
The Quantum Algorithm for Factoring

John Livieratos

January 08 2015

MPLA, Algorithms and Complexity 1.



Introduction
Our aim is to present an efficient algorithm for FACTORING. This
algorithm was first discovered by Peter Shor in 1994. The catch is
that this algorithm needs a quantum computer to be implemented
and there are questions regarding the possibility that such a
computer can be build. We save this discussion for the end of the
presentation.
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Qubits, Superposition, Amplitude

We begin by some basic features from quantum physics that are
necessary to understand the algorithm and quantum computers in
general.

Let |0〉 be the ground state (lowest energy configuration) of a
single electron in the hydrogen atom, and |1〉 the excited state
(high energy configuration). In classical physics, these are the
two possible states of the electron.
The superposition principle: If a quantum system can be in
one of two states, it can also be in any linear superposition of
these two states. That is

a0|0〉+ a1|1〉, a0, a1 ∈ C, |a0|2 + |a1|2 = 1

a0, a1 are called the amplitudes of their respective states, and
the above superposition is the basic unit of encoded
information in quantum computers, called qubit .
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Superposition
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Measurement

The electron’s superposition is its private world. To find the
electron’s state, we must make a measurement. The result of a
measurement is always a single bit, 0 or 1.

If the electron’s superposition is a0|0〉+ a1|1〉, then the outcome of
the measurement is 0 with probability |a0|2 and 1 with probability
|a1|2.

Another difference from the classical physics, is that the act of
measurement causes the system to change it’s state. That is, if the
outcome of the measurement is 0, then the new state of the
system is |0〉, and if it’s 1, the new state is |1〉.

John Livieratos MPLA
The Quantum Algorithm for Factoring



k-level systems, k ≥ 2

In reality, a system (the electron of the hydrogen atom for
example) can have many energy levels (states): the ground state,
the first excited state, the second excited state and so on.
In a k-level system, we would denote these states as
|0〉, |1〉, |2〉,..., |k − 1〉.
By the superposition principle, we have the general quantum state
of the system as follows:

a0|0〉+ a1|1〉+ ...+ ak−1|k − 1〉

where
∑k−1

j=0 |aj |2 = 1

As before, a measurement will disturb the system, and resulting in
a number j ∈ {0, ..., k − 1} (with probability |aj |2) will force the
system to enter the state |j〉.
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Partial measurement and Entanglement

We now consider the case of two qubits in a 2-level system.
In classical physics we have four possible states: 00, 01, 10, 11
In quantum physics, due to the superposition principle, we
have

|α〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉

where
∑

x∈{0,1}2 |ax |2 = 1

Measuring the system now will reveal two bits of information
i, j ∈ {0, 1} with probability |aij |2 and the system will enter
the state |ij〉, which means that the first electron is in the i-th
excited state and the second in the j-th (ground state if i
and/or j are equal to 0).
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Partial measurement and Entanglement
We examine, with an example, what happens in the case of a
partial measurement:

Pr{1st bit = 0} = Pr{00}+ Pr{01} = |a00|2 + |a01|2
We obtain the new superposition of the system firstly by
crossing all terms of |α〉 that are inconsistent with the result
of the partial measurement (those whose first digit is 1) and
then renormalizing, since the sum of the squares of the
remaining amplitudes is no longer 1:

|αnew〉 =
a00√

|a00|2 + |a01|2
|00〉+ a01√

|a00|2 + |a01|2
|01〉

Finally, we notice that given an arbitrary state of two (or
more) qubits, it’s not possible to specify the state of each
individual qubit. We consider for example one of the Bell
states: |ψ〉 = 1√

2
|00〉+ 1√

2
|11〉. This is another major

difference from the classical physics, called entanglement.
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Quantum Algorithm
Let’s examine now the function of a quantum algorithm.

Let the input of the algorithm be an n-bit string x. Thus, the
algorithm takes as input n qubits in state |x〉. Now for the
quantum stage of the algorithm, it is helpful to think of it as
having two stages.

At the first stage, the n qubits form an exponentially large
superposition, which is set up to have some underlying pattern or
regularity that, when detected, will solve the task at hand. The
state of the qubits now is some superposition

∑
y αy|y〉

At the second stage, a series of quantum operations is applied to
the input, revealing the pattern.

Finally, a measurement is performed, resulting in an output of an
n-bit string y with probability |ay|2. The randomness of the output
is of small concern, if the probability that it is right is high enough.
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Quantum Algorithm

 

John Livieratos MPLA
The Quantum Algorithm for Factoring



Elementary Quantum Gates and Circuits
We will now have a brief discussion about some basic quantum
gates and circuits.

Hadamard Gate:
H (|0〉) = 1√

2
|0〉+ 1√

2
|1〉 & H (|1〉) = 1√

2
|0〉 − 1√

2
|1〉

We notice that measuring the resulting qubit in either case,
results in 0 or 1 with probability 1

2 . Finally, for input an
arbitrary superposition of a qubit:

H (a0|0〉+ a1|1〉) = a0H (|0〉)+a1H (|1〉) = a0 + a1√
2

|0〉+a0 − a1√
2

|1〉
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Elementary Quantum Gates
Controlled-NOT or CNOT gate: This gate operates upon two
qubits. The first acts as the control qubit and the second as
the target. This gate flips the second bit iff the first qubit is 1:

CNOT (|00〉) = |00〉
CNOT (|01〉) = |01〉
CNOT (|10〉) = |11〉
CNOT (|11〉) = |10〉
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Elementary Quantum Gates

Let |α〉 =
∑

x∈{0,1}n αx |x〉 be an arbitrary quantum state on n
qubits. The result of applying the Hadamard Gate to the first
qubit is:

|β〉 =
∑

x∈{0,1}n

βx |x〉 where β0y =
α0y + α1y√

2
& β1y =

α0y − α1y√
2

So, by applying the Hadamard gate to only one of the n qubits,
changes all the 2n amplitudes.
This is what will give us an exponential speedup to the following
algorithms.
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Basic Quantum Circuits
Lastly, we briefly explore two quantum circuits:

Quantum Fourier Transform: These circuits take as input n
qubits in some state |α〉 and, by applying the QFT, output
the state |β〉. We will not go in any more detail about these
circuits, but we will discuss later the QFT algorithm.
Classical Functions: Let f be a function with n input bits and
m output bits. Suppose that there exists a classical circuit
that outputs f (x). Then, there exists a quantum circuit that,
on input the n-bit string x padded with m 0’s, outputs
x & f (x). The input of this circuit can be a superposition
over the n-bit strings x:

∑
x |x, 0k〉. Then, the output would

be
∑

x |x, f (x)〉.
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QFT
We will now briefly discuss the quantum version of the FFT
algorithm. The FFT algorithm takes as input an M -dimensional
complex-valued vector α (with M = 2m), and outputs an
M -dimensional complex valued vector β.
In the following figure, ω is a complex M th root of unity and the√

M is an extra factor to ensure that:∑M−1
i=0 |αi |2 = 1 ⇒

∑M−1
i=0 |βi |2 = 1.
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QFT
Recall that the FFT can perform this calculation in O (MlogM )
steps. The QFT can do the same calculation in O

(
log2M

)
steps.

Input: A superposition of m = logM qubits,
|α〉 =

∑M−1
i=0 αi |i〉

Using O
(
log2M

)
quantum operations, QFT transforms the

superposition in a way that at each stage, the superposition
encodes the intermediate results of the corresponding stage of
the classical FFT. The result is the superposition
|β〉 =

∑M−1
i=0 βi |i〉. We will avoid to get into any further

details about the exact procedure followed by the QFT.
Output: A random logM -bit number 0 ≤ i ≤ M − 1 with
probability |βj |2, that is the product of measurement.
There is a very important difference between the FFT and the
QFT. The first actually outputs the β0, ..., βM−1 ∈ C, where
the second prepares a superposition |β〉 =

∑M−1
i=0 βi |i〉 and

ouputs just an index |i〉. It turns out that there are
applications that this is all we need to get by QFT.
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Periodicity

It is evident that we can see |α〉 as the vector (α0, ..., αM−1).

Define |α〉 as periodic with period k and offset l if ai = aj
whenever i ≡ j mod k - that is, |α〉 consists of M

k repetitions of
the same sequence (α0, ..., αk−1) - and exactly on of the k
numbers α0, ..., αk−1, say al , is nonzero.

Now, if the input is periodic, we can use QFT -or quantum Fourier
sampling as is its other common name- to compute its period.
This is due to the fact that, if the input is periodic with period k,
for some k that divides M , the output will be any one of the k
multiples of M

k with equal probability. We again omit the proof of
this claim.
Now, repeating the sampling a few times and taking the gcd of the
results will, with high probability, give us the number M

k . From
that we can get the period k.
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FACTORING

At last, we can begin discussing our target, the efficient algorithm
for FACTORING.
The algorithm to factor an integer N is, in essence, a series of
reductions. We begin by reducing FACTORING to finding a
nontrivial square root of 1 modulo N :

For any integer N , a nontrivial square root of 1 modulo N is
any integer x 6= ±1 mod N such that x2 ≡ 1 mod N .
Lemma1: x nontrivial square root of
1 mod N ⇒ gcd (x + 1,N ) is a nontrivial factor of N .

Proof.
x2 ≡ 1 mod N ⇒ N |

(
x2 − 1

)
= (x − 1) (x + 1). But

x 6= ±1 mod N , so N doesn’t divide (x − 1) or (x + 1). Thus, N
has a nontrivial common factor with x + 1. Therefore,
gcd (N , x + 1) is a nontrivial factor of N .
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FACTORING
We now reduce finding a nontrivial square root of 1 mod N to
computing the order of an integer.

The order of x mod N is min{r ∈ Z+| xr ≡ 1 mod N}.
Lemma2: Let N be an odd composite number, with at least
two distinct prime factors. Let x be chosen uniformly at
random from {0, ...,N − 1}. If gcd (x,N ) = 1, then, with
probability at least 1

2 , the order r of x mod N is even and x
r
2

is a nontrivial square root of 1 mod N .
From Lemma1 and 2, we have found, with good probability, a
nontrivial factor of N , namelly gcd

(
x

r
2 + 1,N

)
, effectively

reducing FACTORING to ORDER FINDING.
Now, ORDER FINDING has a periodic function associated
with it. For fixed N and x, we consider the function
f (α) = xα mod N . If r is the order of x, then
f (kr) = 1 & f (kr + 1) = x ∀k ∈ N. Thus f is periodic with
period r , and we can compute it efficiently.
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Creating a periodic superposition

We aim now to set up a periodic superposition using the function
f (α) = xα mod N .

We start with two quantum registers, initially 0.
We compute the QFT of the first register modulo M , to get a
superposition over all numbers in
{0, ...,M − 1} : 1√

M
∑M−1

α=0 |α, 0〉. We can show that if the
initial superposition has period k, the new has period M

k .
Here the initial had period M , so the new will have period 1.
We now compute the function f (α) = xα mod N . The
quantum circuit regards the contents of the first register as
input, and so it outputs, at the second register,
1√
M

∑M−1
α=0 |α, f (α)〉.

Finally, we measure the second register. This gives a periodic
superposition on the first register, with period r , the period of
f :
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Proof

Since f is periodic with period r , for every rth value in the
first register, the contents of the second register are the same.
The measurement therefore gives us f (k) for some random
k ∈ {0, ...r − 1}.
Due to the partial measurement, the first register is now in a
superposition of only those values in α that are compatible
with the measurement.
But these values are exactly k, k + r , ..., k + M − r . So the
resulting state of the first register is a periodic superposition
|α〉 with period r , the order of x we wanted to find.
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FACTORING
Let’s put together all the pieces of the FACTORING quantum
algorithm that we’ve discussed.
Since we now that we can efficiently check whether the input is
prime, we suppose the input is an odd composite number, with at
least two distinct prime factors.

Choose x uniformly at random from {1, ...,N − 1}
Let M be a power of 2 near N (M ≈ N 2, for reasons we will
not discuss)
Repeat s = 2logN times: Do the process described previously
and then Fourier sample the superposition |α〉 to obtain an
index ji ∈ {0, ...,M − 1}
Set g = gcd (j1, ..., js)

If M
g is even, compute gcd

(
N , x

M
2g + 1

)
and output it if its a

nontrivial factor of N , otherwise redo the whole process.
FACTORING is now solved in O

(
n3logn

)
steps.
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A short discussion

If we manage to build quantum computers, then, due to the
quantum factoring algorithm, the systems that are based in
RSA cryptosystem will no longer be secure.
Quantum computers violate the extended Church-Turing
Thesis, that all ways of implementing computers are
polynomially equivalent.
So far, the most ambitious quantum computation was the
factorization of 15 into 3 and 4 using nuclear magnetic
resonance, but there are questions concerning the
implementation of the quantum factoring algorithm.
If quantum computers cannot be build, maybe this points to a
fundamental flaw in quantum physics.
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” I think I can safely say that no one understands quantum
physics ”

-Richard Feynman, 1918− 1988
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