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Why parameterized complexity?

Parameterized Complexity... a new notion of feasibility?

Let’s revisit some classic NP-complete problems.
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Three NP-complete problems

Vertex Coloring
Instance: A graph G and an integer k ≥ 0.
Question: ∃σ : V(G) → {1, . . . , k} : ∀{v, u} ∈ E(G) σ(v) ̸= σ(u)?

It can be solved in O(n2 · kn) steps.
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Three NP-complete problems

Independent Set
Instance: A graph G and an integer k ≥ 0.
Question: ∃S ∈ V(G)k : ∀e ∈ E(G) |e ∩ S| ≤ 1?

It can be solved in O(nk+1) steps.
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Three NP-complete problems

Vertex Cover
Instance: A graph G and an integer k ≥ 0.
Question: ∃S ∈ V(G)k : ∀e ∈ E(G) |e ∩ S| ≥ 1?

It can be solved in (1.2738)k + O(n) steps. (Chen, Kanj, Xia. 2010)
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Parameterized problems

Notice that, for fixed values of k, Vertex Cover can be solved in linear
time, Independent Set in polynomial, while Vertex Coloring still
needs exponential time.

Given an alphabet Σ, a parameterization of Σ∗ is a recursive mapping
κ : Σ∗ → N.

A parameterized problem (with respect to Σ) is a pair (L, κ) where L ⊆ Σ∗

and κ is a parameterization of Σ∗.
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Parameterized Satisfiability

A parameterization κ of SAT:

κ(x) =
{

number of variables in x, if x is a valid encoding
1, otherwise

κ defines the following parameterized problem:

p -SAT
Instance: A propositional formula ϕ.
Parameter: The number of variables in ϕ.
Question: Is ϕ satisfiable?
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Other examples

A parameterization of Independent Set can be defined as κ(G, k) = k.

We can do the same with all the problems that have some integer in their
instances, such as Vertex Coloring or Vertex Cover.

That way, we define the parameterized problems p -Vertex Coloring
and p -Vertex Cover.
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New & exciting complexity classes!

The classes FPT, para-NP, XP

The classes W[P] and W[SAT]

The classes W[1], W[2],…

The classes A[P] and A[SAT]

The classes A[1], A[2],…
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The class FPT

Given an alphabet Σ and a parameterization κ : Σ∗ → N,

(a) An algorithm A is a FPT-algorithm with respect to κ if there is a
computable function f : N → N and a polynomial function p : N → N
such that for every x ∈ Σ∗, the algorithm A requires

≤ f (κ(x)) · p(|x|) steps

(b) A parameterized problem (L, κ) is fixed parameter tractable if there
exists an FPT-algorithm with respect to κ that decides L. We will
then say that (L, κ) ∈ FPT.

p -SAT is in FPT while p -Vertex Coloring is not!
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FPT-reductions

Let (L, κ) and (L′, κ′) be parameterized problems
(with respect to the alphabets Σ and Σ′).

A FPT-reduction from (L, κ) to (L′, κ′), is a mapping R : Σ∗ → (Σ′)∗

where

...1 ∀x ∈ Σ∗ : x ∈ L ⇔ R(x) ∈ L′

...2 R is computable by an FPT-algorithm (with respect to κ)
[i.e. R is computable in f (κ(x)) · p(|x|) steps]

...3 there is a computable function g : N → N such that
∀x ∈ Σ∗ : κ′(R(x)) ≤ g(κ(x))

Observation: The class FPT is closed under FPT-reductions.
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Two examples

From the definitions of the problems Independent Set and Clique we
get a straightforward FPT-reduction (since a graph has an independent set
of size k iff its complement contains a clique of size k), hence

k-Independent Set ≡fpt k-Clique

On the other hand, the classic reduction of Independent Set to
Vertex Cover (where a graph has an independent set of size k iff it has
a vertex cover of size V(G)− k) is not a FPT-reduction, since the size of
the parameter is not fixed.
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Hardness - Completeness

If C is a class of parameterized problems,

(L, κ) is C-hard under FPT-reductions if all the parameterized
problems in C are FPT-reducible to (L, κ).

(L, κ) is C-complete under FPT-reductions if (L, κ) ∈ C and is C-hard
under FPT-reductions.
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The class para-NP

(L, κ): A parameterized problem with alphabet Σ.

(L, κ) ∈ para-NP if there exists a computable function f : N → N, a
polynomial function p : N → N, and a non-deterministic algorithm that,
given a x ∈ Σ∗, decides if x ∈ L in O(f (κ(x)) · p(|x|)) steps.

Observation: If L ∈ NP, then every parameterization of L is in para-NP.

Observation: p -Vertex Coloring ∈ para-NP.
(And is in fact para-NP-complete.)
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Relation of NP, para-NP

(L, κ): A parameterized problem with alphabet Σ
(L, κ) is trivial if L = ∅ or L = Σ∗

We define the i-th slice of (L, κ) as the problem:
(L, κ)i = {x ∈ L | κ(x) = i}

Theorem: Let (L, κ) ∈ para-NP, be a non-trivial parameterized problem.
Then the union of finitely many slices of (L, κ) is NP-complete iff (L, κ) is
para-NP-complete (under FPT-reductions).

Corollary: A nontrivial parameterized problem in para-NP with at least
one NP-complete slice is para-NP-complete.
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Two examples

p -Vertex Coloring is para-NP-complete since, for any fixed k ≥ 3,
k-Vertex Coloring is NP-complete.

The following parameterized problem is para-NP-complete:

p-lit-SAT
Instance: A propositional formula ϕ
Parameter: Maximum number of literals in the clauses of ϕ
Question: is ϕ satisfiable?
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Conclusions about the class para-NP:

A: If P ̸=NP, then the problems p -Independent Set, p -Clique,
p -Vertex Cover, and other similar such as p -Dominating Set and
p -Hitting Set are not para-NP-complete with respect to
FPT-reductions.

B: Problems such as p-Vertex Coloring and p-lit-SAT are not
interesting from the parameterized complexity point of view.

C: The class para-NP is for the parameterized complexity the equivalent of
NP for classic complexity.
(And in fact FPT=para-NP, iff P=NP)
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The class XP

(L, κ): A parameterized problem with alphabet Σ.

(L, κ) ∈ XP if there exists a computable function f and an algorithm that,
given x ∈ Σ∗, decides if x ∈ L in O(|x|f (κ(x))) steps.

Observation: The problems p -Independent Set, p -Clique,
p -Vertex Cover, and p -Dominating Set all belong in XP.

Observation: The class XP is for the parameterized complexity the
equivalent of EXP for the classic complexity.
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An XP-complete problem!

p -EXP-DTM-Halt
Instance: A deterministic Turing Machine M,

a x ∈ Σ, and a k ∈ N.
Parameter: k
Question: Does M with input the string x accept in

at most |x|k steps?
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FPT and XP

Corollary: FPT ⊂ XP

Proof: If p-EXP-DTM-Halt∈ FPT, then there exists a c ∈ N such that
every slice of p-EXP-DTM-Halt belongs in DTIME(nc).

Then the (c + 1)-th slice of p-EXP-DTM-Halt can be resolved in
DTIME(nc).

This means that DTIME(nc+1) ⊆ DTIME(nc) and this contradicts the
Polynomial Hierarchy Theorem.
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Summary: FPT, para-NP and XP
2.3 The Class XP 43

FPT

para-NP XP

Fig. 2.1. The relations among the classes FPT, para-NP, and XP

Exercise 2.27. Let para-EXPTIME be the class of all parameterized prob-
lems (Q, κ) such that x ∈ Q is decidable in time

f(κ(x)) · 2p(|x|)

for some computable function f and polynomial p(X). Prove that

XP ⊂ para-EXPTIME. #

Notes

The notion of fpt-reduction was introduced by Downey and Fellows in [79].
The class para-NP and more generally, the class para-C for any classical com-
plexity class C, was introduced in [100]. Theorem 2.14 is from [100]. The class
XP, and more generally the class XC for any classical complexity class C,
was introduced in Downey and Fellows [83]. Corollary 2.26 was proved there.
Further XP-complete problems can be found in [70, 83]. For more results con-
cerning the classes para-C and XC for arbitrary complexity classes C, we refer
the reader to [100].
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Part II

W[P]
W[SAT]

The W-Hierarchy: W[1],W[2],…
The A-Hierarchy: A[1],A[2],…
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κ-restricted non-deterministic Turing Machines

Σ is an alphabet and κ : Σ∗ → N is a parameterization.

A non-deterministic Turing Machine M with alphabet Σ, is called
κ-restricted if there are computable functions f, h : N → N and a
polynomial function p : N → N, such that the machine M requires
f (κ(x)) · p (|x|) steps, but at most h (κ(x)) · log |x| of them are
non-determininstic.
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The class W[P]

W[P] is the class of all parameterized problems (L, κ) that can be
decided by a κ-restricted non-deterministic Turing Machine.

Proposition: The class W[P] is closed under FPT-reductions.

Observation: The problems p -Independent Set, p -Clique,
p -Vertex Cover, and p -Dominating Set all belong in W[P].
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Summary: FPT, para-NP, XP, and W[P]

46 3 The Class W[P]

One intuitive way to see this definition is that the class W[P] is defined to
be the subclass of para-NP obtained by restricting the amount of nondeter-
minism that may be used by an algorithm in such a way that it only accepts
problems in XP. This is reflected by the second containment of the following
proposition, which is illustrated by Fig. 3.1.

FPT

W[P]

para-NP XP

Fig. 3.1. The relations among the classes

Proposition 3.2. FPT ⊆ W[P] ⊆ XP ∩ para-NP.

Proof: The inclusions FPT ⊆ W[P] and W[P] ⊆ para-NP are trivial, and
W[P] ⊆ XP follows from the fact that the simulation of h(k) · log n nondeter-
ministic steps of a Turing machine with s states by a deterministic algorithm
requires time O(sh(k)·log n) = nO(h(k)). Note that the number s of states of the
Turing machine can be treated as a constant here. #$

Exercise 3.3. Prove that W[P] is closed under fpt-reductions. %

Example 3.4. p-Clique, p-Independent-Set, p-Dominating-Set, and
p-Hitting-Set are all in W[P].

To see this, note that all these problems can be solved by nondeterminis-
tically guessing k times an element, each of which can be described by log n
bits, and then deterministically verifying that the elements are pairwise dis-
tinct and constitute a solution of the problem. %

Example 3.5. Consider the following parameterization of the halting prob-
lem for nondeterministic Turing machines:

FPT ⊆ W[P] ⊆ XP ∩ para-NP
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A W[P]-complete problem

The weight of a string x = x1x2 · · · xn−1xn ∈ {0, 1}n is defined as
Σi=1,...,n xi (i.e. the number of ones of the string).

A circuit C is k-satisfiable if there exists an input x ∈ {0, 1}n such that
C(x) = 1 and the weight of x is k.

p-Wsat(CIRC)
Instance: A circuit C and an integer k ≥ 0.
Parameter: k
Question: is C k-satisfiable?
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A W[P]-complete problem

The weight of a string x = x1x2 · · · xn−1xn ∈ {0, 1}n is defined as
Σi=1,...,n xi (i.e. the number of ones of the string).

A circuit C is k-satisfiable if there exists an input x ∈ {0, 1}n such that
C(x) = 1 and the weight of x is k.

p-Wsat(CIRC)
Instance: A circuit C and an integer k ≥ 0.
Parameter: k
Question: is C k-satisfiable?

Dimitris Chatzidimitriou (MPLA) Parameterized Complexity June 30, 2014 27 / 49



Another W[P]-complete problem

p-Bounded-NTM-Halt
Instance: A non-deterministic Turing Machine M, a x ∈ Σ,

and a k ∈ N.
Parameter: k
Question: Does M with input the string x accept in at most

|x| steps using at most k non-deterministic steps?
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Alternative definition of W[P]:

Fact 1: [(L, κ)]fpt = {(L′, κ′) | (L′, κ′)≤fpt(L, κ)}

Fact 2: p-Wsat(CIRC) is W[P]-complete.

Therefore W[P] can be defined as follows:

W[P]= [p-Wsat(CIRC)]fpt

...where CIRC is the class of all circuits.
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The class W[SAT]

PROP is the class of all propositional formulas.

p-Wsat(PROP)
Instance: A propositional formula ϕ and a k ∈ N.
Parameter: k
Question: Is ϕ k-satisfiable?

W[SAT]:= [p-Wsat(PROP)]fpt

Observation: W[SAT]⊆W[P]
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Summary: FPT, para-NP, XP, W[P], and W[SAT]

para-NP, XP W[P] & W[SAT] W[1], W[2],. . . ETH

The class W[SAT]

Summary of the classs definidas

W[SAT]

para-NP XP

W[P]

FPT

Dimitrios M. Thilikos EKPA

An introduction to Parameterized Complexity and Algorithms Part 2 65
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Subclasses of PROP

Γ0,d = {λ1 ∧ . . . ∧ λc | 1 ≤ c ≤ d, and λ1, . . . , λc are literals}
∆0,d = {λ1 ∨ . . . ∨ λc | 1 ≤ c ≤ d, and λ1, . . . , λc are literals}

Γt+1,d = {
∧
i∈I

δi | I is a set of indices and ∀i∈I δi ∈ ∆t,d}

∆t+1,d = {
∨
i∈I

γi | I is a set of indices and ∀i∈I γi ∈ Γt,d}

Observation: Γ2,1 is the class of formulas in normal conjunctive form
(CNF-formulas).

Observation: Γ1,3 is the class of the 3 -CNF-formulas.
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The classes W[t ], for t ≥ 1

For every t ≥ 1, we define: W[t]:= [{ p-Wsat(Γt,d) | d ≥ 1}]fpt

Observation: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P]
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Depth and Weft of circuits

In a circuit C we call small gates those that have at most 2 inputs and
large gates those that have more than 2 inputs.

The depth of C is the maximum number of gates between an input and the
output of C.

The weft of C is the maximum number of large gates between an input
and the output of C.

Observation: depth(C) ≥ weft(C)
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Alternative definition of the classes W[t ]

If d ≥ t ≥ 0, we define:

Ct,d = { C | C is a circuit such that: weft(C) ≤ t & depth(C) ≤ d }

Example: 3CNF-SAT∈ C1,2

Alternative Definition: (Downey and Fellows, 1991)

For every t ≥ 1 we define W[t ]:= [{p-Wsat(Ct,d) | d ≥ 1}]fpt
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A general structural theorem

p -Wsat(Γ+
t,1): we restrict the instances of p -Wsat(Γt,1) to those that

have only positive literals.

p -Wsat(Γ−
t,1): we restrict the instances of p -Wsat(Γt,1) to those that

have only negative literals.

Theorem: If t is even, then p -Wsat(Γ+
t,1) is W[t ]-complete.

Theorem: If t is odd, then p -Wsat(Γ−
t,1) is W[t ]-complete.
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A panorama of the classes so far

para-NP, XP W[P] & W[SAT] W[1], W[2],. . . ETH

The classes W[t], for t ≥ 1

Panorama of the defined clases

W[SAT]

para-NP XP

W[P]

W[2]

W[1]

FPT

··
·

Dimitrios M. Thilikos EKPA

An introduction to Parameterized Complexity and Algorithms Part 2 71
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p -Clique ∈ W[1]

Proof. The following circuit proves that p -Clique≤fptp -Wsat(C1,t).
(the weft of the circuit is 1)

□: gate AND, ⃝: gate EQUIV
Dimitris Chatzidimitriou (MPLA) Parameterized Complexity June 30, 2014 38 / 49



W[1]-complete problems

W[1] is arguably the most important class of intractable parameterized
problems, because the parameterized version of a great number of
prominent NP-complete problems is naturally complete for this class.

Theorem: p -Clique is W[1]-complete.

Corollary: p -Independent Set is W[1]-complete.

Corollary: p -Vertex Cover is W[1]-complete.
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More W[1]-complete problems

Theorem: The following problems are W[1]-complete.

p -Set Packing
Instance: A finite family of finite sets S1, . . . , Sr and k ∈ N.
Parameter: k
Question: ∃I ∈ {1, . . . , r}[=k] : ∀i ̸=j, i,j∈ISi ∩ Sj = ∅?

p -short-NSTM-Halt
Instance: A non-deterministic Turing Machine M,

with exactly one tape and a k ∈ N.
Parameter: k
Question: Does M halt with input the empty string in

at most k steps?
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A W[2]-complete problem

Theorem: The following problem is W[2]-complete.

p -short-NMTM-Halt
Instance: A non-deterministic Turing Machine M,

with one or more tapes and a k ∈ N.
Parameter: k
Question: Does M halt with input the empty string in

at most k steps?

Dimitris Chatzidimitriou (MPLA) Parameterized Complexity June 30, 2014 41 / 49



More W[2]-complete problems

Theorem: p -Dominating Set is W[2]-complete.

Corollary: p -Hitting Set is W[2]-complete.

Theorem: The following problem is W[2]-complete.

p -Steiner Tree
Instance: A graph G, S ⊆ V(G )[≤k], k ∈ N.
Parameter: m
Question: ∃R ∈ (V(G ) \ S )[≤m] : G [S ∪ R ] is connected?

Note: The same problem, parameterized by k instead of m, is in FPT.
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The classes A[t ], for t ≥ 1

We define the following natural model-checking problem for a class Φ of
formulas.

p -MC(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.
Parameter: |ϕ|
Question: Is ϕ(A) ̸= ∅?

For every t ≥ 1, we define: A[t]:= [ p-MC(Σt)]fpt.

Observation: FPT ⊆ A[1] ⊆ A[2] ⊆ · · · ⊆ A[P] ⊆ XP
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Relation of the two hierarchies

p -Clique, p -Independent Set, p -Vertex Cover, p -Set
Packing, and p -Short-NSTM-Halt are all A[1]-complete.
In fact...

Theorem: W[1] = A[1]

Also, p -Dominating Set and p -Hitting Set are in A[2].
In fact...

Theorem: ∀t ≥ 1, W[t ] ⊆ A[t ]
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An A[2]-complete problem

Theorem: The following problem is A[2]-complete.

p -Clique-Dominating-Set
Instance: A graph G and k,m ∈ N.
Parameter: k + m
Question: Does G contain a set of k vertices that

dominates every clique of size m?
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The two hierarchies

102 5 Two Fundamental Hierarchies

• for 1 ≤ i < j ≤ k, by x̄i "= x̄j we mean the formula
∨

!∈[s] xi! "= xj!;
• ϕ′ is obtained from ϕ by replacing each subformula of the form Xy1 . . . ys

by ∨

i∈[k]

∧

j∈[s]

xij = yj .

Then for every structure A, there is a relation S ⊆ As with |S| = k such that
A |= ϕ(S) if and only if A |= ϕk. Thus the mapping (A, k) $→ (A, ϕk) is an
fpt-reduction from p-WDϕ to p-MC(Σt+1). Thus, p-WD-Πt ⊆ A[t + 1], and
hence, W[t] ⊆ A[t + 1]. &'

We will see later that this proposition can be strengthened to W[t] ⊆
A[t] (cf. Fig. 5.3). While this may not be surprising in view of Example 5.8,
Example 5.9 and Exercise 5.10, it is not obvious how to prove it.

FPT

W[1]=A[1]

W[2]

W[3]

W[P]

para-NP

A[2]

A[3]

XP

Fig. 5.3. The relations among the classes (arrows indicate containment between
classes)

We may also ask whether the converse holds, that is, whether A[t] ⊆ W[t].
Let us argue that this is unlikely: While p-WD-FO and thus the defining
problems of the W-hierarchy (viewed as classical problems) are all in NP,
the problems p-MC(Σt) defining the A-hierarchy are parameterizations of
problems that are complete for the levels of the polynomial hierarchy. In other
words: The W-hierarchy is a refinement of NP in the world of parameterized
complexity, while the A-hierarchy corresponds to the polynomial hierarchy.
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A last remark

The W-Hierarchy was defined as a ”refinement” of NP for
parameterized problems.

The A-Hierarchy was defined as the analog of the Polynomial
Hierarchy.

For this and other reasons it is unlikely that the two hierarchies coincide.

Dimitris Chatzidimitriou (MPLA) Parameterized Complexity June 30, 2014 47 / 49



A last remark

The W-Hierarchy was defined as a ”refinement” of NP for
parameterized problems.

The A-Hierarchy was defined as the analog of the Polynomial
Hierarchy.

For this and other reasons it is unlikely that the two hierarchies coincide.

Dimitris Chatzidimitriou (MPLA) Parameterized Complexity June 30, 2014 47 / 49



A last remark

The W-Hierarchy was defined as a ”refinement” of NP for
parameterized problems.

The A-Hierarchy was defined as the analog of the Polynomial
Hierarchy.

For this and other reasons it is unlikely that the two hierarchies coincide.

Dimitris Chatzidimitriou (MPLA) Parameterized Complexity June 30, 2014 47 / 49



Bibliography & Suggestions for further study

...1 Confronting Intractability via Parameters - R. Downey, D.
Thilikos

...2 Parameterized Complexity Theory - J. Flum, M. Grohe

...3 Fundamentals of Parameterized Complexity - R. Downey,
M. Fellows

...4 An Introduction to Parameterized Algorithms and
Complexity (Course) - D. Thilikos [MPLA]
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Thank you!

¡Muchas gracias!
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