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Introduction
Computational Complexity Descriptive Complexity
1 1
The ”hardness” of a problem is The “hardness” of a problem is
related to the computational related to the logical resources that
resources a mechanical procedure are required, inorder to formally
requires to solve the problem. express the problem.
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Introduction

@ An algorithm can be seen as a precise description of a mapping from
inputs to outputs

@ The most usual way to describe such a mapping, is via Turing machines.

e However we may choose to describe such a mapping with another,
precise way.

e For example, using formal logic.
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Preliminaries

A vocabulary 7 = (R{*, ..., R*,c1,...,¢s, f1*, ..., f{*) is a tuple of
relation, constant and function symbols. R, 1sa relatlon of arity a; and f; is a
function of arity r;.
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Preliminaries

A vocabulary 7 = (R{*, ..., R*,c1,...,¢s, f1*, ..., f{*) is a tuple of
relation, constant and function symbols. R; is a relatlon of arity a; and f; is a
function of arity r;.

@ We do not care about function symbols.

@ (Our vocabularies will therefore be called relational.)
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Preliminaries

LetT = (R{',...,R{*,c1,...,cs) be a vocabulary.

A structure of vocabulary 7 is a tuple A = (|A|, R{, ..., Rit, cft, ... e,
whose universe is the nonempty set | A|, for each relatlon R; of arity a; in T,
A has a relation R;“ of arity a; defined on |A| and for each constant ¢; € 7, A
has a specified element of its universe.
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Preliminaries

LetT = (R{',...,R{*,c1,...,cs) be a vocabulary.

AL

A structure of vocabulary 7 is a tuple A = (JA|, R{', ..., R, ity ... cd
whose universe is the nonempty set | A|, for each relatlon R; of arity a; in T,
A has a relation R;“ of arity a; defined on |A| and for each constant ¢; € 7, A

has a specified element of its universe.

o In descriptive complexity we study finite structures.

o To be more accurate, descriptive complexity is the connection of finite
model theory and complexity.
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Preliminaries

e.x: 7y = (<2, S') is the vocabulary of binary strings, where S is a unary
relation that tells us which bit of the binary string is equal to 1.

Let U be a 75-structure such that:
U= (Ul=11,2,3,4}, <= {"the usual order”}, S = {2,3})

Then U represents” the binary string 0110.
(¢ € S iff the ith bit of the string is equal to 1)
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Second-order logic

Second-order logic = first-order logic + quantification (3, V) over relations on
the universe.

'R is a relation (or predicate) variable, while z is an individual variable (the usual variables
we have in first-order logic ...)
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S
Second-order logic

Second-order logic = first-order logic + quantification (3, V) over relations on
the universe.

e.x: Let U be a structure with universe [U/| = {0,1, 2,3} and ¢ the
second-order sentence IRVz R(z, x).!

Then U |= FRVYxR(z, x) iff there exist a relation » C |U/| x |U| such that for
allz € U, (z,z) €r.

r={(0,0),(1,1),(2,2),(3,3)}

'R is a relation (or predicate) variable, while z is an individual variable (the usual variables
we have in first-order logic ...)
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(3)Second-order logic

Existential second-order logic (SO(3)) is a fragment of second-order logic.
In particular ¢ € SO(3) iff ¢ is of the following form:

¢ =73R1,..., 3R

Where R;,i € [n] relation symbols and 1) is a first-order formula.
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-
(3)Second-order logic

Existential second-order logic (SO(3)) is a fragment of second-order logic.
In particular ¢ € SO(3) iff ¢ is of the following form:

¢ =3Ry,..., 3R
Where R;,i € [n] relation symbols and 1) is a first-order formula.

c.X:
EIREIGEIBVa:Vy((R(x) ® G(z) @ B(x)) A (BE(z,y) —

(=(B(z) A R(y)) A=(G(x) AG(y)) A=(B(x) A B(y))))
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Queries

Queries - boolean queries

Let C,, C;, be classes of finite structures of vocabulary 71, 72 accordingly,
that are closed under isomorphisms.

@ A query is a mapping Q) : Cr, — C,.
@ A boolean query is a mapping Q; : Cr, — {0,1}.
Where both () and () preserve isomorphisms.

Popavog Aok TIétpov (AAMA)

Descriptive Complexity

15 Aekepfpiov 2022




Queries

Queries - boolean queries

Let C,, C;, be classes of finite structures of vocabulary 71, 72 accordingly,
that are closed under isomorphisms.

@ A query is a mapping Q) : Cr, — C,.
@ A boolean query is a mapping Q; : Cr, — {0,1}.
Where both () and () preserve isomorphisms.

e.x: Let o = (E) be the vocabulary of graphs and C., the class of all
structures of vocabulary o (A € C, = A = (|A|, EA)).

Then for all G € C,, the disconnectivity query is:

| 1 ifGis a disconnected graph
be(@) = { 0 otherwise
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Queries - Definability

Let £ be a logic and C' a class of T-structures.

L-definability

A boolean query p on C' is L-definable if there is a £-sentence ¢ such that
forallif € C

QU =1eUE
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S
Queries - Definability

Let £ be a logic and C' a class of T-structures.

L-definability

A boolean query p on C' is L-definable if there is a £-sentence ¢ such that
forallif € C

QU =1eUEo

e.x: The boolean query disconnectivity is definable by the second-order
sentence:

35(3305(3:) A Fy=S(y) AV2Vw(S(2) A =S(w) — —E(z, w)))

Which intuitively says “there are two disjoint, nonempty, sets of nodes with
no edge between them”.
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Capturing complexity classes

We will say that a logic £ captures a complexity class C on a domain of
structures D if:

e For every fixed sentence ¢ € L, the complexity of evaluating ¢
(U = ¢) on structures of D is a problem in class C.

o Every boolean query from structures of D that can be decided in C is
L-definable
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S
Binary strings

o Everything a TM does may be thought of as a query from binary strings
to binary strings.

o In descriptive complexity we saw the vocabulary of binary strings.

@ However we have a lot more structures that use other vocabularies.

o To relate them with Turing machines, we have to somehow encode them
into binary strings.
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Encoding structures

Define an encoding query bin, : C- — C,, where C'; is the class of all
(ordered!) structures of vocabulary 7 and C7, the class of all structures of the
vocabulary of binary strings 7, = (<2, S1).

Let G = (V, E, s,t) where V = {0,1,2,3}, E¢ = {(0,1),(1,2)} and
¢ =0,t% =

a ECCV XV =
a e {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),...}

FE is a 2-ary relation, V has 4 elements — we need 4°
bits.

Binary encoding:
E s t

bin(G) = 0100001000000000 00 10, with |bin(G)| = O(n?).
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Encoding structures

The particular choice of an encoding is not important. However there are
some conditions that must be satisfied by the encoding.

An encoding query must be:
@ Order-independent (identifies isomorphic structures).

@ Polynomially bounded. (space efficient)

o First-order definable. (easy to encode and (...) to decode)
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Encoding structures

The particular choice of an encoding is not important. However there are
some conditions that must be satisfied by the encoding.

An encoding query must be:
@ Order-independent (identifies isomorphic structures).

@ Polynomially bounded. (space efficient)

o First-order definable. (easy to encode and (...) to decode)

Note that inorder to encode a structure into a binary string, an ordering must
exist!
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Fagin’s Theorem

Fagin’s Theorem

Existential second-order logic SO(3) captures NP, on the domain of all(!)
finite structures.

@ Fora fixed ¢ € SO(3), for all structures U, checking if U |= ¢ isin NP.

@ Every boolean query that can be decided in N P can be defined in SO(3).
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Fagin’s Theorem

In other words ...

© Forevery ¢ € SO(3) of some vocabulary 7 and forall A € C there
exists a polynomial-time NTM M such that:

Al ¢ < M(bin(A) Lyes)
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Fagin’s Theorem

In other words ...

© Forevery ¢ € SO(3) of some vocabulary 7 and forall A € C there
exists a polynomial-time NTM M such that:

Al ¢ < M(bin(A) Lyes)

@ For every polynomial-time NTM M that decides a language . € N P,
there exists a SO(3) sentence ¢ such that:

w € L iff w = bin(A) where A is a model of ¢

Popavog Achavng-TIétpov (AAMA) Descriptive Complexity 15 Aekepfpiov 2022



N
The End

e By Fagin’s theorem SO(3) = NP

e Corollary: SO(VY) = coNP

o We know that NP # coNP — P # NP.
e Corollary: SO(3) # SO(V) — P # NP.
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