many terms, where each term can be
computed in poly-time.

• Recall the definition of PP: in order to decide a language, such a
machine take the sum of exponentially many terms and decides if it's
above or below some threshold.
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. . . . . .

BQP

Upper Bounds

.. BQP ⊆ PP [Adleman, Demarrais & Huang '97]

• Let L ∈ BQP.
• Non deterministically guess x, i, j.

• If ax,i · a∗x,j > 0 then make |accepting paths| ∼ |ax,i · a∗x,j|.
• If ax,i · a∗x,j < 0 then make |rejecting paths| ∼ |ax,i · a∗x,j|.
• If ax,i · a∗x,j = 0 then |accepting paths| ∼ |rejecting paths|.

• Notice x ∈ L ⇒ Paccept ≥ 2
3 > 1

2 and x /∈ L ⇒ Paccept ≤ 1
3 < 1

2
• So, L ∈ PP.
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.. BQP ⊆ PP [Adleman, Demarrais & Huang '97]

• Let L ∈ BQP.
• Non deterministically guess x, i, j.

• If ax,i · a∗x,j > 0 then make |accepting paths| ∼ |ax,i · a∗x,j|.
• If ax,i · a∗x,j < 0 then make |rejecting paths| ∼ |ax,i · a∗x,j|.
• If ax,i · a∗x,j = 0 then |accepting paths| ∼ |rejecting paths|.

• Notice x ∈ L ⇒ Paccept ≥ 2
3 > 1

2 and x /∈ L ⇒ Paccept ≤ 1
3 < 1

2
• So, L ∈ PP.

Further Notes:

• Best classical upper bound: BQP ⊆ AWPP [Fortnow & Rogers '99].

• They also showed that BQP is low for PP.
• Scott Aaronson, via ''post-selection'', proved that PostBQP=PP.
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BQP

Upper Bounds

.. What we've seen so far

..

EXP

.

PSPACE

.

P#P

.

PP

.

NP

.

AWPP

.

BQP

.BPP .

P
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BQP

Open Problems

.. BQP
?
̸= BPP

• If BQP ̸= BPP then a quantum computer would be more powerful than
a classical one.

• Furthermore, that would imply that P ̸= PSPACE.
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BQP

Open Problems

.. BQP
?
̸= BPP

• If BQP ̸= BPP then a quantum computer would be more powerful than
a classical one.

• Furthermore, that would imply that P ̸= PSPACE.

• Recall Simon's algorithm (find hidden XOR mask s): does it prove that
BQP ̸= BPP?

• No! Due to its black box formulation, it only proves that there is an

oracle A for which it holds BQPA ̸= BPPA
.

• still lack of formal evidence..
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BQP

Open Problems

.. what about NP?

• Let's say we have a space of 2n possible solutions and we are looking for
the right one.

• Assume we are in the query model, where we feed a black box oracle
with a solution and it replies if it's correct.

• Classically, we need ∼ 2n−1 queries on average.

• Quantumly, Grover's algorithm makes 2n/2 queries.

• Actually, Bennett et al. proved that this result is optimal.

• So, for ''unstructured'' search problems, quantum computers give only
quadratic speedup!

• We don't know if NP ⊈ BQP (unrelativised)

• We don't even know P ̸= NP ⇒ NP ⊈ BQP.
• Abrams & Lloyd in '98 proved that if we remove linearity from quantum

mechanics then quantum computers can solve NP-complete problems.
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Quantum Proofs

QMA

.. Recap

.

......

NP: A promise problem A is in NP iff there exists:

..1 a polynomial p

..2 a poly-time deterministic V s.t.

Completeness: if x ∈ Ayes, then ∃y |y| = p(|x|) s.t. V(x, y) = 1

Soundness: if x ∈ Ano, then ∀y |y| = p(|x|) it holds that V(x, y) = 0

.

......

MA: A promise problem A is in MA iff there exists:

..1 a polynomial p

..2 a poly-time probabilistic V s.t.

Completeness: if x ∈ Ayes, then ∃y |y| = p(|x|) s.t. Pr[V(x, y) = 1] ≥ 2
3

Soundness: if x ∈ Ano, then ∀y |y| = p(|x|) it holds that Pr[V(x, y) = 0] ≥ 2
3
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. . . . . .

Quantum Proofs

QMA

.. QMA

• The natural quantum analogue of NP is actually the quantum analogue
of MA

• name QMA was coined by Watrous

• briefly: make V quantum and allow proof to be a quantum state

.

......

QMAp: A promise problem A is in QMAp iff there exists:

..1 a polynomial p

..2 a family Q = {Qn : n ∈ N} of quantum circuits s.t.

Completeness: if x ∈ Ayes, then ∃ state ρ on p(|x|) qubits s.t. Pr[Q(x, y) = 1] ≥ 2
3

Soundness: if x ∈ Ano, then ∀ state ρ on p(|x|) qubits Pr[Q(x, y) = 0] ≥ 2
3

• QMA =
∪
p

QMAp

• QMA is unrealistic because ρ may be difficult to prepare

• but the point of QMA is quantum verification

• QCMA is like QMA but Merlin is classical.

37 / 50



. . . . . .

Quantum Proofs

QMA

.. Some Bounds

• QMA ⊆ NEXP: Arthur simulates all witness states that Merlin could send

• MA ⊆ QCMA: we know that BPP ⊆ BQP
• BQP ⊆ QCMA: Merlin sends nothing

• NP ⊆ QMA: trivially by Completeness and Soundness conditions

• QCMA ⊆ QMA: a classical Merlin can be simulated by a quantum one

• We don't know if QCMA ̸= QMA (not even relativized)

.
Quantum Oracle Separation [Aaronson & Kuperberg, '07]
..

......There exists a quantum oracle A s.t. QCMAA ̸= QMAA
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. . . . . .

Quantum Proofs

QMA

.. Play with QMA's conditions

Perfect Completeness

• MA = MA1 (Zachos & Fürer, '87)

• QMA ?
= QMA1

• ∃ quantum oracle A s.t. QMAA
1 ⊂ QMAA

[Aaronson, '09]
• we need a quantumly nonrelativizing proof

• QCMA = QCMA1 [Jordan, Kobayashi, Nagaj & Nishimura, '12]

Perfect Soundness

• if perfect soundness, then we have NQP [Kobayashi, Matsumoto &
Yamakami, '08]

• NQP is the quantum analogue of probabilistic characterization of NP
• QMA is the quantum analogue of quantifier characterization of NP
• NQP = coC=P [Yamakami & Yao, '99]
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Quantum Proofs

QMA

.. Error reduction of QMA

• if we copy the quantum proof it will be damaged

• no need for a fresh copy each time - find another Verifier

.
Strong error reduction of QMA [Marriott & Watrous, '04]
..

......

For any choice of p and completeness and soundness probabilities a and b with

a(n)− b(n) ≥ 1
q(n) for some polynomial q, it holds that ∀ polynomial r

QMAp(a, b) = QMAp(1 − 2−r , 2−r)

• we can make r bigger than p
• error will be smaller than the reciprocal of Hilbert space dimension
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Quantum Proofs

QMA

.. QMA ⊆ PP

• Let L ∈ QMA
• So for some p we have L ∈ QMAp(

2
3 , 1

3 )

• by strong reduction L ∈ QMAp(1 − 1
2p+2 , 1

2p+2 )

We consider the following algorithm:

.

......

..1 randomly guess a quantum proof on p qubits

..2 feed this proof to a Verifier V ∈ BQP(1 − 1
2p+2 , 1

2p+2 )

• ∀x ∈ L V accepts w.p. ≥ 1
2p(|x|)+1

• ∀x /∈ L V accepts w.p. ≤ 1
2p(|x|)+2

• V is not good but gives tiny amount of info about the correct answer

• V ∈ PQP (quantum analogue of PP)
• PQP = PP [Watrous, '09]

• QMA = PP ⇒ PH ⊆ PP [Vyali, '03]
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Quantum Proofs

QMA

.. What we've seen so far

..

EXP

.

PSPACE

.

PP

.

QMA

.

QCMA

.

MA

. NP.

BQP

.BPP .

P
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. . . . . .

Quantum Proofs

QIP

.. Last Recap

input
input

Prover

unbounded

or 

bounded

Verifier

• extend the notion of verification to interactive setting

• replace proof with an entity that answers questions

.

......

A language L ⊂ {0, 1}∗ has an interactive proof system if:

Completeness: ∀x ∈ L, ∃ prover-strategy s.t. Verifier accepts with high prob.

Soundness: ∀x /∈ L, for every prover-strategy, Verifier rejects with high prob.
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Quantum Proofs

QIP

AM: class of languages that have classical interactive
proof systems with constant number of rounds

• AM(m) =AM(2)

IP: class of languages that have classical interactive
proof systems with polynomial number of rounds

IP=PSPACE [Shamir, '90]

quantum interactive proof systems: the same, just
allow Prover and Verifier to be quantum

..

EXP

.

PSPACE=IP

.

PP

.

AM

.

QMA

.

MA

.

NP

.

BQP

.

BPP

.P
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. . . . . .

Quantum Proofs

QIP

.. QIP

• QIP is the same as IP but with quantum interactive proof systems

• QIP(m): at most m rounds, where m ∈ Z+

.
[Jain, Ji, Upadhyay & Watrous '09]
..

...... QIP(3) =QIP=PSPACE

• So quantum int. proof systems no more powerful than classical ones.

• with only 3 rounds, you get full power of QIP, even for polynomial
number of rounds

• it's not believed that AM=PSPACE
• quantumly, there is a significant reduction in the number of rounds

• problems in PSPACE probably need polynomial number of rounds

.
[Kitaev & Watrous, '03]
..

......

QIP(1) =QMA
QAM⊆QIP(2)
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Quantum Proofs

QIP

.. What we've finally seen so far

..

EXP

.

PSPACE=QIP

.

PP

.

QIP(2)

.

QMA=QIP(1)

.

AM

.

BQP

.

MA

.

BPP

.

NP

.P
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Quantum Proofs

Open Problems

.. (More) Open Problems

• BQP ? PH
• what if we limit quantum models?

• linear optical quantum computers
• one-clean-qubit model
• matchgate circuits

• Upper bounds on entangled provers?

• we know MIP=NEXP
• NEXP⊆ QMIP [Ito & Vidick, '12]

..

QMIP

.

NEXP=MIP

.

EXP

.

PSPACE=QIP

.

PP

.

AM

.

QMA

.

MA

.

NP

.

BQP

.

BPP

.

P
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